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Plants copewith the environment by displaying large phenotypic variation. Two spectra of global plant
form and function have been identified: a size spectrum from small to tall species with increasing stem
tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on
investments in leaf nutrients and carbon. When species assemble to communities it is assumed that
these spectra are filtered by the environment to produce community level functional composition. It is
unknown what are the main drivers for community functional composition in a large area such as
Amazonia. We use 13 functional traits, including wood density, seed mass, leaf characteristics,
breeding system, nectar production, fruit type, and root characteristics of 812 tree genera (5211
species), and find that they describe two main axes found at the global scale. At community level, the
first axis captures not only the ‘fast-slow spectrum’, but also most size-related traits. Climate and
disturbance explain a minor part of this variance compared to soil fertility. Forests on poor soils differ
largely in terms of trait values from those on rich soils. Trait composition and soil fertility exert a strong
influence on forest functioning: biomass and relative biomass production.

Oneway of explaining howplants copewith environmental conditions, and
how they coexist, is to investigate their morphological, reproductive, phy-
siological and phenological traits. Although derived from species char-
acteristics, traits are defined, based on a tested or an assumed role they play
on plant growth, survival and reproduction. In reality, no species can have
traits to be competitive in every environment asmost adaptations also come
at a cost, causing trade-offs, i.e., the valueof one trait cannot increasewithout
the decrease of that of another. One example is the number of seeds a plant
can produce. For a given amount of energy, a plant can make many small
seeds but much fewer big seeds, known as the seed size - seed number
tradeoff 1. Another well-known trade-off, the “worldwide leaf economics
spectrum”2,3 captures various leaf traits, running “from quick to slow return
on investments of nutrients and dry mass in leaves, and operates largely
independently of growth form, plant functional type or biome”2. A similar
worldwide spectrum has been described for wood traits4 and more recently
for roots5.

The leaf-economics spectrum2 is tightly related to resource capture and
use3,6. Species that are specialised for resource rich environments, such as
fertile soils, generally possess a high specific leaf area (SLA) which increases
light capture per unit leaf biomass, and high phosphorus (P) and nitrogen
(N) concentrations which increases metabolic rates, photosynthetic capa-
city, carbon gain and growth2,7–9. In contrast, species that are specialised for
resource poor environments, such as infertile soils, produce thick, dense,
and structurally well-defended leaves. Additionally, they have high leaf
carbon concentrations and C:N ratios reflecting investments in structural

and chemical defences such as lignin, tannins and soluble phenolics10. In
combination, these traits increase leaf lifespan and nutrient conservation,
while enhancing the length of the photosynthetic revenue from leaves2,3.
Hence, inwet forests on infertile soils an evergreen leaf habit is important for
nutrient conservation.

Another aboveground spectrum, known as the stature−recruit-
ment trade-off, runs fromsmall to tall specieswith increasing stem tissue
density, leaf size, and seed mass3,6,11–13. Wood density relates to bio-
mechanical resistance against biophysical hazards such as wind and
pathogens, and can relate to increased resistance to drought-induced
embolism14. Therefore wood density enhances a tree species’ lifespan4,
and is a conservative trait that is beneficial on infertile soils, as it
increases the biomass residence time15.Wooddensity has been shown to
increase towards the northeast in Amazonia, presumably linked to poor
soils16,17. Seed mass is a key functional trait that influences a plant’s
ecological strategy, dispersal, and establishment success16 and decreases
with soil fertility. Large seeds contain more carbohydrate and nutrient
reserves, and produce larger, more robust seedlings which enhances
seedling establishment and survival in low resource environments (such
as nutrient-poor soils and the shadedwet forest understory)16,18–21. Seeds
with a low mass (i.e. small seeds) often have wind-, bird- or bat-based
dispersal, an ability to colonise larger areas, but lower success in indi-
vidual seedling establishment22,23, unless frequent disturbances make
light available. As with wood density, seed mass has been shown to be
much higher in eastern than western Amazonia16.
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More recently a below ground economics spectrum was described,
with two dimensions based on six fine root traits: a collaboration gradient
running from a do-it-yourself strategy for acquiring resources to an out-
sourcing one relying on fungi, and a conservation gradient opposing fast-
slowfine roots5.We have no rootmorphological data for the vast number of
species in Amazonia but do have information on three important root traits
(mycorrhiza, nitrogen-fixation, and aluminium accumulation). Most plant
species are associated with vesicular arbuscular mycorrhiza5,24, and dis-
tributed quite evenly across what was called the root economic space5, while
species associated with ectomycorrhiza were more found in the non-
collaborative space5. Ectomycorrhizae (EM) are important for mono-
dominant forests on very poor soils in Central Africa25 and in Guyana26–28

but are otherwise very rare in Amazonia24,29. Nitrogen fixation is thought to
be an important trait on nutrient poor soils. However, earlier work has
shown that non-nitrogen fixing ‘caesalpinioid’ Fabaceae dominate poor,
acidic soil regions in Amazonia16,29, perhaps because of a lack of trace ele-
ments necessary for nodulation. An additional reason might be that sym-
biotic nitrogen fixers prefer non-acidic, somewhat drier soils24 and early
successional forests30,31, rather than shaded old growth forest because of the
high energy requirements to maintain the rhizobial symbiotic bacteria.
Aluminium accumulation occurs in only 18 tree families32. Some plant
species accumulate aluminium that enters their roots into their leaves on
soils with high aluminium content, to protect the toxic effect of aluminium
on root tips. Aluminium accumulation is restricted to a number of
families33–35. Aluminiumaccumulators are foundmainly on aluminium rich
soils, such as those of the Cerrado in Brazil36,37 but no information is yet
available on the distribution of aluminium accumulation in Amazonia.

At species level the leaf economics spectrum produces trade-offs as
well: that of plant species being either slow growing and shade tolerant or
fast growing but light demanding38–41. A similar trade-off is found among
species growing on nutrient rich or nutrient poor soils42,43. In both cases an
increasingly limiting resource (light, nutrients) leads to the need for con-
serving plant tissues, as they cannot easily be replaced under strongly lim-
iting conditions. Thus, under favourable conditions, plants will show traits
that allow them to grow fast at the cost of being less defended. Their fast
growth, however, allows them to compensate for loss of their tissue to
herbivores44–46. The slow/fast division in plant strategies has been observed
much earlier and led to the much-used pioneer-climax tree division, with
pioneers having cheap, large, thin, short-lived leaves, soft wood, small seeds,
subsequent fast growth in high light but high mortality in shade. Climax
species tend to have thick long-lived leaves, hard wood, slow growth but
superior survival under shaded conditions47,48. Thus, “species with large
seeds, long-lived leaves, or dense wood have slow life histories, with mean
fitness (i.e., population growth rates) more strongly influenced by survival
than by growth or fecundity, comparedwith fast life history species with small
seeds, short-lived leaves, or soft wood”49. The link between the leaf economic
spectrumandwood economic spectrum, however, is not that clear4, and in a
large study with 668 neotropical tree species and 16 leaf and wood traits it
was shown that the traits of leaf-economic spectrum and those of the wood-
economic spectrum were orthogonal rather than correlated. This suggests
that the “trade-offs operate independently at the leaf and at the stem levels”50,
which is consistent across Amazonia51.

Recently information became available on breeding systems of Ama-
zonian trees and the production of nectar producing taxa world-wide52. We
added these traits to our list to investigate their relationship with the above
traits. While there is strong support for the leaf-economic-spectrum and
stature-recruitment trade-off, it is less clear if different vegetative organs
(leaf, stem and roots), reproductive strategies (breeding system,fleshy fruits,
seed size), and symbioses (nitrogenfixing bacteria,mycorrhizae) align along
these two main identified spectra (leaf-economic-spectrum and stature-
recruitment trade-off) or represent independent, novel axes of strategy
variation, thereby expanding the opportunities for niche differentiation and
species coexistence.

Because plant species assemble to make up local communities, it is
often assumed that these strategy spectra at the species level are filtered and

translated into community-level functional composition53,54. However, in
spite of ongoing studies, it remains unclear whether this is the case for
different tropical forests and how this translates into ecosystem functioning
(carbon storage and sequestration) at the regional scale, which at the smaller
scale is known to be affected by soil fertility and forest dynamics55.
Addressing these questions is especially critical for tropical ecosystems, as
they provide by far the majority of the planet’s species diversity and ter-
restrial ecosystem function56.

Here, we investigate the relationship between 13 tree functional traits
from 812 Amazonian tree genera, including above- and below-ground
traits, and reproductive traits for the world’s largest and most diverse tro-
pical forest. We scale up from genus to community level across the entire
Amazon region by calculating community-weighted mean (CWM) trait
data for over 2000 tree-inventory plots in seven forest/soil combinations,
mapping each trait and the result of the main strategy axis. We investigate
potential drivers (climate, soil) of community trait values, and assess the
implications of community trait values for forest functioning in terms of
carbon storage and sequestration. We also test how life-histories, such as
short-lived or (early) pioneers, long-lived pioneers, and old growth species–
often used in models12, and one life-history characteristic (observed max-
imum diameter) are related to the strategy axes of both genus-level and
community-level analyses. Because it was recently shown that pre-
Colombian people left a lasting imprint in some Amazonian forests57–59,
we also included information on the abundance of domesticated species60

and the probability of finding evidence of human occupation (geoglyphs =
human constructed earth works)58 as factors potentially affecting forest
traits composition and function.

Our main research questions are: (1) What plant-strategy spectra are
found among Amazonian tree genera? (2) Are community-level strategy
spectra similar to genus-level strategy spectra? (3)What are themain spatial
gradients in functional composition across Amazonian forest types, and
how does this relate to climate, large-scale disturbance, soil, and pre-
Columbian human legacies? (4) How does community functional compo-
sition affect carbon storage and carbon sequestration?

If ecological filters are not modifying the relationships between traits
fromgenera to communities,wemayexpect similar trait spectra at the genus
and community levels. If the wood and leaf economic spectra, uncoupled at
species level50,51, react to soil fertility across Amazonia in a similar way, we
expect convergence among traits within communities9,61, and divergence
among traits between communities driven by local and regional differences
in soil62. We expect forest communities with, on average, slow traits to have
high community mean wood density16,17 but the relationship with forest
productivity is less clear55,63.

See Supplementary Box 1 for a description of the traits used and a
discussion on their importance for tree ecology.

Results
Traits at genus level
To understand what plant-strategy spectra are found among Amazonian
tree genera (question one), we started by identifying plant strategies at genus
level. A principal component analysis was carried out on a dataset from all
2253 plots (Supplementary Fig. 1), including all 13 traits, using only the 535
generawith data for all traits, representing 90.8%of all individuals. Four leaf
traits (N, P, SLA, C:N, Fig. 1, Table 1) were strongly related with Principal
component 1 (PC1, Eigenvalue = 2.98), which explains 22.97% of variance
in the data (Supplementary Table 1a). PC1 therefore represents the ‘leaf
economics spectrum’ (LES) running from ‘fast’ productive leaves with high
SLA and leaf nutrient concentrations to the left, to ‘slow’ well-defended
leaves with highC:N to the right. Traits related to tree size and reproduction
were mostly related to PC2 (Eigenvalue = 1.75), which explains 13.52% of
the variance in the data and represents the “stature−recruitment trade-off’,
running from small species with fleshy fruits (FF) at the bottom to large
species with somewhat large maximum diameter (Max), high seed mass
(SM), high wood density (WD), a hermaphroditic breeding system (Her),
and nectar (Supplementary Box 1). Life-history classification was based on
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seed mass and wood density29,64. Life histories were therefore closely linked
with the stature-recruitment trade-off, being defined by three strategies, as
follows: short-lived pioneers (SLP) with small seeds and soft wood occu-
pying the small side, and old growth species (OGS) with large seeds and
dense wood occupying the tall side of the spectrum. Long lived pioneers
(LLP) are intermediate with light wood and relatively large seeds (Fig. 1,
Supplementary Table 1c, Supplementary Fig. 2). Total functional richness
was 87.7, SLP and LLP had partial functional richness of 71.6 and 69.1
respectively (Supplementary Fig. 2), while OGS had a partial functional
richness of 60.6.We separately tested the contribution of Fabaceae, themost
abundant and species-rich family in Amazonia (16% of all species and
individuals). Fabaceae has remarkably high functional richness for a single
family (60), compared to all other families combined (68.5; Supplementary
Fig. 2). Fabaceae occupies the top of the trait space (Supplementary Fig. 2); it
is almost entirely hermaphroditic (Her; 757 of 814 species), contains all
Amazonian nitrogen-fixing species (Nfix) in our data (with the exception of
Trema, Ulmaceae), and has on average relatively large seeds (SM)16. Alu-
minium accumulation was related to the third axis (Table 1), seedmass and
leaf carbon content were also related to this axis. Ecto-mycorrhizal sym-
biosis was also related to the third axis but only explained 2.4% of the first
three axes (Table 1).

Using only traits generally included in plant functional analyses (wood
density, specific leaf area, leaf carbon content, leaf N content, leaf P content,
leaf C:N ratio)2,3,50, resulted in much higher explained variance for PC1 and
PC2 of 41% and 19% respectively. As most other traits have eigenvalues
close to one or much lower (Supplementary Table 1a) - they are either
uncoupled from these two spectra or explain little variance in the data
(Table 1).

Traits at tree community level
To identify tree community-level strategies (question 2), a second PCAwas
carried out using community weighted means (CWM) of 13 traits of the
2054 forest communitieswith species level identification (Fig. 2). Compared
to the genus PCA, the trait loadings of the community PCA appear rotated
to the right by 20–40 degrees. The CMW related to the leaf-economic-
spectrum are still mostly associated with community PC1, similar to genus-
level analysis. However, size and reproductive traits that were mostly
associated with genus PC2, the stature-recruitment trade-off, in the analysis
of the genera arenowmostlyweighingon communityPC1 (PC1, eigenvalue
4.39, 33.8%, Supplementary Table 2a). Nitrogen fixation changed from a
positive to a negative association with community PC2. Other traits mainly
linked to PC2 are fleshy fruit, hermaphrodism, and nectar.

Community PC1 runs from forest communities with ‘fast’, acquisitive
traits (SLA,N, P), to the left, to forest communitieswith ‘slow’, conservative’
traits (C:N, wood density, seed mass) and high percentage of hermaphro-
ditism to the right (Fig. 2, Table 2). Communities with fleshy fruits and
nectar have the highest loading on community PC2 (Eigenvalue 2.27,
17.4%). We will use the term ‘fast-slow forest spectrum’ for PC1 of this
secondPCAof the forest communities. PC2 could be considered and axis of
breeding system.

Comparing the trait associations at genus and community level

Question 2. asked if genus-level strategy spectra are similar to community-
level strategy spectra. To assess if genera and forest communities show
similar trait associations (Figs. 1, 2; Supplementary Fig. 3a, b), a Mantel test
was carried out over distances of traits in PC space. The Mantel R (0.78,
p = 0.001) suggests that a higher distance in genus-level trait values was also
associated with a higher distance in plot CMW. This was mainly caused by
the scores on the PC1’s of each ordination, however, which were strongly
correlated (Supplementary Fig. 3c) and less by the scores on the PC2’s,
which were not significantly correlated (Supplementary Fig. 3d).
We evaluated how environmental factors (soil pH, sum of bases, annual
rainfall, cumulative water deficit, windthrow count, convective atmospheric
potential energy), past human disturbances and management

Table 1 | Percentage of variance explained for each trait for
Amazonia

trait PC1 PC2 PC3 R² p type

N 0.824 0.019 0.004 0.847 0.001 LES

C:N 0.791 0.003 0.000 0.795 0.001 LES

SLA 0.630 0.010 0.010 0.650 0.001 LES

SM 0.091 0.160 0.382 0.634 0.001 SR/DIS

P 0.452 0.000 0.066 0.519 0.001 LES

AA 0.003 0.080 0.353 0.437 0.001 R

Nfix 0.048 0.366 0.007 0.422 0.001 R

Her 0.014 0.230 0.152 0.396 0.001 BR

FF 0.009 0.263 0.123 0.394 0.001 DIS

WD 0.101 0.260 0.018 0.379 0.001 SR

C 0.001 0.092 0.248 0.341 0.001 LES

Nectar 0.007 0.269 0.038 0.314 0.001 BR

EM 0.008 0.000 0.016 0.024 0.464 R

Traits are ordered in proportion to varianceexplained.N leafNitrogenconcentration,C:N ratio of leaf
carbon to leaf nitrogen,SLA specific leaf area,SM seedmass,P leaf phosphorus concentration,AA
aluminium accumulation, Nfix atmospheric N-fixation, Her hermaphroditism, FF fleshy fruit,WD
wood density,C leaf carbon concentration,Nectar nectar producing, EM ectomycorrhiza. For units
seeSupplementaryBox 1.R2proportion of variance explainedby trait;p significance level. Type: the
spectrum or process the trait is important to: LES leaf economic spectrum, SR stature recruitment
trade-off, R roots, mycorrhiza, N-fixing and Al-accumulation, BR breeding system, DIS trait
important for dispersal.

Fig. 1 | Trait space of 353 Amazonian tree genera on 2253 plots with genus level
identification.Only genera with complete trait data were used (353 genera, of the 812 in
our plots). PC1 has an Eigenvalue of 2.98 and represents the leaf economic spectrum
(SLA, N, P, C:N). PC2 (Eigenvalue 1.62) represents the stature-recruitment trade-off
(WD, SM) and is strongly linked to short lived pioneers (SLP, negatively) and old-growth
species and maximum diameter (OGS, Max, positively). Legend: Colours indicate the
probability of trait combinations in the trait space defined by the PCA (red = high
probability; yellow = low probability). Contour lines indicate 0.99, 0.50, and 0.25 quantiles
of the probability distribution. N leaf nitrogen concentration, C:N ratio of leaf carbon to
leaf nitrogen, SLA specific leaf area, SM seed mass, P leaf phosphorus concentration, AA
aluminium accumulation, Nfix atmospheric N-fixation, WD wood density (overlapping
with OGS), C leaf carbon content, FF fleshy fruit, EM ectomycorrhiza, Her hermaph-
roditic, Nectar nectar producing. Life histories (dark green): OGS old-growth species, LLP
long-lived pioneer, SLP short-lived pioneer64;Max, maximumdiameter165. For description
of the traits and units, see Supplementary box 1.
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(domesticated species57 and geoglyph-probability58), as well as life history
strategies are associated with community functional composition by
a-posteriori plotting them in the PC trait space (question three). Soil
explanatory variables (sum of bases, pH) and human impact (domesticated
species, geoglyph probability) were mainly related to the ‘fast-slow forest
spectrum’, although their explained variance is generally low (Supplemen-
tary Table 2c). Soil sum of bases explainedmost of the variance (33%) of the
‘fast-slow forest spectrum’, while pH explained 21.4% (Supplementary
Figs. 4 a, b, 5). Domesticated species and geoglyph probability (Supple-
mentary Fig. 4e, f)were alsomainly aligned to the ‘fast-slow forest spectrum’
but explained <6% of the variance (Supplementary Table 2c). Climatic
factors (annual precipitation, cumulative water deficit, windthrow count,
convective atmospheric potential energy,flooding) are the best predictors of
PC2, although all have an R2 less than 7% (Supplementary Fig. 4c, d, Sup-
plementary Table 2c).

Forest types differ in their functional composition, as indicated by the
plot scores for the ‘fast-slow forest spectrum’. Igapó, terra firme from the
Guyana Shield, and especially the white sand podzol forests are, on average,
‘slow’ forests (TFBS, IG, TFGS, PZ) with positive scores for the ‘fast-slow
forest spectrum’ (Fig. 3a). In contrast, terra firme on the Pebas formation
and várzea (TFPB,VA) are, on average, ‘fast’ forests with negative scores for
the ‘fast-slow forest spectrum’. Forest types with low nutrient status (TFBS,
IG, TFGS, PZ) are also positioned in the right part of the trait space (positive
scores for the ‘fast-slow forest spectrum’; Supplementary Figs. 5b, 6). Total

functional richness of the completedatasetwas 130.4. Forests onwhite sands
and swamps had low functional richness (53.2, 55.4), terra firme ranged
from 74.3 to 77.9, while the two flooded forest types várzea and igapó both
had relatively high functional richness (95.1 and 86.7, respectively). Regions
are also ranked from those with generally high soil fertility to those with low
soil fertility (Fig. 3b, SWA >GS) and positioned from right (positive scores
on the ‘fast-slow forest spectrum’; low soil fertility) to left (negative scores on
the ‘fast-slow forest spectrum’; high soil fertility) in trait space (Supple-
mentaryFig. 7).Most regionshad identical functional richness ranging from
76.5–79.8, with Northwestern and Central Amazonia having a somewhat
higher functional richness (Supplementary Fig. 7).

For the tree communities, the 13 community-weighted mean (CWM)
traits showed similar spatial patterns acrossAmazonia, with values linked to
the fast-soft, acquisitive end of the leaf economics spectrum both in the
regions of north-western and south-western Amazonia and forest types
(TFPB, VA) where relatively high soil-fertility and plant productivity are
expected. Values linked to the slow-tough, conservative end were found in
the regions (Central Amazonia, Guiana Shield, Southern Amazonia) and
forest types (PZ, IG, TFGS, TFBS) with expected low soil fertility and
productivity. Each trait is discussed inmore detail in the Supplementary text
and figures (Supplementary Figs. 8–25).

We mapped the ‘fast-slow forest spectrum’ (Fig. 4). Because the” ‘fast-
slow forest spectrum’ is built up from the CWM’s of the 13 traits, many of
which correlate well with this axis the patters of the traits are fairly similar to
the ‘fast-slow forest spectrum’ (Supplementary Figs 8–25). ‘Slow’ forests
(witha positive score on the ‘fast-slow forest spectrum’)makeup~40%of all
plots (Supplementary Fig. 26) and are found in areas with low soil fertility,
such as the Guiana Shield and central Amazonia (yellow-beige colours in
Fig. 4), where also most of the white sand forests are located. ‘Fast’ forests
(negative score on the ‘fast-slow forest spectrum’, blue-purple colours in
Fig. 4) make up ~30% of all plots (Supplementary Fig. 26) and are found in
western Amazonia and southern Amazonia but not the areas directly bor-
dering the Cerrado savanna area (for the delimitation of zones inAmazonia
see Supplementary Fig. 1). The pattern of large-scale disturbances is quite
similar to rainfall patterns in Amazonia (see Fig. 1 of ref. 65), and has little
effect on trait data and on the ‘fast-slow forest spectrum’ (Supplementary

Table 2 | Variance explained by the community weighted
means of 13 traits of 2054 tree communities in Amazonia

Trait PC1 PC2 R² p spectrum

N 57.98 28.91 0.869 0.001 LES

C:N 65.26 16.90 0.822 0.001 LES

SLA 52.27 26.53 0.788 0.001 LES

WD 57.03 4.59 0.616 0.001 WES

P 41.83 18.90 0.607 0.001 LES

Her 32.87 26.34 0.592 0.001 BR

FF 17.91 40.90 0.588 0.001 BR

Nectar 20.73 34.06 0.548 0.001 BR

SM 41.63 2.29 0.439 0.001 SES

C 26.95 9.54 0.365 0.001 LES

Nfix 22.95 5.29 0.282 0.001 R

EM 1.69 6.54 0.082 0.001 R

AA 0.00 5.90 0.059 0.001 R

Traits are ordered in variance explained.N leaf nitrogen content,C:N ration leaf carbon to leaf nitrogen,SLA
specific leaf area, WD wood density, P leaf phosphorous content, Her hermaphroditism, FF fleshy fruit;
Nectar, nectar producing,SM seedmass,C leaf carbon content,Nfix atmospheric N-fixation by Fabaceae,
EM ectomycorrhiza. LES leaf economic spectrum, WES wood economic spectrum, SES dispersal, trait
important for dispersal, roots, root trait. For units seeSupplementary Box 1. PC1, the relative contribution of
the environmental variable for PCA axis 1; PCA2 same for PCA 2. R2 proportion of variance explained by
environmental variable;p: significance level. Spectrum:LES leaf economic spectrum,WESwoodeconomic
spectrum, BR breeding R

Fig. 2 | Trait space of 2054 tree communities with traits at genus and species level.
PC1 has an Eigenvalue of 4.39 (explained variance 33.3%), and appears to be related
to the ‘leaf economic spectrum’ (SLA, N, P, C:N) but also WD, SMC, and her-
maphroditism contribute to this axis. Life-history forms SLP and LLP are also
positively correlated with PC1. Environmental factors sum of bases and pH are
strongly positively correlated to this axis. PC2 is linked to nodulation of Fabaceae
and fleshy fruits and poorly correlated to the climatic factors used. Legend: Colours
indicate the probability of trait combinations in the trait space defined by the PCA
(red = high probability; yellow = low probability). Contour lines indicate 0.99, 0.50,
and 0.25 quantiles of the probability distribution.N leaf nitrogen concentration, C:N
ratio of leaf carbon to leaf nitrogen, SLA specific leaf area, SM seed mass, P leaf
phosphorus concentration, AA aluminium accumulation, Nfix atmospheric N-
fixation, WD wood density, C leaf carbon content, FF fleshy fruit, EM ectomycor-
rhiza, Her hermaphroditic, Nectar nectar producing. Life histories (dark green):
OGS old-growth species, LLP long-lived pioneer, SLP short-lived pioneer64; Envir-
onmental variables: Annual, Annual precipitation (Bioclim12)166; CWD cumulative
water deficit, CAPE Convective atmospheric potential energy65, WTC Windthrow
count65; PZ podzol, white-sand forest, FL flooded (swamp forest; várzea; igapó); pH,
soil acidity; SB, log(sum of bases)154; G.prob, geoglyph probability58; DSpp, domes-
ticated species57. Note that SLA, N and P are overlapping, as are DSpp, G.prob, pH
and SB. For description of the traits and units, see Supplementary box 1.
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Table 2c). To show that all traits are aligned to the ‘fast-slow forest spec-
trum’, we carried out an a-posteriori test, dividing the spectrum in three
classes (fast < -1.2;medium -1.2 - 0.65, slow > 0.65 [Fig. 4], which have 29%,
31%, and40%of all plots, respectively, SupplementaryFig. 25) andprovide a
boxplot for each trait by class. Individual CWM traits follow the same
continuum as the ‘fast-slow forest spectrum’, although with different
explained variance (R2 values, Supplementary Figs 27, 28).

Community functional composition affects ecosystem
functioning
Finaly, question four asked if functional composition had consequences for
forest functioning. This is expected as the ‘fast-slow forest spectrum’ is
strongly associated with soil fertility (Supplementary Fig. 4a, 5, Supple-
mentary Table 2c, R2 = 32%, P < < 0.001). Indeed, above ground woody
biomass (AGB) is significantly positively related to the ‘fast-slow forest
spectrum’ (Fig. 5a). Forestswith ‘fast’ traits have lowbiomass and thosewith
‘slow’ traits have high biomass. Absolute aboveground woody productivity
(AGWP) is not significantly related to the ‘fast-slow forest spectrum’, sug-
gesting that all forests have a similar, though variable, absolute productivity
(Fig. 5b). Consequently, forests with high biomass have low relative AGWP
(AGWP / AGB, Fig. 5c), whereas forests with a low biomass have a high
relatively AGWP. Thus, relative AGWP is higher for forests with ‘fast’ trait
values. Relative AGWP also increases with soil fertility (sum of bases,
Fig. 5d).While the direct contribution of the ‘fast-slow forest spectrum’ and
sumof bases to theAGWP is 33% and 27% explained variance, respectively,
their combined contribution is 34% explained variance. Thus, their con-
tribution is largely coinciding, strengthening the notion that fertilitymay be
an underlying driver of both trait composition (PC2, the fast-slow forest
spectrum), and productivity.

Discussion
Amazonian trees show two main strategy spectra
Across the globe, two main plant strategy spectra are found related to (1)
plant size12 and (2) leaf economics3. For Amazonian tree genera, the same
two strategy spectra are found, but the order is reversed; the leaf economics
spectrum (LES) is the spectrum describing most of the trait variance,

probably reflecting adaptations to the strong Amazonian soil fertility gra-
dient (see below). The size spectrum is only secondary (Fig. 1), presumably
as we focus here solely on the tree life form compared to global analyses3,6

that included many small herbaceous plant life forms. Across Amazonian
tree genera, the wood economic spectrum (WD) was uncoupled from the
LES (Fig. 1), as previously shown for Amazonian tree species50,51,66. This
suggests that leaves and stems provide independent avenues for speciali-
sation, potentially leading to more opportunities for niche differentiation
and species coexistence.

We expand on previous analyses by showing that, even within trees,
reproductive characteristics (breeding system, fleshy fruits, seed mass) are
closely related to the size spectrum indicating that plant lifespan (tree size)
and reproductive strategies are closely intertwined. Life history strategies
were mainly related to the size-reproductive spectrum, in which small,
short-livedpioneers producemany small animal-dispersed seeds to colonise
ephemeral canopy gaps, whereas tall, long-lived old-growth species with
durable wood (high wood density) produce large seeds which enables their
seedlings to establish and survive successfully in the shade47. Long-lived
pioneers lie somewhere in between trait-wise. The second axis reflects
therefore the stature−recruitment trade-off which is often found in closed-
canopy forests11–13, where taller specieshavebetter access to light and smaller
species have relatively high seed production and fast life cycle. It should be
noted that long-lived pioneers and especially old growth species that pro-
duce large seeds generally have higher total seed mass production per
fruiting event67. As they also live much longer they may thus have greater
life-time seed production than short-lived pioneers68.

Despite the global importance attributed to the LES, Amazonian pio-
neers and old growth species, surprisingly, do not differ much in their
position on the LES. LES traits may be more important for the growth and
survival of small seedlings and saplings that have a small total leaf area41,69,
compared to adult trees in which carbon gain is more determined by their
large size and total leaf area than by leaf-level trait differences2,70.

Plant strategies only partly translate into community strategies
Trait associations scale up from genera (Fig.1) to communities (Fig. 2) but
not perfectly (Supplementary Fig. 3) and most traits are more strongly

Fig. 3 | PC1 plot scores of community trait values related to forest types and
Amazon regions. a ‘The fast-slow forest spectrum’ as determined by forest type.
‘The fast-slow forest spectrum’ is associated mostly with the economic spectra, and
the order of forest types appears determined by general soil fertility (see Supple-
mentary Fig. 29a). Note the very high value of the poorest soils in Amazonia (lowest
sum of bases (Supplementary Fig. 29a), white sand podzol (PZ). b‘The fast-slow
forest spectrum’ as determined by Amazonian region. The order of regions also

appears follow general soil fertility (Supplementary Fig 29b). From rich to poor:
TFPB terra firme Pebas Formation, VA várzea, SW swamp forest, TFBS terra firme
Brazilian Shield, IG igapó, TFGS terra firme Guiana Shield, PZ white sand forest,
SWA south west Amazonia, NWA northwest Amazonia, SA southern Amazonia,
EA eastern Amazonia, CA central Amazonia, GS Guiana Shield. Colours follow the
major forest type (SWA, NWA: TFPB; SA: TFBS; CA, GS: TFGS; EA: mix of TFBS,
TFGS). Red dotted line: mean of all data.
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related to the first PCA axis in the communities, the ‘fast-slow forest
spectrum’. At the community level, the LES traits, size and reproductive
traits are all aligned with the first principal component (Supplementary
Table 2c), resulting in one overall spectrum from ‘fast’ to ‘slow’Amazonian
forests, which closely parallels the soil fertility gradient (see below). For
example, ‘slow’ forests on infertile soils tend to be tall, evergreen, densely
shaded with low turnover dynamics and infrequent tree-fall gaps71. Under
those conditions, high seed mass facilitates seedling establishment and
survival16,20,61,72,73. Nutrient-poor conditions may select for species with dry
fruits that tend to have low nutrient concentrations, high seed toxicity, and
for hermaphroditic species that maximise fitness1. In low turn-over forests,
tree species do not produce many small seeds but rather few large seeds,
providing offspring with higher survival, a classic example of the “high
growth in light vs. lowmortality in shade trade off”67,74. In sum, the two plant
strategy axes converge into one main community strategy axis because of
strong environmental filtering by soils. This may explain why the pioneer-
climax dichotomy47 has been so appealing for such a long time.

Nearly all of the dry-fruited trees in the Amazon are hermaphroditic
and, because wind- or unassisted-dispersal is not favoured in the sub-
canopies of dense forests75, which tend to be also tall. Heavy seed mass also
tends to be associated with larger trees76. Very little is known on the nectar
producing species in Amazonia but it appears positively associated with
infertile soils and hermaphroditism. The link with infertile soils is most
likely due to the fact that under conditions of high solar energy and abun-
dant moisture but low soil nutrients, production of carbohydrate-rich
exudates is favoured77. Flowers producing abundant nectar also tend to be
large78, rarely unisexual, but associated with hermaphroditic breeding sys-
tems. In contrast, wind-pollinated species produce large amounts of
nitrogen-rich pollen79, no nectar, and have mainly unisexual flowers.

Atmospheric N fixation was positively linked to the size-
recruitment spectrum in the genus ordination (Fig. 1). Species in
Fabaceae, the main N-fixers, are characterised by high wood density
and large seeds. However, in the community ordination their position
was reversed from a positive (Fig. 1) to negative relation (Fig. 2).

Fabaceae, dominate the forests of the upper Rio Negro, Guyana and
Suriname16, but the species that dominate there are ‘caesalpinoid’
legumes that generally do not form N-fixing root nodules16. N-fixation
is mainly found in the genera occurring in western Amazonia, which
also have smaller seeds16, which explains the reversal.

Areas along the Amazon main stem and other várzea rivers have
negative scores for the ‘fast-slow forest spectrum’ and are known to be very
fertile (see also Supplementary Fig. 29), having among the highest litter
productivity of Amazonia80. It should be noted that themost fertile soils are
also associated with regions of greatest soil instability81,82, seasonal flooding
(várzea), and in southern Amazonia with incidence of storms83, making it
difficult to disentangle effects of disturbance and soil fertility. The inter-
mediate disturbance theory84,85 has long held that in Amazonia, higher soil
fertility would lead to faster tree growth and turn-over, gap dynamics, and
heterogenous forest structure, ultimately yielding higher plant
diversity16,61,86. Other studies have countered this conclusion87. Our data
suggests that tree species richness has no relationship with the ‘fast-slow
forest spectrum’ and also explains very little variance of the trait distribution
(Supplementary Table 2c). In Amazonia, even though large windfall dis-
turbances (from 5 to over 2000 ha) are not uncommon, their return fre-
quency is between 27.000 years in Western Amazonia and 90.000 years in
Eastern Amazonia88. Thus, it is unlikely that they contribute much to dis-
turbance related species richness.

An Amazonian spectrum from slow to fast forests, driven by soil
fertility
Amazonian forests show one major functional spectrum, running from
‘fast’ productive forest communities with high mean SLA, N, P, and
fleshy fruits to ‘slow’ conservative forest communities with high C:N,
wood density, seed mass, and high percentage of hermaphroditism
(Fig. 2). This spectrum is best explained by soil fertility (sum of bases,
light vs. lowmortality in shade pH; see Supplementary Figs. 4, 5), as has
been suggested before for forest species and trait composition16,62, but
surprisingly little by macroclimate (annual rainfall, climatic water deficit,

Fig. 4 | Functional characterisation of Amazonian
forests. Forest with positive score on the ‘fast-slow
forest spectrum’ (yellow, beige) are forests at the
“slow”, tough side of economic spectra (high CN
ratio, low SLA, N and P), high wood density, low
numbers of fleshy fruit, high levels of hermaphro-
ditism, high in nectar producing individuals,
occurring mainly on low to very low nutrient soils.
Forests with negative score on the ‘fast-slow forest
spectrum’ (blue, purple) are the opposite in terms of
trait values and occur mainly on nutrient rich soils.
The isolines divide Amazonia into three regions,
tough-slow (PC1 > 0.65, yellow-beige), soft-fast
(PC1 < -1.2 blue-purple) and intermediate (green).
Colouring the plots based on their PC1 scores shows
that their colour mostly matches the area colour,
except if they are white sand plots (PZ) in a green
area, and várzea plots (blue dots) in green and yellow
areas. Note that the legend has been truncated at
2 standard deviations. Red polygon: Amazonian
Biome limit167. Base map source (country.shp, riv-
ers.shp), ESRI (http://www.esri.com/data/
basemaps, © Esri, DeLorme Publishing Company).
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and large-scale disturbance, Supplementary Table 2c, Supplementary
Fig. 4). It was previously shown that species from communities of fertile
soils have higher SLA and leaf nutrient concentrations than those from
infertile soils and the sum of bases and pH explain respectively 30% and
18% of the trait variance9. A global study encompassing all biomes,
ranging from grasslands to forests, found two main axes of community
trait variance (i.e., plant stature and resource economics) that were only
weakly associated with climate and soil conditions11. Functional com-
position of Amazonian forests is not driven by precipitation, possibly
because all forest sites receive sufficient rainfall (>1800 mm/yr). Instead,
functional composition and resource economics are strongly driven by
soil fertility, as there is a major soil gradient running from the old
weathered extremely nutrient poor soils from the Guiana Shield and the
Brazilian Shield in the east, to the young and fertile soils formed by more

recent Andean sediments89. This gradient drives strong assembly rules,
sensu Keddy90, arguably driven by soil characteristics in Amazonia82. We
see strong convergence9,61,62,91,92 of almost all traits when comparing low-
productivity communities on poor soils to those with higher productivity
and higher soil fertility. While soil fertility (total soil phosphorus
[strongly related to sum of bases9]) was shown to be a strong driver of
productivity in Amazonia, soil physical properties appear more impor-
tant for forest turn-over82, which is twice as high in western Amazonia
compare to central and eastern Amazonia81.

Althoughwe did not include deciduousness in our analyses, it has been
recently shown that increases in abundance of deciduous species is tightly
linked to soil fertility and water availability93,94. Additionally, community
leaf nutrients increase towards wetter forests on younger fertile soils in the
western fringes of Amazonia9,62,82,95 (Supplementary Figs. 11,12).

Fig. 5 | The ‘fast-slow forest spectrum’ and soil fertility as potential drivers of
aboveground biomass and biomass productivity. a ‘Slow’ forests (positive value)
have much higher above ground woody biomass (AWB) than ‘fast’ forests (negative
values) b Absolute above ground woody productivity (AGWP) does not vary sig-
nificantly with the ‘fast-slow forest spectrum’. c Biomass produced per biomass
standing (= Relative AGWP [100*AGWP/AGB]) is highest in ‘fast’ forests (negative

values for slow-fast forest spectrum). d Relative AGWP is positively correlated with
predicted sum of bases16. Red lines indicate 95% confidence intervals. Biomass data
from sources55,83,168. Colours: Red, terra firme Pebas formation; brown, terra firme
Brazilian Shield; orange, terra firmeGuiana Shield; yellow, white sand forest; purple,
swamp forest; light blue, várzea.
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Studies comparing nutrient-poor igapó and nutrient-rich várzea for-
ests showed that within genera similar results were found, with traits con-
ferring a ‘fast’ lifestyle beingmore common in fertile várzea and thosewith a
more ‘slow’ lifestyle were more common in infertile igapó91,92. Comparing
congeneric species between terra-firme forest on clay soils and white-sand
forest96, the same result was found. Thus, it is likely that if we could have
measured actual trait expression everywhere, the large-scale gradientswould
be reinforced.

Human legacies
We assessed to what extent the current functional composition of the
Amazon is influenced by human legacies. Communities with ‘fast’ traits are
significantly associated with the abundance of domesticated species
(explaining 5.6% of the trait variance, Supplementary Table 2c) and geo-
glyph probability (explaining 5%, Supplementary Fig. 4, Supplementary
Table 2c). This suggests that indigenous people may have domesticated
faster growing species, and that long-termhuman presence and disturbance
(open areas) may still have left its mark on the current vegetation57,58. The
higher soil fertility (sum of bases) and access from the open Cerrado could
be one of the reasons that pre-Columbian people settled the edges of
Amazonia. At the Amazonian scale, areas with naturally higher soil fertility
may have facilitated past human occupation by increasing productivity of
agroforestry systems97. For instance, most domesticated tree and palm
species benefit from fertile soils, and by contributing to enrich soil fertility
through soil management practices, pre-Columbian people allowed
domesticated species to persist in the forest over centuries60. Although the
effect of anthropogenic soil enrichment on domesticated species likely plays
a role at the landscape scale, depending on the extent of landscape trans-
formations by pre-Columbian peoples, soil enrichment could potentially
influence tree communities over broader scales. Therefore, part of the
functional variation we observe across Amazonian tree communities could
still be a legacy of pre-Columbian landscape domestication.

Community functional composition affects ecosystem
functioning
Functional composition of Amazonian forests has consequences for eco-
system functioning. While the relationship between soil physical and che-
mical properties are not always clear82, above groundwoody biomass (AGB)
is significantly, positively related to the ‘fast-slow forest spectrum’ (Fig. 5a) –
indicating that ‘slow’ forests with conservative trait values and high wood
density have high aboveground biomass98. Our map of the ‘fast-slow forest
spectrum’ (Fig. 4) is indeed similar to an earlier ground-based biomass
map99. Forest productivity is influenced by tree traits, frequency of dis-
turbance and soil fertility (Fig. 2, Supplementary Table 2c). However,
absolute aboveground woody productivity (AGWP) is not significantly
related to the ‘fast-slow forest spectrum’ (Fig. 5b). Forests with high biomass
have low relative biomass productivity (Fig. 5a, c), probably because a large
proportion of the biomass is locked up in unproductive stems100, whereas
forests with low biomass have a higher biomass productivity, probably
because of a higher light availability within the stand, and because a larger
proportionof the biomass is in photosynthesising leaves100. Relative biomass
productivity (aboveground woody productivity/aboveground woody bio-
mass) is higher for forests with faster traits that produce a higher amount of
woody biomass per standing biomass, and this effect is correlated with ‘fast’
trait values (Fig. 5), also increasing with soil fertility (sum of bases, Fig. 5d).
Because soil fertility is a driver of both biomass productivity and the main
explanatory variable for the ‘fast-slow forest spectrum’, soil fertility is likely
the driver of forest productivity by both influencing the community traits
and allowing higher growth rates directly. It has been predicted that a
positive relationship exists between forest biomass and productivity101.
However, forests with high productivity tend to have both high turn-
over55,63, and low wood density17, making this relationship more complex.
We found no difference in net biomass productivity between the various
forest types along the fast-slow forest spectrum but rather a high variability
(Fig. 5b). Forests onpoor soils tend tohavehighbiomass but limited growth,

while forests on rich soils have less biomass but higher relative growth. This
does not lead to higher biomass, because of the lower wood density and
much higher turn-over of the forests on rich soils55 (see also Supplementary
Fig. 30). The ‘slow-fast forest spectrum’ should also have consequences for
other trophic levels. ‘Slow’ forests combine a slow growth with poor food
quality as they have tough, well-defended, nutrient-poor leaves, few fleshy
fruits, and large, often toxic seeds. Combined, this results in less food for
animal life (e.g. less insects, insectivores, and frugivores). Conversely, ‘fast’
forests faster growth producing higher quality food sources (e.g. thinner
leaves with lower C:N ratio, more fleshy fruit), resulting in a higher biomass
of insects, mammals and birds102.

Three functionally different Amazonian forest types
Based on the ordination analysis of 13 tree traits, Amazonia can broadly be
divided into three regions with a different functional composition (Fig. 4).
The very poor soils on the sandy deposits of the Roraima table mountains
and the poor soils of theGuiana Shield, and the forests onwhite sands across
other regions of Amazonia form one group. Forests that are part of this
group generally have low diversity tree communities, except for the areas in
central Amazonia with very high diversity103. This result strongly contrasts
with our earlier notion that forest productivity/turnover and diversity are
strongly positively linked16,104. The ‘slow’ forests are composed of mainly
hermaphroditic specieswith tough, lowpalatability, lownutrient leaveswith
high C:N ratio, dense wood, dry fruit, and high levels of endemism103,105.
Western and southern Amazonia are the ‘faster’ forest areas that select for
the opposite trait characteristics than thosementioned above. Compared to
the other two regions they are generally found on richer soils (Western
Amazonia), drier areas (Southern Amazonia) and in várzea forests in the
other two regions. They have high (Western Amazonia) to medium
diversity (várzea forest)103. Theyare also characterised byhighproductivity15

and high turnover71,81.
Because the three forest functional types are based on tree traits with a

strong influence on forest functioning, our map could be included in
dynamic vegetation models106 and earth system models107, thus making
better predictions on the role of Amazonia in global carbon and water
cycling108, the risk of tipping points109, and the fate of theAmazon in the face
of global change110. Because of the reliability of species identification, and
lack of species-specific trait data, our current analysis andmaps are based on
average, genus-level data. When more data becomes available, the func-
tional maps could be improved by including species-level trait values and
hence accounting for interspecific (and perhaps intraspecific) trait variance.

Methods
Tree inventory data were taken from the May 2024 version of the Amazon
Tree Diversity Network inventory data111–114. ATDN20240517 contains
2253 genus-level plots (with 1,198,408 individuals, 812 genera, 98.5% of all
individuals identified at genus level), 2054 of which with species compo-
sition (the species-level plots, 1,010,524 individuals, 5211 species, 88%
identified at species-level). Most of tree-inventories were for 1-ha size plots
and sampled treeswith a diameter at breast height (DBH, at 1.30mor above
tabular roots) over 10 cm (for plot metadata, see Appendix 1). Species
synonymywas updated following ref. 115, but harmonising nameswith the
WorldFloraOnline116, using theDecember 2023 snapshot theWorldFloraR
package117, with some modifications after Molino et al.118.

Species with a confer (cf.) identification were accepted as belonging to
the named species, while those with affinis (aff.) were accepted only at the
genus level and therefore removed from the species analysis.

The 2253 genus-level plots (Supplementary Fig. 1) provided a total of
1,216,222 trees, ofwhich1,198,408 (98.5%)were identified at the genus level.
Mostplots (2153)hadmore than90%of their individuals identified to genus
(Supplementary Fig. 30). A total of 812 genera were recorded, of which
Eschweilera (61,061 individuals), Protium (56,943), Pouteria (51.777), Inga
(27,619), and Oenocarpus (22,907) were the five most abundant genera
across all plots. Thirty-five generamade up 50% of all individuals and could
be considered hyperdominant Amazonian tree genera111,112. A total of 149

https://doi.org/10.1038/s42003-025-07768-8 Article

Communications Biology |           (2025) 8:355 8

www.nature.com/commsbio


genera had 10 individuals or less, while 42 genera had only one individual.
The percentage of individuals with trait data ranged from 94-97% (leaf
traits), through 99% (wood, seed) to 100% (root traits, fruit fleshiness,
breeding system). For a list of all traits, their units andecological information
see Supplementary Box 1.

Most of our analyses were carried out at the genus level because over
such a large and species rich region trees are more reliably identified at the
genus level (Supplementary Fig. 31), and because formany species there is a
lack of species-specific trait data. For several traits it has been shown that
traits are phylogenetically conserved and most trait-level variance is found
above the species level, as has been found for wood density62,66,119,120, seed
mass121,122, and SLA9. We used the average of the trait data for all species
within a genus, except for breeding system, whichmay vary largely within a
genus and which was analysed at species level. Our analyses and maps do
therefore not consider different species distributions within genera or var-
iance of trait values within species due to plasticity and/or acclimation. For
the traits included in our analysis, in Amazonia, SLA, N and C, are most
determined by species identity, whereas leaf P is also strongly influenced by
site growing conditions9.

Traits were obtained from a number of sources. Wood density was
mainly taken from4,119. Leaf traits were mainly from four large TRY
datasets9,14,50,51,66,123–127, with additional data from128–134. Seed mass was taken
from22,135,136 and various floras and tree guides137–141. Because seed mass
varies over several orders ofmagnitude,we used logarithmic classes for seed
mass22,61. For EM association we checked the most recent literature for
confirmed EM tree species142. For nodulation we used143,144. For aluminium
accumulation we used32,145 and references therein. We considered a genus
EMpositive, nodulating orAl-accumulating ifmore than 50%of the species
in that genus reported were positive for that trait. Nectar production was
taken from52 and mapped as a percentage by taxon. We first scored the
percentage of species by genus and, if not available, we used the information
by family. Breeding system may vary considerable in some genera and was
taken at species level from146 and descriptions from floras and monographs
(in particular, Flora e Funga do Brasil). Jardim Botânico do Rio de Janeiro
(http://floradobrasil.jbrj.gov.br/) issues of Flora Neotropica (https://www.
springer.com/series/16365); and the Springer book series The Families and
Genera of Vascular Plants147–149 and other published revisions. We did not
include adult tree height in our data, due to a lack of data for almost all
genera.

We performed a principal component analysis (PCA) on the aver-
age trait values for all genera that had data for all traits (353 genera),
scaling all data to a mean of zero and standard deviation of 1. While this
is less than 50% of all genera, these 353 genera amounted to 90.8% of all
individuals in our plots. While for several genera data is missing for
particular traits, the percentage of individuals with trait data ranged from
94-97% (leaf traits), through 99% (wood, seed) to 100% (breeding system,
root traits, fleshiness of fruits). Because of these high percentages we did
not conduct data imputation. For all plots (communities) we calculated
the community weighted mean of each trait, by calculating the average
over all individuals of known taxonomy, thus using data of all genera. For
discrete yes/no traits we used the percentage of individuals, rather than
the mean.

The forest plots are subdivided in those that occur on floodplains
(várzea (VA) and igapó (IG)), white sand podzols (PZ), terra firme
(TF) and swamps (SW). For these four categories we constructed a
separate spatial model of each trait across Amazonia with inverse
distance weighting103. As an example, for all white sand plots and wood
density we made a spatial interpolation. This interpolation was then
used to predict the mean trait value for each pixel on the soil map that
was considered a white sand area (Supplementary Fig. 32b, yellow
pixels). The same was done for all plots in várzea and igapó combined,
all plots established on terra firme and finally for swamp forests. The
forest map (0.1 degree resolution, Supplementary Fig. 32a) was based
on the Amazon lowland forest112,150, divided in the major soils corre-
sponding to the forest-soil combinations used111,151 (Supplementary

Fig. 31b). While the soil grid was based on the major soil type, the soil
type of the plots was determined independently of this map and based
on the field observation of the person that established the plot. It is
thus possible that a plot on white sand is located in a grid cell classified
as terra firme. Even so, it is used in the white sand spatial model (see
ref. 103 for a more detailed explanation). For all maps we truncated
the legend and its colours to values between the mean ± 2 times the
standard deviation, to avoid that outliers in 5% the data would
influence the visible pattern too much.

We calculated the percentage of variance explained by the model by
combining the observed and predicted community weighted mean of all
four spatial models, using a simple linear model103.

Annual rainfall was extracted by plot location from the grid data from
Worldclim 2152. The cumulative water deficit (CWD) was calculated as153

and can be considered a parameter of the strength of the dry season. Soil
fertility (sum of bases, SB) was extracted from the latest Amazonia wide
map154. We used SB rather than the often-used CEC (cation exchange
capacity), as the latter includes the full exchange complex, which on acid
tropical soils often includes a large portion of Al3+ andH+, which are in fact
toxic for most species. Although we used the most recent soil-fertility
map154, the overwhelming predominance of soil data from terra firme sites
resulted in an artificially high interpolated SB for white sand forests and low
SB for Várzea forest (Supplementary Fig. 29). Wemay thus expect stronger
relationship between functional composition, SB, and other soil variables
when improved soil maps become available. Soil acidity (pH) is also an
often-used index of soil fertility (a low pH being infertile).We extracted pH
data from Soterlac155, ISRIC wise156, RAINFOR sites95,151, and refs. 157–159.
For pH, we created a loess interpolation model, based on all data available.
We then estimated pH for each plot based on the loess interpolation,
sensu103. Interpolatedmaps of SB and pH and boxplots for SB and pHbased
on plot data (sources as above) can be found in Supplementary Fig. 33.
Large-scale disturbance was assessed in two ways: the density of large wind
throws (5 – 2,223 ha; mapped at 0.25 degree resolution) caused by con-
vective storms found on satellite images65,88, and a map of convective
available potential energy (CAPE), which is a strong driver of convective
blowdowns65.

We also calculated by plot four life-history characteristics: the fraction
of short-lived pioneers (SLP); long-lived pioneers (LLP); old growth species
(OGS)(Forestplots.net), and maximum observed diameter. Pioneers are
defined after64, by combining low wood density and low seed mass (wood
density < 0.7 g/cm3), where SLP have seedmass < 0.1 g and LLP have a seed
mass >= 0.1 g, and OGS species have a wood density > 0.7 g/cm3.

Domesticated species (Dsp) were taken from57, we used the percentage
of domesticated species per plot as a proxy of pre-Columbian legacy on the
forest. Similarly, we used the probability of finding geoglyphs58 as a second
proxy of pre-Columbian influence on the forest.

Species richness/ha was calculated as in103.
All analyses were carried out in the R programming environment, with

custom made R160 scripts, using the libraries Funspace161 (for PCA and
functional space analyses and images),Vegan162 (Mantel test), andRaster163.

Statistics and reproducibility
Statistic used are as described above. P-values for regression (Fig. 5) and
ANOVA(Fig. 3) are calculatedwith standard linearmodels. Reproducibility
was maintained by use of versioned scripts.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data necessary for producing the results reported here have been
deposited on Figshare164. At Figshare we also provide a spatial model (at the
scale of 0.1 degree) for each trait, a high-resolution map of the slow-fast-
forest spectrum (Fig. 4), and plot-based community weighted averages for
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further research. Correspondence and requests for othermaterials, which is
available upon reasonable request and following a ATDN data sharing
agreement, should be addressed to Hans ter Steege.

Code availability
R code (version 4.3.1) and data to produce the figures and tables have been
deposited on Figshare164.
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