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Sinopse: 

A fim de contribuir no entendimento de grandes questões ecológicas que abordam 

comunidades e fatores responsáveis pela distribuição das espécies, esse estudo usou 

como modelo as palmeiras. Foram investigados aspectos como produção de frutos e 

relações filogenéticas entre as espécies da comunidade com o intuito de identificar os 

padrões e os mecanismos que regulam a ocorrência das espécies. Para isso usou-se 

uma abordagem de gradientes ambientais. Além do mais, foi realizado um 

experimento de semeadura em campo para investigar mais profundamente tais fatores 

que afetam a distribuição de duas espécies em particular. 

Palavras-chave: Arecaceae, limitação de distribuição, gradientes ecológicos, 

frutificação, filogenia. 
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‘Anything seen from some distance seems perfect and homogeneous, approaching the 

point of view we took the risk and the challenge of seeing a confusion of detail whose 

interpretation goes beyond intelligence and creativity. Ecologists of the local community are 

people of immense courage.’ 
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Resumo 

Uma das maiores preocupações da ecologia de comunidades é determinar quais fatores afetam 

a distribuição e co-ocorrência de espécies. Partindo do pressuposto da produção de frutos 

como sendo o último passo do estabelecimento efetivo dos indivíduos, usamos duas 

abordagens: gradientes ambientais e experimental, e com o auxílio de ferramentas 

filogenéticas procuramos determinar quais mecanismos influenciam a distribuição das 

palmeiras em uma floresta de terra firme na Amazônia Central. Foram amostradas 30 parcelas 

padrão de 1 ha do delineamento estabelecido pelo PPBio localizadas na Reserva Florestal 

Adolpho Ducke, onde todos os indivíduos de nove espécies de palmeiras foram marcados, 

contados e identificados,. Mensalmente, a presença de frutos em todos os indivíduos 

marcados foi monitorada e para pelo menos dois indivíduos focais por espécie por parcela 

ainda a quantidade de frutos foi contada. Adicionalmente, foram usados dados de 72 parcelas, 

incluindo as 30 amostradas neste estudo para análises das relações filogenéticas, desta vez de 

toda a comunidade de palmeiras. Um experimento de semeadura com duas espécies de 

Attalea em 30 parcelas foi conduzido para detrminar quais fatores controla a distribuição 

dessas duas espécies. De forma geral, as espécies de palmeiras monitoradas apresentam algum 

grau de restrição de sua distribuição ao longo do gradiente de conteúdo de argila no solo, 

sendo os indivíduos reprodutivos mais restritos. A produção de frutos da maioria das nove 

espécies de palmeiras foi condicionada à disponibilidade de água e nutrientes no solo, embora 

algumas espécies frutifiquem independente da posição que ocupam no gradiente. De maneira 

geral não foi encontrada estrutura filogenética na comunidade de palmeiras local. Os 

caracteres morfológicos/reprodutivos analisados não são conservados, mas sim lábeis e não 

estão organizados espacialmente, embora nos baixios haja uma organização com indivíduos 
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mais parecidos ocorrendo juntos. Finalmente, as espécies de Attalea semeadas germinaram 

independentemente da posição no gradiente topográfico sugerindo que a limitação de 

dispersão é mais importante do que ao controle ambiental nesta fase do desenvolvimento. 

Estes resultados trazem conclusões importantes acerca dos fatores responsáveis pela 

distribuição das palmeiras mostrando que informações que não levam em consideração a 

produção de frutos, nem as relações filogenéticas entre as espécies podem levar a conclusões 

equivocadas. 
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Title: Main drivers controlling reproduction, distribution and co-occurrence patterns in a 

palm community in a terra firme Forest at central Amazonia: A theoretical and experimental 

approach 

 

Abstract 

One of the main concerns of community ecology is to determine which factors affect species 

distribution. Starting from the premise that fruit production is the last step of true 

establishment, we match environmental gradients and the experimental approaches with help 

from phylogenetic tools to bring light into the mechanisms influencing palm distribution 

patterns in a terra firme forest in central Amazonia. We sampled 30 PPBio standardized plots 

of 1 ha each at Ducke Reserve near Manaus, where every individual from nine species was 

identified, marked and counted. Every month, marked palms were monitored for fruit 

presence and some focal individuals had their fruits counted. Besides, we used data from the 

whole palm community available in a data set from 72 plots in the same area to analyze the 

phylogenetic community structure. Additionally, we conducted a seed-sowing experiment 

with two species of Attalea in 30 plots. Overall, most of nine species monitored presented 

some degree of restriction in at least one developmental phase along the clay content gradient, 

with fruiting individuals more restricted. Even so, some species produce fruits regardless of 

the gradient position such as Euterpe precatoria, Iriartela setigera and Oenocarpus minor. 

We did not find phylogenetic structure in the local palm community. Additionally, the 

morphologic/reproductive traits were not conservative, but labile and not spatially structured. 

However, in bottomlands more similar individuals co-occur more than expected by chance. 

Finally, the sowed seeds of Attalea did germinate regardless of the gradient position showing 

a distribution pattern more related to dispersal limitation than to environmental control. These 

results suggest important conclusions about the factors affecting the palm distribution 

showing that information that do not consider fruit production and species relatedness may 

lead to biased conclusions compromising choise of a appropriate site for conservation 

purposes. 
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Introdução geral 

A ecologia se baseia na observação e descrição de padrões naturais e no poder de 

decisão advindo da capacidade de prever eventos baseada na relação entre fenômenos 

naturais. Os principais questionamentos baseados na observação destes padrões podem ser 

exemplificados em perguntas como: quais os fatores que controlam a distribuição das 

espécies? Quais fatores afetam a riqueza, abundância e composição de espécies? Baseada 

nessas duas perguntas gerais várias hipóteses foram postuladas, entre elas a hipótese de 

Janzen e Connell (Janzen, 1970; Connell, 1971) que delineia algumas conclusões a respeito 

dos mecanismos que controlam o estabelecimento inicial e consequentemente, o padrão de 

distribuição das espécies. Além do mais, lança a primeira luz sobre como a relação de 

parentesco entre os indivíduos pode influenciar o arranjo espacial dos mesmos dentro da 

comunidade. Muitos trabalhos testaram as previsões de Janzen e Connell obtendo resultados 

diferenciados, mas na maioria das vezes, corroborando a hipótese de que a chance de uma 

plântula ser consumida e/ou parasitada é maior quanto mais perto da planta mãe (e.g. 

Augspurger, 1984; Cintra 1997a,b; Cintra e Horna, 1997; Cintra e Terborgh, 2000). 

Por outro lado, estudos descrevendo os padrões de ocorrência e abundância dos 

indivíduos (e.g. MacArthur e Wilson; 1963), a base da ecologia de comunidades, começaram 

a ser relacionados com características ambientais dando forma à teoria dos gradientes 

ambientais (Whittaker, 1956). Contudo, nem a germinação, nem o estabelecimento inicial das 

plântulas, nem a ocorrência dos adultos em qualquer ponto do gradiente ambiental, pode 

garantir que a planta esteja efetivamente estabelecida. Estabelecimento efetivo significa que a 

planta é hábil em contribuir com a manuteção da população produzindo frutos e sementes irão 

ser dispersados e colonizar novas áreas. Outra importante hipótese que foi levantada a partir 

da observação de representantes de populações de plantas que ocorriam em locais onde 

aparentemente sua adaptação é baixa é a hipótese do efeito de massa (Shmida e Wilson, 

1985). Segundo essa hipótese a área de distribuição de uma espécie pode ser ampliada por 

individuos que dispersam para áreas periféricas (sumidouros) onde as condições não 

permitem a reprodução de modo que o estabelecimento nesta área não é auto suficiente e 

depende de colonizações eventuais vindas das áreas onde as plantas reproduzem (fonte). 

Assim, estudar quais fatores afetam a produção de frutos é de extrema importância na 

determinação das áreas de distribuição efetiva das espécies. Alguns estudos se concentraram 
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na descrição dos padrões espaciais e temporais da produção de frutos (Chapman et al., 2005; 

Adler e Lambert, 2008), outros associaram a frutificação a fatores ambientais como 

precipitação (Ruiz e Alencar, 2004) e luminosidade (Svenning, 2000). Outro estudo 

relacionaram a produção de frutos com características do próprio individuo, como tamanho 

(Gross 1981), que tem um componente relacionado à qualidade do ambiente, número e 

tamanho das folhas, além de posição espacial (Piñero e Sarukhan, 1982), tamanho da copa 

(Sarukhan et al., 1984; Oyama, 1990) e tipo de crescimento (e mudança na forma da folha) no 

caso de Geonoma congesta (Chazdon, 1992). Porém, relacionar a produção de frutos com a 

posição espacial ou a ambientes classificados de maneira arbitrária não abordam a questão de 

adaptação local tão efetivamente quanto por meio de estudos relacionando a produção de 

frutos à gradientes ambientais. 

A hipótese dos gradientes ambientais resultou da observação da substituição na 

ocorrência das espécies ao longo de uma gradiente de variação altitudinal (Whittaker, 1956). 

Os principais gradientes encontrados na Amazônia Central estão relacionados à topografia e 

às características associadas ao solo, como por exemplo granulometria (Lucas e Chauvel, 

1992). Ao longo do gradiente topográfico os solos argilosos, predominantes nas áreas mais 

altas, vão sendo substituidos por solos com cada vez menos argila e mais areia nas áreas mais 

baixas (Chauvel et al., 1987). Essa substituição tem implicações cruciais para as plantas, 

principalmente porque o tamanho e a natureza das partículas do solo afetam a captação de 

nutrientes pelas raizes das plantas, além da disponibilidade de água (Lambers et al., 2008). 

Por estar sob um solo muito antigo, proveniente da Formação Alter do Chão (Ribeiro et al., 

1995; Hoorn e Wesswlingh,. 2010), as florestas de terra firme na Amazônia central enfrentam 

uma forte limitação de fósforo (Mcgroddy et al., 2004). O fósforo é um nutriente 

extremamente importante, juntamente com os cátions trocáveis para o vigor, crescimento e 

amadurecimento de frutos (Brady, 1974). Outro gradiente importante relacionado à 

topografia, é o da disponibilidade de água. Áreas mais altas (platôs) têm o lençol freático mais 

profundo do que as áreas de baixio, onde a água pode até aflorar. As partículas de argila se 

aderem firmemente às moléculas de água diminuindo a sua disponibilidade, principalmente 

nos períodos mais secos. Mesmo nos trópicos úmidos, a tolerância à seca e ao encharcamento 

sazonal do solo limita a distribuição das espécies (Wright, 1991; Engelbrecht et al., 2002).  
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Recentemente cresceu a proeocupação em incorporar fatores históricos nos estudos 

ecológicos (Webb et al., 2002). Os fatores históricos interagem com os fatores ecológicos 

para moldar a distribuição das espécies e a composição das comunidades. Desta forma, a 

evolução dos caracteres e as relações entre as espécies passou a ser uma preocupação 

recorrente nos estudos sobre os fatores que governam a co-ocorrência de espécies na 

comunidade, uma vez que ajudam a entender o processo de formação das comunidade (Webb 

et al., 2002; Wiens e Graham, 2005). Historicamente, predominava a Teoria do Nicho 

(Hutchinson, 1957; Soberón, 2007), baseada na visão de que a identidade das espécies e suas 

relações ecológicas (não filogenéticas), como, por exemplo competição, predação, além de 

adaptação ambiental (Tilman, 1994) eram as principais forças moldadoras das comunidades. 

Posteriormente, a Teoria Neutra passou a questionar a importância das diferenças entre as 

espécies e enfatizar que, na verdade, as espécies são similares na capacidade competitiva e 

que a capacidade de dispersão regulada pelo acaso seria mais importante na formação das 

comunidades (Bell, 2001; Hubbell 2001). Muitas das mais proeminentes hipóteses e teorias 

ecológicas estão relacionadas com a primeira ou a segunda visão, como a hipótese do efeito 

de massa e de abundancia/colonização de MacArthur e Wilson (abordagem neutra) e as 

hipóteses de competição/predação de Janzen e Connell (abordagem de nicho). Assim, os 

processos neutros e de nicho parecem interagir, mas sua importância é fortemente dependente 

da escala de estudo (McGill, 2010). 

Adicionando o componente filogenético à complexidade das regras de assembléia e 

assumindo a premissa de que as espécies mais próximas são mais parecidas (Princípio do 

conservatismo de Nicho – ver Blomberg et al., 2003 e Losos, 2008 para uma discussão 

completa), espécies mais próximas filogeneticamente tendem a ocorrer juntas no ambiente 

(Webb et al., 2002, Cavender-Bares et al., 2004). Por outro lado, espécies mais distantes 

filogeneticamente ocorrem mais dispersas do que o esperado ao acaso (Webb et al., 2002, 

Cavender-Bares et al., 2004). Novamente, a escala de estudo é importante na interpretação 

desses padrões. Em escalas maiores, onde as diferenças entre os ambientes são mais 

marcantes, as espécies mais próximas e por isso mais parecidas são ‘filtradas’ pelo ambiente e 

co-ocorrem mais do que o esperado ao acaso. Esse grupo de espécies mais relacionados é 

organizado diferentemente em escalas menores por processos de nicho (Teoria da 

similaridade limitante – McArthur e Levins, 1967; Huston, 1979; Ricklefs, 1987) que 

postulam que espécies muito parecidas não vão ocorrer juntas por causa da forte competição e 
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por processos neutros, que envolvem a capacidade de ocupar todos os locais disponíveis. 

Contudo, há evidências de que a premissa da conservação de nicho não deve ser assumida 

(Losos, 2008) o que pode mudar drasticamente as conclusões sobre estrutura filogenética das 

comunidades. Vários exemplos na literatura mostram que espécies mais próximas 

filogeneticamente podem ser mais distantes morfologica/ecologicamente apresentando 

caracteres evolutivamente lábeis (Losos, 2000; Blomberg et al., 2003; Cavender-Bares et al., 

2004; Silvertown et al., 2006a,b).  

As palmeiras constituem um dos elementos mais conspícuos das florestas tropicais 

(Kahn e Castro, 1985). São consideradas ‘recursos-chave’ porque produzem frutos o ano todo, 

ao contrário das outras espécies (Terborgh, 1986). Além do mais, o grupo possui uma 

filogenia datada, resolvida ao nível de gênero (Couvreur et al., 2011) e constitui um modelo 

útil para entender o processo de formação das comunidades, devido a sua grande área de 

distribuição. Alguns gradientes ambientais mais importantes são conhecidos por influenciar 

alguns aspectos da ecologia das palmeiras como a fertilidade do solo e a disponibilidade de 

água afetando a riqueza (Bjorholm et al,. 2005; Bjorholm et al., 2006; Kristiansen et al., 

2011), a distribuição (Svenning, 2001b), a similaridade da comunidade (Andersen et al., 

2010) e a composição da comunidade (Vormisto et al. 2004). A topografia, que está 

relacionada com esses aspectos do solo mencionados acima (e.g. Svenning, 2001b) parece 

exercer um papel importante no controle da distribuição das palmeiras na escala local e da 

paisagem (Kahn e Castro, 1985; Svenning, 1999; Svenning e Balslev, 1998; Svenning et al., 

2009, Costa et al., 2009), como vemos no caso de duas espécies de Attalea que ocorrem em 

posições distintas ao longo do gradiente topográfico. 

A distribuição de abundância das espécies de palmeiras na Reserva Ducke mostram 

um padrão interessante para algumas espécies, destacando-se as espécies “acaules” de Attalea. 

Das duas espécies inventáriadas, uma ocorre exclusivamente no baixio, Attalea microcarpa 

Spruce e a outra, Attalea attaleoides Mart. ocorre no platô e chega algumas vezes a áreas mais 

baixas seguindo terrenos mais inclinados. A limitação de dispersão pode evitar que as 

espécies ocorram em locais propícios (Hubbell, 1999; Wright, 2002). A dispersão pode 

também gerar um padrão de distribuição agrupado não relacionado às condições ambientais 

ou ligadas ao ambiente, mas pela preferência dos agentes dispersores a determinados locais. 

De fato, os dispersores podem causar heterogeneidade espacial nos padrões de dispersão de 
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sementes (Svenning, 2001b) e seu movimento pode ser afetado, por exemplo, por inundações 

sazonais (Bodmer, 1990), estrutura da copa das árvores (Schupp and Frost, 1989), 

disponibilidade de frutos e topografia (Salas, 1996). Então, o ambiente pode afetar a 

distribuição das sementes através do comportamento dos dispersores (Svenning, 2001a; 

Eiserhardt et al. 2011) e também pode agir como barreira (Wiens and Graham, 2005). A fim 

de entender o que determina o padrão de distribuição de Attalea attaleoides e Attalea 

microcarpa, foi conduzido um experimento de semeadura em campo. A abordagem 

experimental em trabalhos de ecologia em campo, apesar das dificuldades em controlar as 

variáveis, é crucial para descrever as relações diretas entre as variáveis estudadas. 

Partindo do pressuposto da produção de frutos como sendo a última fronteira do 

estabelecimento efetivo dos indivíduos, utilizamos as abordagens de gradientes ambientais e 

experimental e com o auxílio de ferramentas filogenéticas procuramos determinar os 

mecanismos que influenciam a distribuição das palmeiras em uma floresta de terra firme na 

Amazônia Central. Esta tese está organizada em três capítulos, escritos em formato de artigos 

que serão submetidos para revistas científicas de alto impacto. 

 

Objetivo geral 

Determinar os fatores que afetam a reprodução e a distribuição de nove espécies de palmeiras 

em uma floresta de terra firme na Amazônia Central. 

 

Objetivos específicos 

(1) Determinar se as espécies estão restritas ao longo do gradiente de teor de argila no solo. 

(2) Determinar o ponto de quebra que divide as distribuições, caso haja restrição. 

(3) Determinar quais gradientes ambientais podem afetar a produção de frutos (e.g. proporção 

de indivíduos frutificando e média de frutos por indivíduo). 

(4) Determinar se species mais próximas filogeneticamente co-ocorrem mais do que o 

esperado ao acaso. 
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(5) Determinar se os caracteres morfológicos/reprodutivos são conservados nas espécies da 

comunidade local. 

(6) Determinar se a relação filogenética muda ao longo do gradiente de argila assim como a 

abundância dos indivíduos. 

(7) Determinar se há estrutura espacial na distribuição das características morfológicas e 

ecológicas. 

(8) Determinar se a germinação de sementes de Attalea attaleoides e Attalea microcarpa está 

relacionada com a presença e a abundância de adultos na parcela. 

(9) Determinar se a germinação e a remoção de sementes de Attalea attaleoides e Attalea 

microcarpa está relacionada com a topografia. 

 

 



 

 

Capítulo 1 
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Summary 10 

1. Adult individuals of Attalea attaleoides, Attalea microcarpa, Oenocarpus bacaba and 11 

Oenocarpus bataua occur in sites where they do not reproduce, indicating a possible mass 12 

effect; 13 

2. Most of the studied palms had some degree of habitat restriction. Along the clay content 14 

gradient Attalea attaleoides, Attalea microcarpa and Oenocarpus bacaba are restricted to 15 

different degrees in each development phase, e.g. the entire population having a wider area 16 

than adults and adults more widely distributed than fruiting individuals; 17 

3. Oenocarpus bataua and Socratea exorrhiza are restricted only at the potential adult and 18 

reproductive stages, whereas Euterpe precatoria, Iriartela setigera and Oenocarpus minor 19 

occur and fruit along the whole gradient;  20 

4. Water availability and exchangeable bases are limiting in the ability to produce fruits and in 21 

the amount of fruits produced (e.g. proportion of individuals fruiting and mean of fruits 22 

produced per individual); 23 

5. Synthesis: Some palm species are restricted along the soil clay content gradient, if not in all 24 

stages, at some developmental stages, showing that the effective size of the population is 25 

smaller than shown in typical species abundance/gradient studies. In spite of some species 26 

fruiting regardless of their position along the ecological gradients, the lack of studies relating 27 

fruit production to environment condition can lead to biased decisions in terms of 28 

conservation planning. 29 

Key-words: Arecaceae, cation exchangeable bases, fructification, landscape scale, species 30 

distribution limits, water availability. 31 

32 
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Introduction 33 

In tropical rain forests, there has been a gap between studies of plant distribution and 34 

plant reproduction at spatial scales higher than sample plots. Most studies do not include 35 

information on the reproductive status of individuals, and if so, they mostly focus on how 36 

local environmental and ecological factors may affect flower or fruit/seed production. We 37 

argue that a link of these two approaches is crucial to progress the knowledge in plant 38 

community ecology and management. 39 

Many studies in plant ecology have focused on the factors affecting plant 40 

establishment, mainly after Janzen and Connell set up their theory (Janzen 1970; Connell 41 

1971; Augspurger 1983; Clark & Clark 1994; Cintra 1997a,b; Cintra & Horna 1997; 42 

Hammond & Brown 1998; Cintra & Terborgh 2000). In spite of the inspiring and extremely 43 

important conclusions from those studies, most took as establishment simply the attainment of 44 

some developmental phase after seedlings, what cannot be considered establishment from the 45 

point of view of the population. Also, the great majority of studies on species distribution and 46 

habitat associations do not discriminate the patterns of each species’ developmental stage, and 47 

the association of species to the environment is evaluated only for the entire population. 48 

However, plants are expected to change their needs and tolerances as they grow (Brady 1974), 49 

so, habitat associations and restrictions may not be the same at each stage. Comita et al. 50 

(2007) showed these differences in association at the seedling or higher plant stages, but still 51 

the critical phase of plant maturity was not considered separately, and therefore the 52 

conclusions about species restrictions or associations are limited. The presence of adult-sized 53 

plants in a given site does not guarantee they will contribute seeds to promote a possible 54 

increace in the population, and parts of the population may be only sinks. An evaluation of the 55 
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distribution of reproductive plants is therefore a key to understand the real limits to the 56 

distribution of species and the real impact of habitat restrictions in communities. 57 

Mass effects may extend the distributional range of a species even at small scales 58 

(Shmida & Wilson 1985) and blur our perception of the factors affecting the success of a 59 

population. In management and conservation, knowing which environments support viable 60 

populations is vital. However, many decisions are made on distributional ranges derived from 61 

niche modeling of species occurrence, and occurrences do not necessarily indicate the status 62 

of individuals. We show here that distributions derived from the relationship between the 63 

entire population and the environment will generally overestimate the ranges of distribution of 64 

a viable population. 65 

Excluding the effect of pollen limitation, the variation in plant fecundity can be 66 

influenced by spatial differences in the availability of light, water and nutrients. Therefore, 67 

plants have to share resources between growth, reserves, and breeding (Chapin et al. 1990), 68 

and those estabilished in sites with more resources available are better able to reproduce more 69 

effectively. Plant fruit production has been associated before with a critical size, and the 70 

length of time needed to achieve critical size is strongly dependent on environmental 71 

conditions (Gross 1981). Fruit production was also associated with leaf area and spatial 72 

location (Piñero & Sarukhan 1982) and crown height in Astrocaryum mexicanum (Sarukhan 73 

et al. 1984), and Chamaedorea tepejilote (Oyama 1990), and is suggested to be linked with 74 

growth form (change in leaf morphology) in Geonoma congesta (Chazdon 1992). 75 

Water availability is the factor that most strongly limits terrestrial plant production 76 

(Lambers, Chapin III & Pons 2008) and affects nutrient uptake. Tolerance to drought is an 77 

important trait constraining the distribution of tropical plants (Wright 1991; Engelbrecht et al. 78 
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2002). In spite of the higher precipitation levels in humid tropical region, the amount of rain 79 

can be variable enough to cause extreme drought periods that affect plants (Tobin et al. 1999). 80 

However, in bottomlands and first slopes, the tree root can reach the water table and in the 81 

wet season those areas can be waterlogged (Nobre et al. 2011). Tolerance to waterlogging 82 

may prevent non-tolerant species to occur in bottomlands, though the tolerance to the 83 

alternance of extreme conditions i.g. flooding and the subsequent dry season seems to be the 84 

main factor shaping the communities (Lopez and Kursar, 1999; 2003). Many plants in the 85 

humid tropical region, and especially palms, have a superficial root system. The root system 86 

of Bactris gasipaes Kunth, for instance, is only 0.4 m deep (Ramos et al. 2009). This may be 87 

linked to the superficial distribution of nutrients in the topsoil (Jobbágy & Jackson 2001). 88 

Besides, the terra firme forests in Central Amazonia, based on old soils originated from Alter 89 

do Chão formation (Ribeiro et al. 1995; Hoorn & Wesswlingh. 2010) are known to be 90 

nutrient limited (see Mcgroddy et al. 2004). Therefore, the way roots interact with the soil to 91 

uptake nutrients and water may shape the distribution of the effective population able to 92 

reproduce. 93 

Little attention has been given to how environment affects palm fruit production (but 94 

see Chapman et al. 2005 and Ruiz & Alencar 2004). Kahn & Castro (1985) had already 95 

linked fruit production of Euterpe precatoria and Oenocarpus bacaba to hidrology showing 96 

that juvenil life stage had a wider distribution area than reproductive adults. Palms are one of 97 

the most conspicuous and important tropical forest elements (Kahn & Castro 1985), 98 

considered a key resource to frugivorous animals due to their year-round fruit production 99 

(Terborgh 1986). They are also important resources for human populations in the Amazon. 100 

Given this importance, we chose nine palm species as study models to understand how fruit 101 

production may be linked to the environment at a mesoscale, and how our perception of 102 
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aspecies’ habitat restrictions changes when different life-stages are examined. Our main 103 

hypotheses were: (1) Mainly restricted species, fruiting individuals will occurs in a more 104 

restricted area than the entire population across a given gradient. (2) Fruit production (e.g. 105 

proportion of individuals fruiting and mean of fruits produced per individual) is limited by 106 

environmental condition and this limitation is species specific. 107 

108 
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Materials and methods 109 

Study site 110 

This study was conducted in Adolpho Ducke Forest Reserve (RFAD) from the 111 

National Institute of Amazonian Research (INPA), 26 km north from Manaus 112 

(02°55’S/59°59’W, Fig. 1). The reserve has 10,000 ha (10 x 10 km) covered by terra firme 113 

tropical rain forest. The canopy is 30-37 m high and in the understory Atrocaryum spp. and 114 

Attalea spp. palms are abundant (Ribeiro et al. 1999). The mean temperature is 26°C, the 115 

relative humidity varies from 77 to 88 % and the annual precipitation varies between 1750 116 

and 2500 mm. The soil is derived from Tertiary marine sediments of the Alter do Chão 117 

formation and constitutes a gradient, from clayey ferralsols in the high and flat areas (uplands) 118 

(Quesada et al. 2011), becoming sandier in slopes toward bottomlands until they are almost 119 

pure sand in the lower areas (bottomlands). The clay soils are mainly ferralsols and the sandy 120 

soils are podzols. There is a concomitant change in soil drainage, from well drained on the 121 

plateaus, poorly drained slopes and waterlogged bottomlands (Kahn & Castro, 1985). 122 

Waterlogged soils penetrate upslope, reaching about 8m vertical height above the nearest 123 

stream (Nobre et al. 2011). This soil gradient is thought to be an important driver of tree and 124 

palm community structure (Castilho et al. 2006, Costa et al. 2009, Kahn & Castro, 1985).  125 

 126 

The palm species 127 

 Nine palm species were selected based on their abundance and economical potential. 128 

All the genera are classified within the subfamily Arecoideae, but grouped in four tribes 129 

according to Dransfield et al. (2008): Iriarteeae (Iriartella setigera (Mart.) H Wendl. and 130 

Socratea exorrhiza (Mart.) H. Wendland); Euterpeae (Euterpe precatoria Mart., Oenocarpus 131 
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bacaba Mart., O. bataua Mart. and O. minor Mart.); Geonomateae (Geonoma aspidiifolia 132 

(Barb. Rodr.) Wess. Boer); Cocoseae (Attalea attaleoides Mart. and A. microcarpa Spruce). 133 

According to Dransfield et al. (2008) all genera included in this study are monoecious. This is 134 

crucial because we can be sure that a plant that never produced fruits is not actually a male 135 

plant. The palms were identified using recent palm treatments such as Henderson 1995, 136 

Ribeiro et al. 1999 and Emilio 2008 (computer based interactive key). Plants were classified 137 

as potential adults according to their height or by the number of leaves in the case of 138 

acaulescent palms following potential reproductive height in specialized literature (Henderson 139 

1995; Lorenzi 2010): Attalea attaleoides (8 leaves), A. microcarpa (6 leaves), Euterpe 140 

precatoria (10 m), Geonoma aspidiifolia (1 m), Iriartella setigera (3 m), Oenocarpus bacaba 141 

(10 m), O. bataua (18 m), O. minor (3 m), Socratea exorrhiza (15 m). In addition, we 142 

consulted the expertise of palm specialists and local inhabitants and went on a field trip to 143 

explore in detail the variability of heights in reproductive palms. 144 

 145 

Sampling design and data collection 146 

In the reserve there is a grid of regularly spaced (1 km) north-south and east-west trails 147 

covering a total area of 64 km
2
. The grid was established and is maintained by PELD-Brazil 148 

(Long Duration Ecological Research Project) and PPBio (Biodiversity Research Program) a 149 

partnership of INPA with MCT-Brazil (Science and Technology Ministry). Seventy-two 150 

permanent plots were sistematically distributed over this grid, of which 30 are the standard 151 

permanent PPBio plots. Each plot is 250 m long, with variable width depending on taxa or life 152 

stage and are 1 km distant from each other. The plots follow altitudinal contour, that minimize 153 

the internal variation in soil properties which tend to be correlated with altitude and have a 154 
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central 1 m wide corridor for transit, which allows the researchers to access the plots causing 155 

minimal disturbance.  156 

Palms for this study were sampled in two diffent ways; first, counts of the entire 157 

population of each species (including young at least 1 m tall to potential adults) were done in 158 

a 4 m wide strip, along the 250 m of each plot, by J.-L. Guillaumet (see Costa et al. 2009). 159 

Second, by Freitas CG in the 30 PPBio standard plots where potential adult individuals were 160 

counted and monitored in a 40 m wide strip in each 250 m-plots. From August 2008 to 161 

January 2009 all potential adults of the nine palm species cited above were identified, marked 162 

with sequential numerical tags and located with an X,Y coordinate system. Every month, 163 

from May 2009 to October 2010 all individuals were monitored for the presence of fruits. We 164 

also counted the number of fruits in at least two focal individuals, distant 1at least 00 m from 165 

each other, of each species in each plot. For small and acaulescent palms we pulled aside the 166 

bunch to see all the fruits. For tall palms a field assistant climbed the palm or a neighboring 167 

tree and counted directly all the fruits without cutting the bunch. The counting of fruits in tall 168 

individuals was limited by the raining season because the trunks were too wet to be climbed. 169 

Altitude, clay content, nutrient content (exchangeable bases and phosphorus), and 170 

inclination were taken from a database available at the PPBio site 171 

(http://ppbio.inpa.gov.br/Port/inventarios/ducke/pterrestre/). The distance to the nearest 172 

stream and a metric describing the height of the terrain above the nearest drainage (hereafter 173 

called HAND) were calculated by Juliana Schietti in 2010. The distance to the nearest stream 174 

was derived from a hydrographic map as the distance, in meters, between the central point of 175 

the plot and the nearest watercourse. The central point of the plot was mapped with a GPS 176 

based on 10 points georeferenced along the central longest axis of the plot. HAND values 177 

were produced following the algorithm developed by Rennó et al. (2008) and based on 178 
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SRTM-DEM (Shuttle Radar Topography Mission – Digital Elevation Model) data. The 179 

model’s starting point for first-order streams was defined as 30 pixels (24 ha) of land area 180 

furnishing runoff to that point. This choice was validated in the field.  181 

Altitude of each plot was obtained by a professional surveyor, with a theodolite. The 182 

terrain slope was measured with a clinometer at six equidistant points (at each 50 m) along the 183 

main length of the plot, and averaged for the entire plot. At these six points soil samples were 184 

taken at a depth of 0–5 cm and bulked to produce a composite sample for each plot. Before 185 

analysis, samples were cleaned of roots, air-dried and sieved through a 2-mm sieve. Soil’s 186 

chemical properties were analyzed at the Soil Laboratory of EMBRAPA-Manaus (Mertens 187 

2004). The sum of exchangeable bases (Ca++, Mg++, K+), hereafter called bases, did not 188 

include Na
+
 because it was too low, bellow the spectrometer detection level. 189 

 190 

Data analysis 191 

Two groups of analysis were done to understand how palm reproduction is limited by 192 

environmental factors, (1) restriction analysis and (2) Regression Models. The first is based 193 

on plant occurrences, and examines how the environment filters each species through its 194 

development. Since this analysis is based on presences and absences, it is designed to capture 195 

only strong patterns of restriction. The second is based on abundances, and examines 196 

subtleties of how the environment affects the abundance of reproductive individuals or the 197 

number of fruits per plant. 198 

Palms were assigned to three population stages: 1) entire population, including young 199 

to potential adult individuals; 2) potential adults only and 3) reproductive adults. The entire 200 

population stage is a heterogeneous group including mainly young life stages, though we did 201 
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not take size measurements. A comparison between Costa et al. 2009 data and those collected 202 

by the first author shows that around 90% of the entire population individuals were juvenile 203 

plants. 204 

(1) Restriction Analysis. We tested whether the entire population of each species was 205 

restricted along the main ecological gradients, and if futher restriction limits are found for 206 

each developmental stage. The test examines whether occurrences are more restricted to some 207 

portion of the gradient than expected by chance using a statistic to access habitat specificity 208 

that is independent of the number of sites occupied (Kinupp & Magnusson 2005). The mean 209 

and the standard deviation of the value of the environmental gradient for those plots occupied 210 

by the species or stage are determined. The expectancy is that a restricted species have a 211 

smaller deviation than would be found if the same number of occupied sites was randomly 212 

distributed along the entire environmental gradient. To determine the variation in 213 

environmental gradient expected to be found in occupied sites when the null hypothesis (no 214 

habitat specificity) is true, we used a resampling procedure. Using the number of sites 215 

occupied by a species (N), we randomly sampled all the surveyed sites (i.e. along the entire 216 

environmental gradient) and determined the standard deviations of soil clay content in the 217 

sample. This process was repeated 1000 times for each life stage and each species separately 218 

(non hierarchical model using only on variable – clay content). The proportion of standard 219 

deviations in the 1000 random samples that were equal to, or less than, the observed standard 220 

deviation was used to test the null hypothesis of no habitat restriction for each species and for 221 

each stage. Restriction analysis was done for the clay content gradient, which is related to 222 

topography and is the most general gradient in the area (Costa et al. 2005). Statistical 223 

calculations followed Kinupp & Magnusson (2005), and the implementation in R was done by 224 

Victor L. Landeiro. If any life stage in each species was restricted, a regression tree was used 225 
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to find the break point (restriction limit) dividing that life stage of a given species into the two 226 

most homogeneous groups (occurrences and absences) based on the environmental gradient. 227 

Regression trees were implemented with the mrpart package in R (Therneau & Atkinson 228 

2000). 229 

(2) Regression Models. The metrics describing reproduction were the proportion of fruiting 230 

individuals per plot, calculated as the ratio between fruiting individuals and the abundance of 231 

potential adults (hereafter called adults) for each species in each plot. We calculated the mean 232 

of fruits per plot using data from the two focal individuals we used for fruit counts. For this, 233 

we used only the first bunch we saw with fruits in the field. 234 

We used Cleveland dot-plots to search for outliers, and pair-plots and the Variance 235 

Inflation Factor (VIF) to look for correlations among the independent variables - altitude, soil 236 

clay content, soil nutrients content (phosphorus and exchangeable bases), distance to the 237 

nearest stream, HAND (height above the nearest drainage) and terrain inclination. After 238 

correlation analysis we excluded altitude, distance to the nearest stream and clay content for 239 

being highly correlated with HAND, which we believe is a better proxy for the proximate 240 

factors (water availability and tolerance to the waterlogging) affecting reproduction. 241 

Simple or multiple regressions were used to determine the environmental effects on 242 

proportion of individuals fruiting and mean fruits per individual. A model selection was run 243 

for each species, retaining only significant variables. We chose a backward selection approach 244 

and AIC values resulting in specific models depending on each species, but initial models 245 

always included exchangeable bases, phosphorus, inclination and height above the nearest 246 

drainage (HAND). GLM (binary or Poisson), quantile or ordinary LM regressions were 247 

chosen according to the distributions of the response variables. When overdispersion was 248 
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detected, we applied a correction in the standard errors using a quasi-Poisson or a Negative 249 

Binomial model (Zuur et al. 2009). GLM models do not provide a R
2
 value, so we used the 250 

percentage of the null deviance minus the residual deviance divided by null deviance to 251 

calculate the amount of deviance in the response variable that is explained by the predictor 252 

(Zuur et al. 2009). 253 

When the response variable had a distribution in which the upper boundary changed 254 

along the predictor we fitted a Quantile Regression model. We chose Quantile Regression 255 

because very often there are factors not measured that could affect the reproduction in an 256 

uneven way along the environmental gradient, causing heteroscedasticity, a common pattern 257 

in ecological data (Cade & Noon 2003). In those cases a model based on the mean of the 258 

response variable would have a weak predictive power and might hide an important 259 

ecological relationship. 260 

All the analyses were performed in the R statistic environment (R Development Core 261 

Team 2010) with the packages Hmisc 3.8-3 (Harrell 2010), MASS (Venables & Ripley 2002), 262 

Vegan (Oksanen et al. 2011), quantreg (Koenker 2011) and functions developed by C.S. 263 

Dambros). 264 

 265 

266 
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Results 267 

A total of 2988 adult individuals from the nine species were found and tagged 268 

(Appendix 1). Most species (six out of nine) had a clear restriction in occurrence along the 269 

clay content gradient, and the restriction tended to become stronger through palm 270 

development stages. Attalea attaleoides, Attalea microcarpa and Oenocarpus bacaba were 271 

restricted at every population stage (Fig. 2). We could not find a significant restriction for 272 

Attalea attaloides adults, although the pattern is clear in the graphic (Fig. 2a) and the 273 

restrictions in the entire population and in the fruiting individuals levels reinforce this 274 

possibility. 275 

Oenocarpus bataua and Socratea exorrhiza were restricted only at the adult and 276 

reproductive levels (Table 2, Fig. 2d). Congeneric species pairs were restricted to opposite 277 

ends of the soil gradient, Attalea attaleoides and Oenocarpus bacaba to the clayey end of the 278 

gradient, and Attalea microcarpa and Oenocarpus bataua to the sandy end. At the population 279 

level, which represents mostly the juveniles, there was a large overlap in distributions of these 280 

species pairs, especially for the Oenocarpus. However, adults and reproductive plants were 281 

more restricted than juveniles, and show little overlap (Fig 2).  282 

Geonoma aspidiifolia, Euterpe precatoria, Iriartela setigera and Oenocarpus minor 283 

were not restricted to any part of the clay gradient, and also fruited regardless of the 284 

environmental condition, except for adults of Geonoma aspidiifolia. Overall, the point 285 

between 5 and 10% of clay seems to be a break point in the ecological response of many 286 

groups in the Ducke Reserve (F.R.C Costa, pers. comm). For a complete description of the 287 

restriction limits, including the break points between presence and absence and p values see 288 

Table 1. 289 
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Within the environmental regions (defined by soil texture) to which species 290 

occurrences were restricted, we asked if the proportion of fruiting individuals and the mean 291 

number of fruits/individual were related to other environmental predictors (bases, inclination, 292 

HAND and phosphorus). Details on the models are shown in Table 2 and 3. 293 

Using quantile regression we are able to describe the complex relationship between 294 

HAND and the proportion of individuals fruiting for Atallea attaleoides. HAND sets the 295 

upper boundary of the distribution. The greater the distance the plant is from the water table, 296 

the higher the potential to produce fruits. Very likely other variables besides HAND are 297 

influencing fruit production at higher HAND values for this species (Fig. 3a). There is also a 298 

slight positive effect of HAND in the proportion of individuals fruiting of Oenocarpus 299 

bacaba (R
2
=0.14; pw=0.22; ph=0.08, Fig. 3c). The mean fruit production of Attalea 300 

attaleoides was negatively associated with the soil exchangeable bases (Fig 3b; ED =0.78; 301 

p=0.001, Fig. 3d) and that of Oenocarpus bacaba was negatively associated with HAND, 302 

although there was no statistical support for this last relationship. There was an overall 303 

tendency to less fruiting individuals of Iriartella setigera in plots with higher amounts of 304 

exchangeable bases (Fig. 3e) and tendency of less fruits produced in plots with higher HAND 305 

values, although this last relationship had no statistical support (Fig. 3f). In this case HAND 306 

and exchangeable bases both seem to have a weak negative effect on Iriartella setigera fruit 307 

production, while these two variables have strongly antagonistic effects in Attalea attaleoides. 308 

Attalea microcarpa produced fruits only in a small range of its occurrence within the 309 

bottomlands, as shown by the restriction analysis. There was no detectable influence of a finer 310 

environmental filter on the number of fruiting plants, although there was a tendency for less 311 

fruits in more inclined areas. Oenocarpus bataua also produced fruits well everywhere it 312 

occurs. Inside the range of bottomlands to which adults are restricted, variations in other 313 
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environmental factors do not influence the proportion of individuals fruiting, nor the amount 314 

of fruits produced (Tables 2 and 3). Socratea exohrriza seems to produce fruits everywhere, 315 

although there was a weak tendency for a positive effect of exchangeable bases on the amount 316 

of fruits produced (Tables 2 and 3). Since it is a rare species in the area and we had few plots 317 

with reproductive plants, this conclusion should be taken with caution.  318 

There was a slightly positive effect of exchangeable bases on the proportion of 319 

individuals fruiting of Euterpe precatoria (R
2
=0.35; pw=0.13; pb=0.06). There were too few 320 

plots with data for the amount of fruits produced by this species. Geonoma aspidiifolia also 321 

produces fruits everywhere, but low numbers of fruits at higher HAND values (ED =0.38; 322 

p=0.02). The proportion of individuals fruiting of Oenocarpus minor is not related to any 323 

environmental variable, however terrain inclination strongly influences the amount of fruits 324 

produced, with less fruits in more inclined areas (ED=0.19; p=0.02). 325 

 326 

327 



25 

 

Discussion 328 

The literature is filled with examples of how environmental gradients affect the 329 

abundance and distribution of tropical plant species (e.g. Tuomisto & Poulsen 1996; Kinnup 330 

& Magnusson 2005; Costa et al. 2005), especially palms (Svenning 2001; Vormisto et al. 331 

2004; Normand et al. 2006; Costa et al. 2009; Andersen et al. 2010). However, it is expected 332 

that the relationships between plants and environment may change with plant development 333 

stage (Nogueira et al. 2011), so relationships at the entire population level may not be a good 334 

indicator of species’ realized niches. The greatest majority of the studies addressing how 335 

species are restricted along topographic or soil gradients are based on the entire population, or 336 

more commonly on a sample of the population starting with the saplings (e.g. Clark et al. 337 

1998; Valencia et al. 2004; Gunatilleke et al. 2006; John et al. 2006). Since in any population, 338 

most of the individuals are in the younger stages, the conclusions regarding species 339 

restrictions must refer mostly to the patterns given by those young plants. Here we have 340 

shown that data on the distribution at the population level is not enough to understand the real 341 

distribution limits of a species, since the established population, given by the individuals able 342 

to produce seeds, is generally more restricted. Therefore, the levels of habitat association 343 

reported in previous studies do not reflect habitat specialization and overestimate species’ 344 

local distributions (see Harms et al. 2001). 345 

Most palm species at our site showed a strongly restricted distribution pattern across 346 

the main environmental gradient in the region, with reproductive individuals occurring in 347 

more restricted conditions than their conspecific non-reproductive adults and the mostly 348 

juvenile population. Also, for those palms with limited distributions in the clay content 349 

gradient, there are more fine scale factors affecting the fruit production and reinforcing even 350 

more the limitation pattern. 351 
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Not only do some species not reproduce everywhere, but the amount of fruits is 352 

limited in particular sites. Some species (Euterpe precatoria, Iriartela setigera and 353 

Oenocarpus minor) are not limited at the entire population and adult levels, and may be 354 

considered generalists within our landscape. Nonetheless, for these apparently non-restricted 355 

adult palms, nutrients, water availability and terrain inclination did limit their mean number of 356 

fruits. Palms which did not respond to soil nutrients, such as Oenocarpus bataua, can 357 

probably use the nutrients accumulated in the litter beneath them, which can be higher than 358 

anywhere else (Chauvel et al. 1987; Facelli & Picket 1991). The distribution of fruiting 359 

individual reveals a local mass effect along both, the water availability and the nutrient 360 

gradients. The water availability gradient may also represent a waterlogging gradient. In the 361 

bottomlands and first slopes the water table can emerge periodically (Nobre et al. 2011), 362 

which can prevent non-tolerant species to ocuppy these areas. Comparing species from 363 

periodically and non-periodically flooded areas there are no differences in many parameters 364 

including seedling growth and mortality (Lopez and Kursar, 1999; 2003). Instead, the stress 365 

condition of periodically flooding followed by a dry season may be more important for 366 

community assembly (Lopez and Kursar 2003), but maybe not for fruiting. The difference in 367 

performance according to environmental conditions and suggests, mainly in the case of 368 

Attalea attaleoides and Oenocarpus bacaba a fundamental niche smaller than the realized 369 

niche, at the considered scale. 370 

The most striking finding was that even within a tropical forest area in Central 371 

Amazonia, water availability and tolerance to waterlogging can be a factor ruling which 372 

plants are going to produce fruits. Height above the drainage, which can be considered a 373 

proxy for soil water availability and soil drainage along with exchangeable bases, was the 374 

main determinant of fruit production as a whole. In Attalea attaleoides and Oenocarpus 375 
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bacaba the proportion of fruiting individuals increased with HAND, being higher in areas far 376 

from the water table, whereas Geonoma aspidiifolia had the opposite pattern. Attalea 377 

microcarpa, Oenocarpus bataua and Socratea exorhiza had their reproductive individuals 378 

restricted to the sandy areas, which are close to the water table (low HAND values). These 379 

patterns may be associated with the ability to tolerate drought, which is a strong constraint in 380 

tropical forests (Wright 1991; Engelbrecht et al. 2002). Water availability is the factor that 381 

most strongly limits terrestrial plant production (Lambers, Chapin III & Pons 2008) and has 382 

been long thought to be the main driver in palm distribution, richness and diversity at local, 383 

regional (Eiserhardt et al. 2011; Kristiansen et al. 2011) and continental scales (Bjorholm et 384 

al. 2005). At mesoscale, the distribution of these species and other palms has been associated 385 

to hydrology, most specifically with the tolerance to waterlogging (Kahn & Castro 1995), but 386 

we have shown that this relationship extends beyond the population distribution until the fruit 387 

production. Although ecophysiological studies of palms, besides cultivated ones, are still 388 

lacking, responses of trees may be similar and indicate the strategies behind topographic 389 

specialization. Baltzer et al. (2005) showed that plant species restricted to ridges of humid 390 

tropical forest had lower stomatal conductance and higher efficiency in water use than plants 391 

restricted to valleys. A higher stomatal control is useful in preventing drought stress, but may 392 

restrict growth, leading to a lower competitive advantage. Therefore, stomatal behavior – 393 

open and freely transpiring or more closed, may be behind the opposite behaviors of 394 

bottomland sandy or upland clayey specialists. 395 

The mean number of fruits produced per individual of Oenocarpus bacaba, 396 

Oenocarpus minor, Iriartela setigera and Geonoma aspidiifolia responded negatively to 397 

exchangeable bases and HAND (only a weak tendency in O. bacaba), meaning that in better 398 

drained areas those species produced a significant amount of fruits. Again this seems to be 399 
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related to extreme condition related to drought and waterlogging tolerance, which is striking 400 

in the case of the later since it is apparently widespread in the area and was only restricted at 401 

the adult level. The fact that some species responded positively and some negatively to the 402 

height above the nearest drainage mean that this tolerance to drought or tolerance to 403 

waterlogging is a good functional trait to separate species in trait functional space (see McGill 404 

et al 2006) and should be investigated deeply.  405 

We expected that fruit production would be positively associated with soil nutrients, as 406 

has been previously shown for some palm species (Castro et al. 2007) and on the basis of 407 

classical studies on plant production. However, some species had higher fruit production in 408 

the less fertile plots. Exchangeable bases and water availability (represented by HAND) were 409 

somewhat correlated (r=0.5, p= 0.005), so that higher fertility sites are far from the water 410 

table. The model selection for these species retained bases as the best predictor of 411 

reproduction or fruit set, but this does not necessarily mean that this is the causal factor. From 412 

the other analyses performed here, we believe that water availability (or the tolerance to 413 

waterlogging) is the real causal factor of the fruit production patterns.  414 

Although Attalea attaleoides had its reproductive adults restricted to the upland drier 415 

sites, fruit production was higher in the less fertile/wetter parts of these uplands. This suggests 416 

that the factors affecting establishment of mature adult plants may not be the same as those 417 

controlling the reproductive effort at the landscape scale, even though our samples are not 418 

large enough to provide strong evidence to this statement. 419 

Studies on leaf harvest in palms show that generally fruit production is negatively 420 

affected when plants lose leaves (Zuidema et al. 2007, Martínez-Ramos et al. 2009, Lopez-421 

Toledo 2011) and some studies have shown that the probability of reproduction or the 422 
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reproductive effort is related to plant size in palms (Oyama 1990, Chazdon 1992, 423 

Cunningham 1997, Mendoza & Franco 1998). Plants that cannot keep a positive 424 

photosynthetic balance may therefore not be able to allocate resources to reproduction, since a 425 

trade-off between investments in vegetative growth and reproduction is expected (Chapin et 426 

al. 1990). Plants outside their preferred environment may face strong competition and, though 427 

able to survive, may not be able to maintain a positive resource balance in order to invest in 428 

reproduction. Brum (2011) has shown that leaves of two of the palms studied here 429 

(Oenocarpus bataua and Oenocarpus bacaba) were larger in the environment where we have 430 

found higher reproduction, which rise the possibility of a size controlled in reproduction. Our 431 

results suggest that only a smaller part of the area of occurrence of each species at the 432 

landscape is in fact favorable to the growth and accumulation of enough reserves that can be 433 

invested in reproduction. 434 

Most studies of plant reproduction do not consider how reproduction is affected by 435 

environmental features at landscape scales (but see Castro et al. 2007), which is crucial to 436 

understand realized niches and therefore to be able to correctly manage and conserve species. 437 

Studies on the environmental effects on reproduction have been mostly on the effects of local 438 

features, such as light or the density of potential competitors in the neighborhood 439 

(Cunningham 1997, Rodriguez-Buritica 2005, Svenning 2002). Although it is important to 440 

understand these local effects to manage species for non timber forest products, understanding 441 

limitations on reproduction at the landscape scale is crucial to the conservation of species, 442 

since much of the area actually occupied by a species may represent sink habitat that is unable 443 

to sustain a population without the contribution of immigrating individuals (Tyre et al. 2001). 444 

This is mainly important regarding preservation of forest up to certain distance of streams or 445 
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roads, since conservation planning of larger areas will hopefully include the entire 446 

environmental gradient. 447 
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 666 

 667 

Fig. 1 The Central Amazon basin, indicating the position of the study site in the Reserva 668 

Ducke 30 km from Manaus. To the right the PPBio grid where the study was performed. 669 
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675 
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 676 

Fig. 2 Distribution of the life stages of four palm species along the soil clay content gradient 677 

in a terra firme forest at Reserva Ducke, Manaus, Brazil. Each palm species is represented by 678 

4 panels: entire population, potential adults, proportion of individuals fruiting and mean of 679 

fruits per plot. For Attalea attaleoides, entire population (limit between homogeneous 680 

presence and absence = found at 4% of clay; p=0.008), adults (no restriction) and 681 

reproductive individuals (limit=67% of clay; p=0.000). For Attalea microcarpa, entire 682 

population (limit=12%; p= 0.000), adults (limit=12%; p=0.000) and reproductive individuals 683 

(limit=6%; p=0.000). For Oenocarpus bacaba, entire population (limit=4%; p=0.003), adults 684 
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(limit=37%; p=0.008) and reproductive individuals (limit=37%; p=0.003). For Oenocarpus 685 

bataua, entire population (no restriction), adults (limit=4%; p=0.000) and reproductive 686 

individuals (limit=4%; p=0.000). 687 
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 689 

Fig. 3. Response of Attalea attaleoides fruiting production according to environmental 690 

gradients. (a) Quantile regression model for proportion of individuals fruiting, including the 691 

95
th

 quantile (long dashed line), 75
th

 quantile (solid line), 50
th

 quantile (dashed line) and 25
th

 692 

quantile (dotted line), (b) GLM model with Poisson distribution (quasipoisson adjustment) 693 

showing the relationship between exchangeable bases and mean of fruits per individual of 694 

Attalea attaleoides (ED=0.78; p=0.001). Response of Oenocarpus bacaba fruiting production 695 

according to environmental gradients. (c) Linear multiple regression model showing the effect 696 

of HAND (partial, excluding influence of exchangeable bases) in the proportion of individuals 697 

fruiting (R
2
=0.14; pw=0.22; ph=0.08). (d) Mean of fruits produced per individual (not 698 

significant). Response of Iriartela setigera fruiting production according to environmental 699 

gradients. (e) Quantile regression model for proportion of individuals fruiting, including the 700 

95
th

 quantile (long dashed line), 75
th

 quantile (solid line), 50
th

 quantile (dashed line) and 25
th

 701 

quantile (dotted line). (f). Mean of fruits produced per individual (not significant). 702 

 703 
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Table 1. Results from restriction limit function using clay content data for the entire population, adults and only fruiting individuals. 

 Population Adults Fruiting adults 

Species p BP*  P BP  P BP  

Attalea attaleoides 0.008 4.27 0.183 67.4 0.000 67.43 

Attalea microcarpa 0.000 12.43 0.000 12.43 0.000 6.15 

Euterpe precatoria 0.784 - 0.595 - 0.694 - 

Geonoma aspidiifolia 0.116 - 0.000 4.27 0.096 - 

Iriartella setigera 0.391 - 0.969 - 0.959 - 

Oenocarpus bataua 0.445 - 0.000 4.27 0.000 4.27 

Oenocarpus bacaba 0.003 4.27 0.008 37.40 0.003 37.40 

Oenocarpus minor 0.075 - 0.262 - 0.082 - 

Socratea exorrhiza 0.331 - 0.002 4.27 0.002 4.27 

*Break point where the group splits up. 
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Table 2. Final models for the proportion of adults fruiting after backward model selection. 

Species Variables retained in 

the Model  

Model type Distribution Sample size p* R
2
 

Attalea attaleoides HAND  Non-linear 

quantile 

Binomial 16 - - 

Attalea microcarpa Phosphorus  OLS Normal 11 0.23 0.15 

Euterpe precatoria Bases+inclination  OLS Normal 12 0.13/0.06 

Bases (+) 

0.35 

Geonoma 

aspidiifolia 

HAND  OLS Normal 23 0.25 0.06 

Iriartela setigera Bases  Linear 

quantile 

Normal 29 - - 



49 

 

Oenocarpus bataua Phosphorus 

+Inclination 

OLS Normal 11 0.66 0.09 

Oenocarpus bacaba HAND+bases  OLS Normal  22 0.14/0.08 

(HAND) 

0.22 

Oenocarpus minor Bases  OLS Normal 25 0.61 0.01 

Socratea exorrhiza Bases+inclination  OLS Normal 11 0.15 0.37 

* Double p values mean the p value for the whole model/the p value for the significant variable, the sign between parentheses means the direction 

of the relation for those variables which we do not show graphically. 
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Table 3. Final models for the mean amount of fruits per individual after backward model selection.   

Species Variables retained in the Model  Model 

type 

Distribution Sample 

size 

DE p 

Attalea attaleoides Bases  GLM Poisson 

(quasi) 

9 78 0.001 

Attalea microcarpa * GLM * 6 - - 

Euterpe precatoria * GLM * 4 - - 

Geonoma aspidiifolia HAND  GLM Poisson 

(quasi) 

13 38 0.02 (-) 

Iriartela setigera HAND+bases  GLM Negative 

binomial 

28 7.2 0.14 

Oenocarpus bataua HAND  GLM Negative 9 10 0.29 



51 

 

binomial 

Oenocarpus bacaba HAND  GLM Negative 

binomial 

11 15 0.17 

Oenocarpus minor Phosphorus+Inclination  GLM Negative 

binomial 

20 19 0.02**(-) 

Socratea exorrhiza Bases  GLM Negative 

binomial 

8 45 0.02 

*Not analyzed due to lack of sample units, ** probability associated with inclination. The sign between parentheses means the direction of the 

relation for those variables which we do not show graphically. 
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Appendix 1 

Appendix 1. Numbers of individuals in each population stage and mean fruit production in 30 1 ha-plots of terra firme Forest at Reserva Ducke. 

Species Population  Adults Reproductive 

adults 

Individuals with 

fruits counted 

Mean number of 

fruits per species 

Attalea attaleoides 4650 906 38 22 59.11 

Attalea microcarpa 4570 489 22 17 82.5 

Euterpe precatoria 320 41 23 5 1713 

Geonoma aspidiifolia 1910 173 44 35 14 

Iriartella setigera 4120 590 286 134 67.75 

Oenocarpus bataua 14770 279 188 20 842.55 

Oenocarpus bacaba 1970 176 64 21 2590.83 
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Oenocarpus minor 3840 296 83 33 68.8 

Socratea exorrhiza 230 38 21 11 440.75 

Total 36940 2988 769 298 653.25 
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Abstract (231 words) 27 

One of the most important questions in community ecology is whether species distributions 28 

are controlled by neutral or niche-based processes such as competition and environmental 29 

control. Addressing evolutionary history of traits and spatial distribution of species makes it 30 

possible to disentangle the role of different processes that govern community assembly. To 31 

determine the roles of these processes, we compared the observed palm phylogenetic 32 

community structure from 72 plots distributed in 64 km
2
 against assemblages generated by 33 

null models. We also analyzed whether morphological traits are labile or conserved along the 34 

phylogeny, accounting for spatial structure of morphological traits in each plot. We found an 35 

overall neutral phylogenetic structure, but closely related species are more clumped than 36 

expected by chance in the bottomlands. We did not find evidence of niche conservatism, 37 

which means that close relatives are not more similar than the expected under Brownian 38 

motion evolution. However, we found a strong negative correlation between phylogenetic 39 

community structure and spatial trait structure for most traits — i.e. plots with the most 40 

closely related species have overdispersed traits. Our study suggests that phylogenetic 41 
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clumping in the bottomlands could be the result of competition between distant relatives with 42 

similar traits. In accordance with previous expectations, our results support the idea of a more 43 

relaxed community structure in tropical forests, with competition being more important 44 

between distant relatives with similar traits. However, a strong phylogenetic signal in a few 45 

plots deserves further investigation. 46 

 47 

Resumo 48 

Uma das questões mais importantes da ecologia de comunidades é se a distribuição das 49 

espécies é controlada por processos neutros ou de nicho, como competição e controle 50 

ambiental. Usando a história evolutiva das características relevantes e a distribuição espacial 51 

das espécies é possível distinguir entre os diferentes processos que governam a formação das 52 

comunidades. Para determinar o papel desses processos, nós comparamos a estrutura 53 

filogenética da comunidade de palmeiras de 72 parcelas distribuídas em 64 km2 com 54 

assembléias geradas por modelos nulos. Nós também analisamos se os caracteres 55 

morfológicos são lábeis ou conservadas ao longo da filogenia e se há estrutura espacial nas 56 

características morfológicas em cada parcela. De modo geral, nós achamos uma estrutura 57 

neutra na comunidade de palmeiras. Contudo, nos baixios espécies mais próximas 58 

filogeneticamente estão mais agrupadas. Nós não encontramos evidência de conservatismo de 59 

nicho o que significa que espécies mais próximas filogeneticamente não são mais similares 60 

que o esperado usando um modelo Browniano. Nós encontramos  uma forte correlação entre a 61 

estrutura filogenética da comunidade e a estrutura espacial das características para a maioria 62 

das características – i.e. parcelas com espécies mais proximamente relacionadas tiveram 63 

características agrupadas. De acordo com nossas expectativas prévias, nossos resultados 64 
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corroboram a ideia de uma estrutura da comunidade menos estruturada nas florestas tropicais, 65 

com a competição sendo mais importante entre as espécies mais distantes com características 66 

similares. Contudo, um forte sinal filogenético em algumas parcelas merece mais atenção. 67 

 68 

Key words: Competition; environmental filtering; limiting similarity; niche; null models; 69 

Tropical forest. 70 
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DRIVERS OF COMMUNITY ASSEMBLY AND THEIR ASSOCIATION WITH ECOLOGICAL PROCESSES 71 

such as competition and dispersion have interested ecologists for decades. The discussion of 72 

whether species are assembled according to niche (e.g. Tilman 1994) or neutral processes 73 

(Bell 2001, Hubbell 2001) remains important, and more recently arose again the consensus 74 

that not only current factors are responsible for the assembly process. Hence, historical 75 

components have been incorporated in community ecology studies (Webb et al. 2002). 76 

Knowing the phylogenetic relationship between species in a community can help us to 77 

understand the community assembly process (Webb et al. 2002, Wiens & Graham 2005), but 78 

the applicability of this phylogenetic approach to smaller scales has only been explored to a 79 

limited extent. Nevertheless, historical processes do contribute to contemporary patterns of 80 

biodiversity even at the local scale (Brown et al. 2000, Stevens 2006) and contribute to the 81 

framework in which the assembly processes work. We used a phylogenetic approach, 82 

ecological gradients and analysis of traits to better understand the assembly of a palm 83 

community at local to landscape scales. 84 

Different neutral and niche-based processes can structure biological communities and these 85 

processes depend on geographical scale (McGill 2010) but also on environmental 86 

heterogeneity and species traits. At larger spatial scales, species can be adapted to different 87 

environments where groups of species show different responses along environmental 88 

gradients, and therefore the environmental heterogeneity per se can prevent species from 89 

existing in places in which they are not adapted (environmental filtering, e.g. Webb et al. 90 

2002, Cavender-Bares et al. 2004). At smaller scales, those groups of species already 91 

environmentally filtered may be prevented to co-occur by competitive exclusion or ecological 92 

displacement (assuming no dispersal limitation) (McArthur & Levins 1967, Huston 1979, 93 

Ricklefs 1987).  94 
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Niche-based processes can lead to co-occurrence of similar species or to their overdispersion, 95 

depending on which processes are acting (Cadotte et al. 2009) and the way in which species’ 96 

traits evolve also has strong implications for the interpretation of phylogenetic community 97 

structure. Since Darwin’s time, the niche conservatism premise has been assumed, but only 98 

few recent studies have accounted for the problems arising from this assumption and there is 99 

growing evidence that it is not always true (Losos 2008). The niche conservatism is defined as 100 

the tendency of a close related species being more ecologically similar than expected under 101 

solely Brownian motion evolution, which will prevent new species or its decendants to 102 

ocuppie another niche (Wiens and Graham, 2005; Losos, 2008). So, traits can be conserved, 103 

which means that close related species are more similar than expected by chance, indicating 104 

niche conservatism, or traits can be labile and close related species are less similar than 105 

expected by chance (Blomberg et al 2003; Losos, 2008). An alternative approach to compare 106 

trait evolution and spatial phylogenetic structure is to measure the spatial distribution of traits 107 

directly. If traits are clustered in space, then similar species can share the same environment 108 

and limiting similarity may not be the main mechanism acting to prevent similar species to 109 

co-exist. 110 

Palms are a very conspicuous element in tropical forests systems and their phylogeny is well 111 

resolved to the genus level, being therefore a useful model to understand community 112 

assembly processes. These features allowed us to test for neutrality, competition or 113 

environmental filtering in this group using a phylogenetic approach. There is also a vast 114 

literature of palm traits and it is easy to measure and estimate the important traits that could 115 

potentially create fitness differences between individuals of different species and guide the 116 

assembly process.  117 
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Edaphic variation is known to be one of the main gradients determining the structure and 118 

composition of plant communities in the tropics, from local to regional scales (Tuomisto et al. 119 

1995, Svenning 2001, Tuomisto et al. 2003, Costa et al. 2005). Specifically, topography is a 120 

powerful predictor of plant community structure in the central Amazon basin (Costa et al. 121 

2005, 2009; Kinupp & Magnusson 2005, Zuquim et al. 2009). However, despite the large 122 

evidence of environmental influence on species turnover, there is little attempt to understand 123 

the processes that cause such distribution or even test if a niche-based process can sort the 124 

palm species into the landscape. 125 

Here we studied assembly mechanisms in a landscape scale palm community using a 126 

phylogenetic approach. The main objectives were to determine the co-occurrence pattern of 127 

close relatives and whether neutral or niche-based processes of environmental filtering and 128 

competition rule the phylogenetic palm community structure at this local to intermediate 129 

scale. We measured the phylogenetic community structure of 39 species in 72 small plots in 130 

Reserva Ducke, located near Manaus in the Central Amazon basin and determined whether 131 

close relatives are clumped or overdispersed in space. We also determined if the species traits 132 

are conserved along the phylogenetic tree and if these traits are spatially organized. Within 133 

this framework, we asked the following specific questions: (1) Do close relatives co-occur 134 

more or less than expected by chance at the local scale? (2) Do species have traits conserved 135 

at local community scale? (3) Does phylogenetic relatedness change along the most important 136 

environmental gradients following the same pattern of species composition? And, (4) is there 137 

any spatial pattern of grouping or overdispersion in trait distributions? 138 

 139 

METHODS (1348 words) 140 

 141 
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ECOLOGICAL DATA.–Our study was performed in the Adolpho Ducke Forest Reserve, a well 142 

preserved forest of 10,000 ha. The canopy is 30–37 m high and Astrocaryum and Attalea 143 

palms dominated the understory (Ribeiro et al. 1999). The annual mean temperature is 26°C, 144 

the relative humidity varies from 77–88% and the annual precipitation varies between 1750 145 

and 2500 mm. Soil types are associated with topography; clayey soils (mainly ferralsols) in 146 

the higher areas (Quesada et al. 2011) grade to podzolic sandy soils in the lower areas and this 147 

gradient is an important driver of tree- and palm-community structure (Castilho et al. 2006, 148 

Costa et al. 2009). The reserve has a 64 km
2
 grid with trails from the PELD-Brazil program 149 

(Long Duration Ecological Research) and PPBio (the Brazilian Biodiversity Research 150 

Program of the Science and Technology Ministry). 72 plots are systematically distributed at 1 151 

km intervals over the grid (Fig. 1). Plots are 250 m long, following the terrain altitudinal 152 

contour, and the plot width is variable depending on the taxa being sampled. For palms, plots 153 

were 250 x 4 m. In each plot all palms > 1 m high were counted and identified in 2003 (Costa 154 

et al. 2009). The standardized sampling design used in this study was originally established to 155 

avoid environmental variation inside each plot and suited us to investigate changes in 156 

phylogenetic community structure while keeping constant the environmental variation and 157 

spatial scale. 158 

The topographic variables, originally measured by a professional surveyor team, are available 159 

at the PPBio website (http://ppbio.inpa.gov.br/). Altitude was measured using a theodolite at 160 

the beginning of each plot. Inclination was measured with a clinometer every 50 m along the 161 

plot’s longest axis. In the same points, soil was sampled at 0–5 cm depth from a 30 x 30 cm 162 

area, mixed to get a compound sample, and clay content and chemical properties were 163 

analyzed in INPA’s Plant and Soil Thematic Laboratory. Height above nearest drainage 164 

(HAND) is a quantitative topographic descriptor based on a digital elevation model (SRTM-165 

http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
http://ppbio.inpa.gov.br/
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DEM) that measures vertical height difference between a specific point in the grid and its 166 

nearest drainage (Rennó et al. 2008). HAND was calculated for Reserve Ducke, calibrated in 167 

the field and averaged for each plot based on the 250 m central line (Schietti, unpubl. data). 168 

PHYLOGENETIC DATA.–We constructed one tree for the 39 taxa identified to the species level 169 

by Jean-Louis Guillaumet and reported in Costa et al. (2009). We excluded three botanical 170 

entities they had identified to the variety level or only to the genus level. The tree was 171 

constructed based on a dated phylogeny by Couvreur et al. (2011). Polytomies and dating 172 

estimates were solved partially with the help of specialized bibliography (Baker et al. 2009 173 

and Couvreur et al. 2011, for the family until genus level; Roncal et al. 2011, for Geonoma; 174 

and Eiserhardt et al. 2011, for Bactris) and using a function to randomly sort out ten Bactris 175 

species for which the position within the Bactris clade is unknown (function developed by 176 

Eiserhardt, W.L). We use this tree in the phylogenetic structure community analysis. 177 

PHYLOGENETIC COMMUNITY STRUCTURE.–We used two approaches to access the phylogenetic 178 

structure for each plot, following Webb (2000) and Webb et al. (2002): the Net Relatedness 179 

Index (NRI) and the Nearest Taxon Index (NTI). Both indices are calculated based on 180 

differences between the observed community and 999 random communities generated by a 181 

null model. For each observed and null community we measured the Mean Pairwise Distance 182 

(MPD) and the Mean Nearest Neighbor Distance (MNND) to calculate NRI and NTI, 183 

respectively. Positive scores in both cases indicate phylogenetic clustering in a plot and that 184 

close relatives co-occur more than expected by chance and negative scores mean phylogenetic 185 

overdispersion and that close relatives co-occur less than expected. To summarize the general 186 

effect in the whole area we used a two-tailed one-sample t-test based on the mean and 187 

variance of NRI and NTI across all 72 plots.  188 
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We performed this analysis for the whole community (39 taxa) considering two monophyletic 189 

groups within our local community (e.g. Arecoideae [Areceae plus Geonomateae - Euterpe, 190 

Oenocarpus, Hyospathe and Geonoma] and Cocoseae [Cocoeae–Syagrus, Bactris, 191 

Astrocaryum, Desmoncus and Attalea]). Hereafter we will refer to Arecoideae and Cocoseae 192 

to facilitate the discussion. We excluded Mauritia, Mauritiela and Iriartella, Socratea from 193 

the group analysis due to the small number of species representing these two major groups i.e, 194 

Tribe Lepidocaryeae, Subtribe Mauritiinae and Tribe Iriarteeae, respectively, and also because 195 

they are much more ancient than the other major groups. We also used presence/absence and 196 

abundance data only for this specific analysis. 197 

Additionally, we used the nodesig function from the Phylocom program (Webb et al. 2008) to 198 

determine if any specific clade is phylogenetically structured and the pattern is being obscured 199 

in the analysis considering the whole community (Parra et al. 2010). We also calculated the 200 

Phylogenetic Species Variability (PSV) index (Helmus et al. 2007). The results using nodesig 201 

and PSV were similar. We do not show the results obtained for PSV, which are available in 202 

the supplementary material. 203 

PHYLOGENETIC RELATEDNESS ALONG ENVIRONMENTAL GRADIENTS.–To determine if the 204 

phylogenetic relatedness between species co-occurring in each plot changes with 205 

environmental gradients we used Linear Regression to fit the relationship between NRI and 206 

NTI and two gradients known to be most representative of the reserve; soil texture 207 

(represented by clay content) and the height of the terrain above the nearest drainage 208 

(HAND).  209 

SPECIES TRAITS AND NICHE CONSERVATISM.–We compiled data on morphological and 210 

reproductive traits for palms (Table S1) from the literature (e.g. Henderson 1995, Dransfield 211 
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et al. 2008). We used only traits available for all species (palm height, number of leaves, 212 

presence of spines, inflorescence position, pinnae arrangement, length of the staminate flower, 213 

length of the pistilate flower, petal length, fruit length, fruit weight and number of seeds). As 214 

a measure of ecological traits, we used the response of palms to important environmental 215 

gradients by measuring the mean abundance of each species in its range of distribution along 216 

each gradient and the regression coefficient from the relationship between the abundance of 217 

each species and all environmental gradients separately (see Gómez et al. 2010, Helmus et al. 218 

2007). To determine if traits are conserved or labile we used the k statistics of Blomberg et al. 219 

(2003) and to determine its significance we calculated the variance in each trait for all species 220 

considered in the phylogenetic tree and compared that with the variance calculated from 221 

random communities (Blomberg et al. 2003). Values of k greater than zero and smaller than 222 

one indicate trait lability and k values greater than one indicate trait conservatism, assuming 223 

Brownian motion as a model of evolution of traits. Tests of phylogenetic signal in traits were 224 

performed using the multiPhylosignal function (Kembel et al. 2009) in the R program (R 225 

Development core team 2011). We performed the analysis considering the whole community 226 

and the monophyletic groups mentioned above separately. 227 

SPATIAL STRUCTURE OF TRAITS.–To determine if traits are clumped in the environment 228 

without accounting for species relatedness we tested for the spatial structure of the 229 

morphological/reproductive traits using the Phylocom program (Webb et al. 2008). We 230 

followed Rabosky et al. (2007) where the standardized effect size of the variance (SES) in 231 

each trait is counted to compare the observed grouping of characteristics within 1000 random 232 

species assemblages. The SES values were compared among the plots using a two-tailed one-233 

sample t-test to test if the SES values of all plots are greater or lesser then zero. Values 234 
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significantly greater than zero indicate trait clumping and were assumed indicative of 235 

environmental filtering.  236 

NULL MODEL.–To create the null species assemblages we used the constrained model and the 237 

Swap algorithm proposed by Gotelli and Entsminger (2003), which randomize the real 238 

community keeping the number of species and the frequency of occurrence in each site fixed. 239 

The Swap algorithm replaces in the original matrix the combination of (0,1)(1,0) by (1,0)(0,1) 240 

and the combination of (1,0)(0,1) by (0,1)(1,0), thus, randomizing but keeping the row and 241 

column sums fixed (fixed number of species in each plot and fixed number of occurrences for 242 

each species). The randomizations were performed by 1000 swaps (iterations), with each 243 

subsequent null community generated by checkerboard swapping the previous matrix 999 244 

times. 245 

 246 

RESULTS (451 words) 247 

 248 

PHYLOGENETIC COMMUNITY STRUCTURE.–The overall phylogenetic structure of the palm 249 

community at the 66 km
2
 scale of Reserva Ducke was close to random. Although some plots 250 

had a clumped or overdispersed pattern, on average close relatives are randomly distributed in 251 

the community and our results did not change when using presence/absence (t=0.29, P=0.79; 252 

t=-0.36, P=0.71) or abundance weighted data (t=1.49, P=0.14; t=-0.98, P=0.32) for the most 253 

common phylogenetic structure indexes) (Fig. 3). The same pattern was found when 254 

Arecoideae and Cocoseae were analyzed separately. 255 

However, the species relatedness indices (NRI) were weakly related with two of the most 256 

important ecological gradients in the area, HAND and soil clay content (HAND: R
2
 = 0.20; P 257 
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= 0.0001 and clay: R
2
 = 0.26; P = 0.0001). Plots in the bottomland sandy soils had 258 

phylogenetically more closely related species than expected by chance, and this phylogenetic 259 

pattern disappeared for HAND values greater than 10 m and soil clay contents higher than 5% 260 

(Fig. 4). The pattern is the same, but less evident for NTI (HAND: R
2
 = 0.12; P = 0.002 and 261 

clay: R
2
 = 0.07; P = 0.02). 262 

SPECIES TRAITS AND NICHE CONSERVATISM.–We found phylogenetic signal in some traits as 263 

stated below. Presence of spines in the community as a whole (Table 1) and height, presence 264 

of spines, length of pistillate flowers and petal length in Cocoae (Table 3) were conserved 265 

according to the k statistic. This means that closely related species are more similar than 266 

expected under Brownian motion evolution. However, most traits were labile indicating 267 

general absence of niche conservatism in trait evolution (Table 1; Table 2; Table 3). 268 

Regarding the ecological traits, only the position of species along the soil Mg content gradient 269 

had a phylogenetic signal for the whole palm group (Table 1) and Mg and Ca++ showed 270 

signal for Cocoseae (Table 3). However these traits were labile and did not show phylogenetic 271 

niche conservatism that could be stronger than if these traits had evolved by Brownian motion 272 

evolution. 273 

SPATIAL STRUCTURE OF TRAITS.–Although in some plots species traits were significantly 274 

clumped (six out of 72 in relation to fruit traits and height; SES>2) and in some plots the 275 

present species had different traits (overdispersed traits; two out of 72 in relation to presence 276 

of spines; SES<2), on average the morphological/reproductive traits were not spatially 277 

organized, considering either presence/absence or abundance data. However, for almost all 278 

traits, spatial structure is negatively correlated with NRI and NTI. This means that when there 279 

is phylogenetic clumping there is also trait overdispersion (close relatives are clumped and 280 
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have different traits) and vice-versa so these results agree with our previous expectations 281 

based on phylogenetic structure (NRI and NTI) and analysis of trait evolution. 282 

 283 

DISCUSSION (1511 words) 284 

 285 

PHYLOGENETIC COMMUNITY STRUCTURE.–Assuming niche conservatism, communities are 286 

expected to shift from phylogenetic clustering to overdispersion with decreasing spatial scales 287 

(Cavender-Bares et al. 2009, Webb et al. 2002, Goméz et al. 2010) and this is strongly 288 

dependent on taxa inclusiveness (Cavender-Bares et al. 2006). We found a random 289 

phylogenetic structure at the plot level, i.e., contrary to the expectations for local scales. The 290 

overall phylogenetic structure of the palm community is not significantly different from the 291 

null expectation, although some plots had clumped or overdispersed patterns. This pattern 292 

may arise from random colonization or diffuse competition. A local site colonized randomly 293 

from the regional pool of species (Hubbell 2001, Bell 2001) is consistent with findings of 294 

dispersal limitation for palms found in experiments performed in the same area (Freitas et al., 295 

2012). Also, diffuse competition, which is thought to exist among plants and birds in tropical 296 

environments (Huston 1979, Wright 2002, Goméz et al. 2010) and the high genotypic 297 

variability in plants (Hamrich et al. 1979), including palms (Enguiart 1992), can facilitate 298 

coexistence (Booth & Grime 2003). 299 

High genotypic variability associated with plasticity and adaptation to local heterogeneity 300 

(Hamrick et al. 1979) can lead to a random phylogenetic structure of the palm community 301 

because species can occur throughout the entire ecological gradient regardless of their 302 

phylogenetic relationships. However, in spite of the difficulties of disentangling the 303 
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importance of niche and neutral processes at local scale (John et al. 2007, Karst et al. 2005) 304 

and keeping in mind that these results could be due to the rarefied community sample (Losos 305 

2008) we believe that the species relatedness plays a minor role in assembling our community 306 

and maybe the caracteres analysed are assemble neutraly since we did not find any spatial 307 

structure in traits. Also, since most of traits analysed are labile, and therefore, the premise of 308 

conservatism is not true, we believe that our results for phylogenetic community structure are 309 

not compromised by our rarefied sample of the entire Arecaceae clade, though we are aware 310 

that our result may be sensitive to community composition.  311 

Phylogenetic structure depends on the evolution of species traits and the intensity of the 312 

influence of these traits in species distribution across environmental gradients (Cavender-313 

Bares et al. 2006). Despite the absence of spatial structure in traits, which means that there is 314 

no phenotypical aggregation in any part of the ecological gradient, phylogenetic relatedness 315 

was associated with the vertical distance to the water (HAND) and soil clay content. 316 

Communities in bottomlands were phylogeneticaly aggregated, while communities far from 317 

the watercourses were essentially random assemblages from the phylogenetic pool. In spite of 318 

being considered a unit in terms of vegetation, within terra-firme forest there are at least four 319 

different habitats that respond mostly to the topographical/soil gradient (Ribeiro et al. 1999, 320 

Costa et al. 2005). Also, terra firme was always thought to be an upland, well drained area, 321 

but there are, in some cases, more than 40 % are swampy bottomlands, which the importance 322 

canot be ignored (Nobre et al. 2011). In the central Amazon basin, many studies have 323 

documented a significant association between abundance of species and changes in 324 

community composition along topographic gradients at the meso-scale (Costa et al.2005, 325 

Costa et al. 2009, Drucker et al. 2005, Castilho et al. 2006, Braga-Neto et al. 2008). 326 

Considering the premise of niche conservatism we should expect that the clustering patterns 327 
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found in bottomlands is due to environmental filtering. However, the traits we measured were 328 

not conserved (see below), and the closely related species were not more morphologically 329 

similar than expected, so this pattern in the bottomlands suggests instead, that competition 330 

may lead closely related species with dissimilar traits to co-occur in the bottomlands, even if 331 

most plots did not show a significant pattern of phylogenetic clustering (SES<2). Another 332 

possibility is that the traits we measured are not related to the tolerance to wet environments 333 

and in fact, bottomlands filter those species by some other physiological water-tolerance 334 

traits. 335 

SPECIES TRAITS AND NICHE CONSERVATISM.–Considering the local scale of our study and the 336 

niche conservatism premise, we expected an overdispersed pattern of phylogenetic 337 

community structure controlled by limiting similarity and competition between close relatives 338 

according to previous studies (e.g McArthur & Levins 1967, Webb et al. 2002, Cavender-339 

Bares et al. 2006, Kembel & Hubbell 2006). Recent studies have shown that niche 340 

conservatism is not a rule in many morphological traits and, instead of assuming it we should 341 

test for it (Losos 2008, Wiens 2010). Overall, the traits for the whole community showed a 342 

phylogenetic signal with most traits being labile as has been shown previously for meadow 343 

communities (Silvertown et al. 2006). In our study, Arecoideae presented a weak 344 

phylogenetic signal with no morphological traits conserved and only two being labile. For 345 

Cocoseae we found the opposite situation with strong phylogenetical signal and with four 346 

conserved traits, although the majority of traits are labile. Among ecological traits, the 347 

response to magnesium and calcium soil content was labile for Cocoseae, just the same 348 

pattern of the whole community. Trait lability means that close relatives are not more similar 349 

than expected under Brownian motion evolution (Blomberg et al. 2003, Losos 2008). Indeed, 350 

traits that define the α niche (as proposed by Pickett & Bazzaz (1978), based on Whittaker’s 351 
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alpha diversity concept, which means the traits that possibly define the species distribution at 352 

local scale) are supposed to be more labile to permit species to co-occur (Silvertown et al. 353 

2006). According to our findings, due to the lability of the traits might have be a weaken 354 

competition between close relatives in bottomlands allowing they to co-occur at this 355 

geographic.  356 

Studies restricted to species from a single community are likely to present little or no 357 

phylogenetic signal (Losos 2008). Although measures of trait conservatism are influenced by 358 

taxon sampling (Cavender-Bares et al. 2006), spatial scale and how the community is defined, 359 

our results can explain why the phylogenetic relationship between species does not contribute 360 

to the palm community assembly at least for the whole community and Cocoseae, which 361 

presented most labile traits. Competition can facilitate co-existence in the sense that under 362 

competitive pressure species with labile traits can co-exist, however competition does not 363 

force trits to be labile (Silvertown et al. 2006). Lack of phylogenetic signal is sufficient to 364 

indicate that phylogenetic niche conservatism does not occur (Losos 2008). Detection of 365 

phylogenetic signal depends on sample size, power of the statistical test, accuracy and choice 366 

of the phylogenetic tree, accuracy of trait data and degree of phylogenetic inclusiveness 367 

(Blomberg et al. 2003, Losos 2008). Here specificaly, we are analyzing together the 368 

phylogenetic structure and the traits, which make the influence of temporal and spatial scale 369 

less important than the phylogenetic sampling scale. Working with only parts of the entire 370 

Arecaceae clade can also mask the real pattern. 371 

SPATIAL STRUCTURE OF MORPHOLOGICAL TRAITS.–Overall, species distributions are not related 372 

to the traits of table S1, which means that the phenotypes are not significantly organized in 373 

space. This is compatible with the prediction of neutral models (Hubbell 2001). Indeed, local 374 

and regional assembly factors seem to work together in tropical areas building a random trait 375 
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distribution at least in local frog communities (Algar et al. 2011). However, in our palm 376 

community a plot–plot comparison shows a tendency to overdispersion in traits in plots with 377 

phylogenetic clustering and vice versa. Every time we get a positive value of NRI/NTI in 378 

phylogenetic structure analysis we get a negative value of 1-SES in spatial trait analysis and 379 

vice-versa, but few of these relationships are statistically significant. These results are in 380 

accordance with the conclusion that competition possibly is promoting dissimilar species 381 

(close relatives) to co-occur in bottomlands. As close relatives tend to have different traits, 382 

they can co-occur without competing, while competition is acting in distantly related species 383 

that share some traits. 384 

In conclusion, the absence of a non-random phylogenetic pattern does not mean that there is 385 

no mechanism acting in the community phylogenetic assembly (Peres-Neto et al. 2001). The 386 

phylogenetic approach was a tool to determine the mechanism of community assembly and is 387 

not our intention to make any evolutionary inferences. However, even in a local community, 388 

the assembly process can be influenced by the way traits evolve (Webb et al. 2002, Cavender-389 

Bares et al. 2004). We found that our local palm community is neutral in its phylogenetic 390 

assembly. Looking ahead, we encourage local scale researchers to test the prevision that at the 391 

local scale palms are assembled randomly regarding phylogenetic relatedness. Additionally to 392 

the phylogenetic random community we found the most important traits are labile and that 393 

besides there is no spatial structure in traits within bottomlands. Due to the multidimensional 394 

nature of the niche it is virtually impossible to know if we tested the most important traits in 395 

terms of conservativeness, lability, spatial structure or even promoting competition between 396 

species by limiting similarity. This shows that evolutionary processes help the ecological 397 

constraints to shape the community structure mostly in bottomlands, however it makes the 398 

assumption that our palm community at local scale is neutral in most places and that the 399 
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phylogenetic structure depends on environmental conditions per se i.e bottomlands, not just 400 

environmental variability i.e environmental grandient. 401 
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TABLE S1. Traits used in trait conservatism analysis compiled from specialized literature. 570 
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Astrocaryum acaule 2 1 7 2 1 2 4 1 3 3 2 1 

Astrocaryum ferrugineum 3 4 11 2 1 1 3 1 2 5 3 1 

Astrocaryum gynacanthum 4 4 10 2 1 1 3 1 1 3 1 1 

Astrocaryum sociale 3 1 10 2 1 1 3 1 3 5 3 1 

Attalea attaleoides 1 NA 10 1 1 1 12 2 12 5 2 3 

Attalea maripa 3 12 16 1 1 2 12 2 10 5 3 3 

Attalea microcarpa 1 NA 11 1 1 1 9 2 8 4 3 2 
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Bactris acanthocarpa intermedia 3 1 8 2 1 2 1 0 3 1 1 1 

Bactris acanthocarpa humilis 3 1 5 2 1 2 3 0 0 1 1 1 

Bactris acanthocarpa var trailiana 5 6 9 2 1 3 3 0 3 1 1 1 

Bactris acanthocarpoides 4 3 12 2 1 2 3 1 3 1 1 1 

Bactris constanciae 4 3 7 2 1 2 NA 1 5 2 2 1 

Bactris cuspidata 4 1 5 2 1 2 NA 0 2 1 1 1 

Bactris elegans 4 3 10 2 1 1 5 0 5 1 1 1 

Bactris gastoniana 5 0 6 2 1 2 10 NA NA 2 1 1 

Bactris hirta bifida 5 2 5 2 2 4 4 0 3 1 1 1 

Bactris hirta pinada 5 2 5 2 2 2 4 0 3 1 1 1 

Bactris maraja var. maraja 5 4 7 2 1 5 4 0 3 1 1 1 
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Bactris schultesii 5 1 7 2 1 5 4 0 4 1 1 1 

Bactris simplicifrons 5 1 7 2 1 5 4 0 4 1 1 1 

Bactris syagroides 4 1 7 2 1 1 NA NA NA 1 1 1 

Bactris tomentosa 4 2 11 2 1 2 6 0 4 2 2 1 

Desmoncus polyacanthos 6 9 22 2 1 6 5 0 5 2 1 1 

Euterpe precatoria 3 15 15 1 1 1 5 0 4 1 1 1 

Geonoma aspidifolia 4 2 10 1 1 1 5 1 4 1 1 1 

Geonoma macrostachys 5 0 9 1 1 5 5 0 5 1 1 1 

Geonoma maxima var. chelinodura 4 4 3 1 2 5 5 1 2 1 1 1 

Geonoma maxima maxima 7 3 12 1 3 1 5 1 2 0 1 1 

Geonoma maxima spixiana 7 4 12 1 1 1 5 1 2 1 1 1 
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Geonoma stricta 7 2 10 1 4 3 4 0 4 1 1 1 

Hyospathe elegans 4 5 8 1 5 1 6 0 2 2 1 1 

Iriartella setigera 4 8 7 2 4 3 3 0 1 2 1 1 

Mauritia flexuosa 3 14 14 2 1 7 0 1 1 5 4 1 

Mauritiella aculeata 4 6 7 2 1 7 6 NA 5 5 4 1 

Oenocarpus bacaba 3 15 13 1 5 2 5 0 3 1 1 1 

Oenocarpus bataua 3 15 15 1 5 1 6 1 4 4 2 1 

Oenocarpus minor 4 5 9 1 5 1 4 1 5 2 1 1 

Socratea exorrhiza 3 20 7 2 4 3 11 1 4 3 2 1 

Syagrus inajai 7 9 12 1 1 2 8 1 7 4 3 1 

 571 



TABLE 1. Bloomberg’s k for morphological and ecological traits analysis considering all 572 

species. Ecological traits followed Helmus et al. (2007). 573 

 574 

 K  Variance (Obs) Variance (Null) P Z 

Morphological traits      

Stems 0.204 0.149 0.555 0.023 -0.812 

Height (m) 0.545 1.085 6.699 0.002 -0.875 

N leaves 0.179 1.083 3.431 0.058 -0.735 

Spines 5.170 0.001 0.061 0.001 -1.513 

Inflorescence position 0.485 0.059 0.523 0.001 -0.979 

Pinnae shape 0.084 0.891 0.851 0.670 0.056 

Staminate flowers (mm) 0.030 3.443 1.889 0.835 0.840 

Pistillate flowers (cm) 0.674 0.004 0.019 0.001 -2.606 

Petals (mm) 0.539 0.141 0.552 0.001 -2.459 

Fruits length (cm) 0.266 0.159 0.533 0.038 -0.892 

Fruits width (cm) 0.380 0.054 0.224 0.013 -0.863 

Seeds 0.237 0.007 0.032 0.157 -0.448 

Ecological traits      
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Altitude (m) 0.026 0.003 0.001 0.873 1.164 

Near distance (m) 0.112 2.23E-05 4.05E-05 0.518 -0.416 

meanHAND50 0.048 0.002 0.002 0.766 0.103 

Soil clay content 0.044 0.003 0.002 0.790 0.190 

Inclination 0.127 3.01E-05 7.06E-05 0.300 -0.599 

K (mg/dm
3
) 0.098 0.000 0.000 0.455 -0.445 

Na (mg/dm
3
) 0.051 0.000 0.000 0.765 0.167 

Ca (mol/dm
3
) 0.185 0.000 0.000 0.075 -0.670 

Mg (mol/dm
3
) 0.275 0.000 0.001 0.010 -0.885 

Bases 0.042 0.000 0.000 0.762 0.327 

575 
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TABLE 2. Bloomberg’s k for morphological and ecological traits analysis considering 576 

Arecoidae species. Ecological traits followed Helmus et al. (2007). 577 

 K  Variance (Obs) Variance (Null) P Z 

Morphological traits      

Stems 0.345 0.273 0.372 0.222 -0.800 

Height (m) 0.419 2.698 4.550 0.110 -1.169 

N leaves 0.196 2.004 1.586 0.792 0.709 

Inflorescence position 0.524 0.223 0.473 0.046 -1.612 

Pinnae shape 0.256 0.350 0.366 0.502 -0.116 

Staminate flowers (mm) 0.144 0.119 0.064 0.976 2.458 

Pistillate flowers (cm) 0.805 0.000 0.002 0.001 -1.757 

Petals (mm) 0.432 0.090 0.155 0.097 -1.228 

Fruits length (cm) 0.259 0.102 0.106 0.498 -0.107 

Fruits width (cm) 0.369 0.025 0.037 0.253 -0.785 

Ecological traits      

Altitude (m) 0.154 0.002 0.001 0.912 1.485 

Near distance (m) 0.306 1.31E-05 1.59E-05 0.356 -0.464 

meanHAND50 0.138 0.002 0.001 0.911 1.759 
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Soil clay content  0.133 0.003 0.002 0.941 1.859 

Inclination 0.269 2.93E-05 2.92E-05 0.551 0.011 

K (mg/dm
3
) 0.235 0.000 0.000 0.607 0.268 

Na (mg/dm
3
) 0.298 4.40E-05 5.28E-05 0.386 -0.407 

Ca (mol/dm
3
) 0.277 0.000 0.001 0.452 -0.252 

Mg (mol/dm
3
) 0.439 0.000 0.000 0.103 -1.228 

Bases 0.215 0.000 0.000 0.694 0.482 

 578 

579 
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TABLE 3. Bloomberg’s k for morphological and ecological traits analysis considering 580 

Cocoae species. Ecological traits followed Helmus et al. (2007). 581 

 K  Variance (Obs) Variance (Null) P Z 

Morphological traits      

Stems 0.418 0.137 0.766 0.011 -0.848 

Height (m) 1.303 0.451 3.552 0.003 -0.723 

N leaves 0.569 0.960 5.179 0.012 -0.629 

Spines 10.66 0.001 0.057 0.001 -0.916 

Inflorescence position 0.874 0.003 0.031 0.016 -0.567 

Pinnae shape 0.046 1.347 0.870 0.702 0.549 

Staminate flowers (mm) 0.055 6.017 4.224 0.742 0.400 

Pistillate flowers (cm) 1.473 0.006 0.030 0.001 -2.589 

Petals (mm) 1.635 0.182 0.877 0.001 -2.408 

Fruits length (cm) 0.370 0.220 0.846 0.094 -0.849 

Fruits width (cm) 0.281 0.077 0.255 0.143 -0.749 

Seeds 0.544 0.012 0.070 0.113 -0.540 

Ecological traits      

Altitude (m) 0.034 0.005 0.002 0.832 1.066 
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Near distance (m) 0.134 3.00E-05 5.32E-05 0.604 -0.407 

meanHAND50 0.080 0.003 0.003 0.725 -0.007 

Soil clay content  0.073 0.004 0.003 0.732 0.093 

Inclination 0.256 3.86E-05 0.000 0.240 -0.648 

K (mg/dm
3
) 0.149 0.000 0.000 0.487 -0.393 

Na (mg/dm
3
) 0.075 0.000 0.000 0.711 0.054 

Ca (mol/dm
3
) 0.456 5.78E-05 0.000 0.017 -0.626 

Mg (mol/dm
3
) 0.365 0.000 0.001 0.070 -0.692 

Bases 0.055 0.000 0.000 0.771 0.383 

 582 
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Figure legends (one page) 583 

 584 

Figure 1. The central Amazon basin, indicating the position of the study site in the Reserva 585 

Ducke 30 km from Manaus. To the right the PPBio grid where the study was performed. 586 

 587 

Figure 2. Topology of the palm local community phylogeny in a 64 km
2
 terra firme forest at 588 

Reserva Ducke, Manaus, Brazil. 589 

 590 

Figure 3. Nearest Relatedness Index and Neartest Taxon Index for presence-absence and 591 

abundance data for the local palm community in a 64 Km
2
 terra firme forest at Reserva 592 

Ducke, Manaus, Brazil. 593 

 594 

Figure 4. Standardized size effect from the Nearest Relatedness Index against the main 595 

environmental gradients, HAND (height above the nearest drainage) and soil clay content for 596 

a local palm community in a 64 km
2
 terra firme forest at Reserva Ducke, Manaus, Brazil. 597 

Filled dots represent bottomland areas classified by less than 5 m of HAND and less than 10 598 

% of soil clay content. 599 

 600 

 601 

 602 
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Fig 1. 607 

 608 

 609 

 610 
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Abstract 26 

Despite broadly overlapping geographic distributions, two congeneric palm species (Attalea 27 

attaleoides Mart. and A. microcarpa Spruce) have topographically separated distributions at 28 

local scales in the central Amazon basin. Our aim here was to determine if this local-scale 29 

separation can be linked to (1) seedling-stage environmental specialization of the two species, 30 

and/or (2) environmentally-controlled seed dispersal patterns. We assessed the role of these 31 

potential drivers by mapping the local distribution of the two species and testing for 32 

correlation to seed removal and seed germination patterns using seed sowing experiments. 33 

Twelve seeds of each species were added to each of 30 plots uniformly distributed over a 25-34 

km
2
 grid, and seed removal and seed germination were subsequently monitored. There was 35 

little evidence for environmental specialization at the seedling stage: after 11 months only 2.2 36 

% of A. attaleoides seeds had germinated, but along the entire topographic gradient. Seeds of 37 

A. microcarpa germinated along the entire topographic gradient, but with a tendency towards 38 

more inclined areas. In contrast, there was evidence for environmentally-controlled seed 39 

dispersal patterns: for both species, seed removal was higher in flat areas. Presence of adults 40 

did not affect germination or seed removal. Our results suggest that topographically 41 

differentiated distributions of A. attaleoides and A. microcarpa may be reinforced by steep-42 

slope avoidance of seed dispersers. A direct environmental control mechanism remains to be 43 

identified to explain the consistent topographic associations, but our results show that this 44 

mechanism does not work at the seed germination stage. 45 

 46 

Keywords 47 

Attalea; Arecaceae; endozoochory; seed germination; spatial ecology; tropical forest 48 

 49 
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1. Introduction 50 

A core question in ecology is what limits species distributions. For plants, the most important 51 

driving mechanism that has been proposed is environmental control, leading to species’ 52 

habitat specialization (e.g., Whittaker, 1956), and non-equilibrium population processes, with 53 

distributions being determined by dispersal limitation and chance (Hubbell, 2001). Both 54 

mechanisms appear to affect plant species distributions in tropical forests (Tuomisto et al., 55 

2003; Vormisto et al., 2004a), and it has been suggested that they contribute to maintaining 56 

the high species diversity of these forests (e.g., Svenning, 1999; Clark et al., 1999; Hubbell, 57 

2001; Fine et al., 2006; Yavitt and Wright, 2008). 58 

Topographic conditions constitute an important environmental control of local- and 59 

landscape distributions of tropical forest plant species, such as ferns (e.g., Jones et al., 2006, 60 

Zuquim et al. 2009), trees (e.g., Clark et al., 1999; Valencia et al., 2004), and palms (Kahn 61 

and Castro, 1985; Svenning and Balslev, 1998; Svenning, 1999; Svenning et al., 2009, Costa 62 

et al., 2009). The importance of topography probably reflects the integration of multiple 63 

environmental gradients of direct importance for plants, e.g., soil conditions, hydrology, and 64 

forest structure and dynamics (Svenning, 2001b). For example, in the central Amazon basin, 65 

topography is a major determinant of physical and chemical characteristics of top soil 66 

(Mertens, 2004), with local altitudinal gradients strongly correlating with clay content (Lucas 67 

and Chauvel, 1992). At the same time, topography also produces gradients in soil water 68 

availability (Hodnett et al. 1997) and root zone waterlogging (Nobre et al. 2011) in this 69 

region. All of these topography linked environmental patterns may drive plant distribution in 70 

tropical forest, and for, palms, distributions have been linked to hydrological gradients (Kahn 71 

and Castro, 1985; Kahn, 1987, Costa et al. 2009) and soil nutrients and drainage (Clark et al., 72 

1995; Vormisto et al., 2004b; Montufar and Pintaud, 2006; Poulsen et al., 2006). 73 
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There is also evidence that plant species distribution patterns in tropical forests may be 74 

driven by seed dispersal. Dispersal limitation may prevent species from establishing in 75 

suitable sites (Hubbell, 1999; Wright, 2002), and the limited efficiency of seed dispersal in 76 

tropical trees was recognized several decades ago (Ashton, 1969). Spatially-limited dispersal 77 

may generate clumped distribution patterns unrelated to environmental conditions. However, 78 

dispersal may also generate environmentally related distribution patterns, notably due to the 79 

environmental preferences of animal dispersers. Animal behavior may introduce spatial 80 

heterogeneity in seed dispersal patterns (Svenning, 2001a). Animal movement and behavior 81 

are shaped by many factors such as seasonal inundations (Bodmer, 1990), canopy structure 82 

(Schupp and Frost, 1989), fruit availability and topographic preferences (Salas, 1996). 83 

Therefore, palm seed dispersal may be indirectly affected by environmental features in a non-84 

random way, through its effects on the distributions and behavior of seed dispersers 85 

(Eiserhardt et al. 2011; Svenning, 2001a) and also acting as dispersal barriers (Wiens and 86 

Graham, 2005). Dispersal modes can also restrict species to certain environments, e.g., water-87 

dispersed seeds will not be dispersed beyond bottomlands even if they are able to germinate in 88 

uplands.  89 

Drivers of plant species distribution linked to environmental conditions have often 90 

been seen as alternatives to those linked to dispersal, but it now seems clear that the two 91 

processes are not just complementary, but that they may even interact. Different drivers may 92 

act at different scales, and the effects of dispersal limitation are expected at local scales, while 93 

environmental filters act from global to local scales. At large scales, the distribution of palms 94 

is controlled mostly by amount and seasonality of precipitation; at landscape scales by 95 

topography, soil, and vegetation structure (such as canopy heterogeneity), and at local scales 96 

also by hydrology (Svenning, 2001b, Vormisto et al., 2004b; Poulsen et al., 2006; Costa et al., 97 
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2009, Eiserhardt et al., 2011). Dispersal limitation influences palm community composition 98 

and the distribution patterns at all scales (Eiserhardt et al., 2011). Earlier studies have shown 99 

that palm seedlings are clumped around the parent (Svenning, 2001a) and other studies have 100 

shown, that when palm seeds are taken by dispersers they are often removed only a few 101 

meters away from the parent plant (e.g., Fragoso, 1997; Pimentel and Tabarelli, 2004; 102 

Almeida and Galetti, 2007). Although the random component of dispersal limitation is well 103 

documented, it remains poorly explored how dispersal is limited by the environment, and to 104 

what extent such constraints on dispersal may affect species-environment relationships. 105 

Attalea includes approximately 27 species according to Henderson (1995) but Pintaud 106 

(2008), in a review of the genus, showed that there is a consensus for the validity of only 20 107 

species. Attalea attaleoides and A. microcarpa are both monoecious palms with short, 108 

subterranean stems, and pinnate leaves with the pinnae regularly arranged (Table 1). Closely 109 

related species are expected to share many ecological features (Webb et al., 2002; Feeley, 110 

2003) and the evolution of niche differentiation between them is being discussed extensively 111 

(Ackerly et al., 2006). For instance, according to Diamond’s (1975) co-occurrence rule, 112 

closely related species are unlikely to co-occur at small scales, and in line with that, Svenning 113 

(1999) suggested that palms of similar growth form will show antagonistic microhabitat 114 

association. This appears to be the case in the two species that we focus on in this study. 115 

Attalea attaleoides and A. microcarpa are sympatric in most of their range of occurrence 116 

(Henderson, 1995; Lorenzi, 2010), but at meso and local scale, more specifically in the terra 117 

firme forests north of Manaus, they are restricted to different habitats: Attalea attaleoides 118 

occurs in the upland plateaus and less abundantly on the slopes, whereas A. microcarpa is 119 

confined to the bottomlands (Costa et al., 2009). In the forests to the south of Manaus, in 120 

which most of the environment can be considered as bottomlands, A. attaleoides is absent, 121 
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while A. microcarpa is widespread, except in places where floods are frequent (Emilio, pers. 122 

comm). 123 

We propose that a mixture of meso- and local scales processes (e.g., topography, soil 124 

condition and dispersal) separate these two sympatric species along a topographic gradient. 125 

First, some mechanism linked to environmental control of dispersers’ behavior shapes non-126 

random dispersal limitation in seeds and second, an edaphic control prevents seedlings that 127 

could reach areas outside the adults’ distribution range to establish. Keeping this scenario in 128 

mind we ask why these two sympatric species’ distributions do not overlap at the meso-scale 129 

and we designed a sowing experiment to answer especially if this pattern is related to niche or 130 

neutral processes. Specifically we ask: 131 

(1) Is seed germination related to presence and abundance of adults or to the 132 

proportion of individuals fruiting? To access the role of dispersal limitation and 133 

environmental control we stated that if a transplanted seed germinates in a site where the adult 134 

is not present, the absence of adults could be due to dispersal limitation, which would involve 135 

neutral processes, or to environmental control in later phases of development. If transplanted 136 

seeds do not germinate in a site where adults are absent, this absence could be due to 137 

environmental control in the seed phase, i.e., niche processes and local adaptation.  138 

(2) Are seed germination and seed removal related to topography? If yes, one could 139 

expect that seed germination will reflect the adult distribution pattern and removal will 140 

inversely reflect adult distribution. 141 

 142 

2. Material and methods 143 

 144 
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2.1 Study site 145 

The study was conducted in Reserva Florestal Adolpho Ducke of the Instituto Nacional de 146 

Pesquisas da Amazônia, located 26 km north-west of Manaus (02°55’S; 59°59’W, Fig. 1). 147 

The reserve covers 10,000 hectares (10 x 10 km) of terra firme tropical rain forest. The 148 

canopy is 30–37 m high and the understory is dominated by Astrocaryum and Attalea palms 149 

(Ribeiro et al., 1999). The mean annual temperature in the area is 26°C and humidity ranges 150 

from 77–88%. The mean annual rainfall is 2362 mm with a dry season from July to October, 151 

September being the driest month (Marques-Filho et al., 1981). Soils vary along a gradient 152 

from clayey latosols in the uplands towards sandier soils as inclination increases, until almost 153 

only sand is found in the bottomlands. The vegetation in the area is mainly terra firme forest, 154 

with some intermingled patches of white sand forest. 155 

 The Reserva Ducke has a grid of regularly (1 km) spaced north-south and east-west 156 

running trails covering a total area of 25 km
2
. Within the gridded area, there is a set of 30 157 

plots, each one 250 m long, with variable width depending on taxa being studied, and 158 

following altitudinal contours which minimize the internal variation of altitude of each plot. 159 

The main gradient within the area is the topography which varies between 46.7 meters and 160 

105.1 meters above sea level. The plots are managed by PPBio program (Research Program in 161 

Biodiversity) of the Brazilian Ministry of Science and Technology. 162 

 163 

2.2 Data collection and experimental design 164 

Abundance of the two species (A. attaleoides, A. microcarpa) was determined for each plot by 165 

J.-L. Guillaumet (Fig. 2). Seeds of both species were collected from infructescences still 166 

attached to the plants within the grid and always close to the plots, but never inside them. We 167 

collected all seeds that we found in order to obtain at least 360 and brought them to the camp 168 
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where they were randomized in relation to plots. No viable seeds (those that floated on water) 169 

were discarded. We then sowed 12 seeds of A. attaleoides and 12 seeds of A. microcarpa in 170 

two 1 m
2
 subplots in each of the 30 plots. The subplots were always placed half way along the 171 

250 m plot base line, on the 125 m. The seeds were sowed in three parallel rows of four seeds 172 

and buried 2–3 cm below the soil surface so they could be relocated without using any mark 173 

that could attract seed consumers. Although we had no information about how deep the seeds 174 

of the two investigated species are buried under natural circumstances, we knew that 74% of 175 

one-leaf seedlings of Attalea oleifera were buried 1–3 cm below the surface (Pimentel and 176 

Tabarelli, 2004). Compared to this, our burial depth of 2–3 cm below the soil surface would 177 

seem to provide a good escape from predation. 178 

 Sowing was done in April, 2009 for A. microcarpa and January, 2010 for A. 179 

attaleoides. Non spiny Cocosoids, such as Attaleas, may have a long dormancy of 312–475 180 

days (Wagner, 1982); although this time may be an overestimate given that these palms have 181 

remote germination, a kind of germination which takes place underground at the beginning of 182 

the germination process (Henderson 2002). So, after the sowing process, we monitored 183 

germination and removal by seed consumers, every month until the seeds germinated, which 184 

we took as when the primary root appeared (digging up seeds and reburying). Germinated 185 

seeds were left in the plots and observed again after nine months. After nine months, more 186 

than 20 % of the seeds of A. microcarpa and only one seed of A. attaloides had germinated. 187 

So we made an additional observation one year after sowing. A seed was considered removed 188 

by seed consumers when it could not be found. The proportion of germinated seeds was 189 

calculated as the ratio of germinated seeds to sowed seeds minus removed seeds. The 190 

proportion of removed seeds was calculated as the ratio between removed and sowed seeds.  191 
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The topographic variables were made available by PPBio and had originally been 192 

measured by a professional surveyor team (http://ppbio.inpa.gov.br/). Altitude was measured 193 

using a theodolite in the zero mark at the beginning of each plot. The inclination was 194 

measured using a clinometer every 50 m along the plot baseline. At the same points, soil was 195 

sampled at 0–5 cm depth from a 30 x 30 cm area, mixed to get a compound sample, and clay 196 

content and chemical properties were analyzed at INPA’s Plant and Soil Thematic 197 

Laboratory. Height above nearest drainage (HAND) is a quantitative topographic descriptor 198 

based on a digital elevation model (SRTM-DEM) that measures vertical height difference 199 

between a specific point in the landscape and its nearest drainage (Rennó et al. 2008). HAND 200 

was calculated for Reserve Ducke, calibrated in the field and averaged for each plot based on 201 

the 250 m central line (Schietti, unpublished data). 202 

 203 

2.3 Data analysis 204 

The numbers of germinated seeds and removed seeds were used as response variables in one-205 

way ANOVA type III (function Anova in the R package car: Fox, 2011) and compared 206 

between plots with and without adults (as a measure of habitat suitability and to control for 207 

conspecific density- or distance effects). Anova type III refers to type III sums of squares for 208 

unbalanced samples so that the analysis controls for sample size (Zahn, 2009). We tested the 209 

effects of abundance of adults, the proportion of individuals fruiting, and environmental 210 

factors on the proportion of germinated seeds and the proportion of removed seeds using 211 

linear regression models. Response variables were arcsine transformed for proportion data to 212 

fit a linear model. We used Cleveland dot-plots to search for outliers and Pair plots and the 213 

Variance Inflation Factor (VIF) to look for correlations among the explanatory variables, 214 

altitude, clay content, HAND, inclination and nutrient content, this given by the amount of 215 

http://ppbio.inpa.gov.br/
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phosphorus and exchangeable bases. All non-correlated variables were used in a complete 216 

model, which was subjected to a stepwise function in order to select the best model for each 217 

response variable. Inclination and phosphorus were the explanatory variables retained for A. 218 

microcarpa, and altitude and inclination for A. attaleoides. All analyses were performed in the 219 

R statistical environment (R Development Core Team, 2010). 220 

 221 

3. Results 222 

Germination — Of 360 sowed seeds of Attalea attaleoides, only 8 (2.2%) germinated, and 223 

therefore we did not test their relationships with adults or environment. For Attalea 224 

microcarpa 94 seeds (26.1%) germinated and their numbers did not differ between sites with 225 

or without adults (F1:28 = 0.08, P = 0.77). Furthermore, the proportion of A. microcarpa 226 

germinated seeds was not related to the abundance of adults nor to the number of individuals 227 

fruiting at the site (R
2 

= 0.02, P = 0.44, and R
2 

= 0.00, P = 0.88, respectively).  228 

The seed germination pattern along the topographical gradient is shown in Fig. 3. 229 

Seeds of Attalea microcarpa germinated along the entire topographic gradient, with a slight 230 

tendency for higher germination in more inclined plots (Fig. 4a, R
2 

= 0.19; P = 0.06 for the 231 

complete model; and P = 0.08 for inclination). Although there was only a very limited 232 

number of germinated seeds of Attalea attaleoides, the four plots in which seeds did 233 

germinate were in different parts of the inclination gradient (2, 4.8, 10 and 10.2°, where the 234 

range of variation in the mean plot values are between 0.7 and 26.7, with just three values 235 

above 15°). For the plots where A. attaleoides did germinate see asterisks in Fig. 3. 236 

 237 

Removal — the number of removed seeds of A. attaleoides and A. microcarpa did not differ 238 

between plots with or without adults (F1:28 = 0.14, P = 0.70; F1:28 = 1.84, P = 0.18, 239 
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respectively). Furthermore, the proportion of removed seeds of A. attaleoides was not related 240 

to the abundance of adults or to the number of individuals fruiting at the site (R
2
 = 0.03, P 241 

=0.31; R
2
 = 0.03; P =0.29). The proportion of removed seeds of A. microcarpa, was positively 242 

related both to the abundance of adults (R
2
 = 0.13, P =0.05) and to the proportion of 243 

individuals fruiting (R
2 

= 0.12; P =0.06), but this result is influenced by one outlier plot that 244 

had more than 250 individuals of A. microcarpa. Repeating the analyses without this outlier 245 

produced non-significant results (R
2 

=0; P =0.68 and R
2 

=0.01; P =0.52 for abundance of 246 

adults and for proportion of individuals fruiting respectively). 247 

The seed removal pattern along the topographical gradient is shown in Fig. 3. The 248 

proportion of removed seeds of Attalea attaleoides was higher in less inclined plots (Fig. 4b, 249 

open dots; R
2 

= 0.31; P = 0.006). We also found a higher proportion of removed seeds of A. 250 

microcarpa in less inclined plots; however this result is not statistically significant (Fig. 4b, 251 

filled dots; R
2 

= 0.09; P = 0.24 for the complete model; and P = 0.16 for inclination). For the 252 

full results including non significant ones see Table 2. 253 

 254 

4. Discussion 255 

 256 

Germination — Seeds of A. microcarpa germinated along the entire topographic gradient – 257 

and did so independently of adult presence/absence or abundance - raising the question of 258 

what causes the absence of adult of A. microcarpa in the uplands. These results suggest that 259 

its distribution may be governed by dispersal limitation, so seeds under natural conditions do 260 

not reach the uplands. Indeed, Svenning (2001a) attributed the clumping pattern in some 261 

Andean palms to recruitment limitation due to restricted seed dispersal. A set of factors 262 

contribute to this, including seed size, which limits the distance a seed can be carried, size of 263 
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the disperser, digestive characteristics, habitat preference of the disperser, feeding behavior 264 

(Jordano, 2000) and distance that a disperser can move (Fragoso, 1997; Boll et al., 2005). 265 

There are no specific studies of the dispersal of A. microcarpa (see Table 3 for possible 266 

dispersers and Table 4 for traits of the possible dispersers), but common dispersers of other 267 

palm species include tapirs, deers, peccaries, agoutis and squirrels (Smythe, 1989; Galetti et 268 

al., 1992; Quiroga-Castro and Roldán, 2001; Wyatt and Silman, 2004; Pimentel and Tabarelli, 269 

2004). Intrinsic behavior of these animals can generate micro-environmental heterogeneity 270 

(Svenning, 2001b; Forget, 1991).The small rat, Heteromys desmarestianus, which disperses 271 

Astrocaryum mexicanum seeds, is 4.5 times more abundant in flat areas than on slopes 272 

(Klinger and Rejmánek, 2010). The tapir, an effective palm seed disperser (Bodmer, 1991; 273 

Quiroga-Castro and Roldán, 2001), which moves over very long distances, prefers low and 274 

moist areas (Bodmer, 1991; Salas, 1996), and their latrines are located mostly in wet areas 275 

(Fragoso, 1997; Quiroga-Castro and Roldán, 2001) just like our bottomlands. Even if the 276 

maximum elevation difference within the grid is 58 meters, and the maximum difference 277 

between adjacent high and low sample plots is only 43 meters, the mean inclination of slopes 278 

is 26° (maximum inclination is 48°), therefore it is possible that such topographic features 279 

prevent dispersers from moving seeds from the bottomlands to the uplands. A second possible 280 

explanation for the absence of adult A. microcarpa in the uplands is related to environmental 281 

control in the seedling phase. Similar transplantation experiments conducted in central 282 

Amazonia with the clay (Oenocarpus bacaba) and sandy soil (Socratea exorrhiza) specialists 283 

showed that the sand-specialist germinated well along the entire gradient (Pacheco, 2001), in 284 

the same way as A. microcarpa did in our experiment. That study also found that the impact 285 

of herbivores on seedlings was similar in both species, but protection against herbivory 286 

reduced mortality only in the clay-specialist. This supports the idea of a trade-off between 287 
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growth-defense against herbivores in pairs of closely related species in the same clay/sand 288 

scenario proposed by Fine et al., (2004, 2006). Based on the growth/defense trade-off idea we 289 

may infer that A. microcarpa, as a sand-specialist, can be eliminated from the uplands 290 

(assuming they reach it) by edaphic conditions more than any other biological constraint. 291 

However, this remains to be tested for our two species. 292 

Considering the germination and removal patterns and the pattern of distribution of 293 

adults, we infer that dispersers are most important and environmental mechanisms are 294 

secondary at germination phase contributing in keeping A. microcarpa in bottomlands. For A. 295 

attaleoides the seeds were heavily removed and germinated in only four plots, but since these 296 

four plots were located along the entire topographic gradient, we cannot conclude about any 297 

difference in germination patterns with altitude between the two species. 298 

Compared to literature germination rate for non-spiny Cocosoids species (37%) in 299 

green house conditions (Wagner, 1982), we consider our germination rate (26%) reasonable. 300 

Dormancy, very common in non-spiny Cocosoids may cause this low germination rate, but as 301 

the germination was consistent along the whole gradient, we believe that this does not affect 302 

our main conclusion that an environmental filter at the germination stage is not the first 303 

barrier to the distribution of Attalea attaleoides and Attalea microcarpa. It is possible that 304 

seeds germinating later could be restricted to some part of the gradient, owing to genetic 305 

variability promoting adaptations to different environments. We recommend that future 306 

germination experiments, mostly in this species, should take longer to address this possibility. 307 

Seed removal — Seed removal in A. attaleoides was not related to presence or abundance of 308 

adults or to the proportion of adults fruiting in the plot. For A. microcarpa we found that more 309 

seeds were removed where there was higher abundance of adults, but this pattern was due to 310 

an outlier. Some studies found the opposite, i.e., that there was more predation by herbivores 311 
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in areas of higher abundance of reproductive adults (DeSteven and Putz, 1984; Forget, 1992) 312 

and Janzen (1975) found similar seed predation in riparian sites and hilltops, such as ours. 313 

Our removal data reinforce our idea about dispersal limitation; if the seed is available it will 314 

be removed independently of adults, but not independently of the topographic condition. 315 

Topography — Seed removal of A. attaleoides was related to inclination, being lower in the 316 

more inclined areas. The tendency is the same for A. microcarpa, even if the relationship is 317 

not statistically significant. So, our results for seed removal of both species and for A. 318 

microcarpa germination suggest that recruitment may be higher in more inclined plots. This 319 

result agrees with Janzen (1975) who found similar seed predation in riparian sites and 320 

hilltops and with Klinger and Rejmánek (2010) who found the same pattern in Astrocaryum 321 

mexicanum, e.g., lower removal rates in slopes, but greater germination in flat areas 322 

conditional to disperser manipulation. Our removal data reinforce our previous assumption 323 

about preferences of seed dispersers/predators. But, even if dispersers hardly ever carry seeds 324 

throughout the entire gradient, they may occasionally do this. Therefore, it is expected that we 325 

would find seedlings of A. microcarpa outside of the known range of adults, even if dispersal 326 

limitation was the only process affecting its distribution. Since seeds are able to germinate 327 

along the entire topographic gradient, and seed removal is smaller in slopes, we should expect 328 

higher recruitment in slopes. This is not in accordance with the distribution pattern of adults, 329 

which are less abundant in slopes for A. microcarpa and not more abundant in slopes than in 330 

plateaus for A. attaleoides. Therefore, environmental filters presumably act after germination 331 

to set the pattern observed for adults. These filters may be linked to seed consumers, as 332 

suggested by Fine et al., (2004; 2006), but may also be a result of physiological constraints 333 

(Gibbons and Newberry, 2002). 334 

 335 
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5. Conclusion 336 

Overall, our results suggest that distribution of the Attalea attaleoides and A. microcarpa is 337 

partially set by topographically constrained dispersal, probably mediated by disperser’s 338 

behavior, and partially by more direct environmental control on local individual performance, 339 

mediated by filters associated to the topography. Disperser feeding preferences associated to 340 

certain habitats may create seed shadows restricted to these habitats and prevent ample 341 

dispersal of a species. We suggest that avoidance of steep slopes by seed dispersers may 342 

generate an absence of seeds of A. microcarpa in the uplands and of A. attaleoides in the 343 

lowlands. Furthermore, our germination data show that there is limited environmental control 344 

in the germination phase, and therefore the expectation is that herbivores or physiological 345 

constraints must limit their performance at later ontogenetic stages. Hence, all the factors 346 

described here seem to work together in confining A. attaleoides to the uplands and A. 347 

microcarpa to the bottomlands even if these two closely related species are sympatric in their 348 

overall distribution. 349 

 350 
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Table 1. Attalea attaleoides and A. microcarpa reproductive traits, possible pollinators and 557 

dispersers and distribution at large and local scales.  558 

Characteristics A. attaleoides A. microcarpa 

Inflorescences position Interfoliar 
a,b

 Interfoliar 
a
 

Rachis length (cm) 15–20 
a
 20–50 

a
 

Staminate rachillae (no, 

length cm) 

90, 5–7 
a
 58–73, 3–9 

a
 

Staminate flowers (mm) 10–14 
a
 7–10 

a
 

Stamens (number) mm Straight (6) 5–6 
a
 Curled (9–15) 

a
; 8–12 

b
 

Anthers Straight Coiled and twisted 
a, b

 

Pistillate rachillae (cm) 1 
a
 1–6 

a
 

Pistillate flowers (cm) 2 
a
 1.5–2

a
; 1.7–2.2 

b
 

Pistil (mm) - 3.5 
b
 

Free petals (mm) Yes 11–12 
a
 Yes 7–9 

a
 

Fruits Ovoid with elongate apex 
a, 

b
 

Ovoid or obovoid 
a
; 

Elongate 
b
;  

Fruits length (cm) 4.5–5.5 
a, b

;  3.5–4 
a
; 3.7 

c
 

Fruits width (cm) 2–2.5 
a, b

 2–3 
a
; 2.5 

c
 

Mesocarp Dry and fibrous 
b
 Dry and fibrous 

b
 

Endocarp fibers Few or absent 
a
 Thin with or without 

a
 

Seeds 2–3 
a
 1–3

a
; Often one 

b
 

Germination Difficult 
b
 Difficult and slowly 

b
 

a 
Henderson (1995); 

b
 Lorenzi (2010); 

c 
Glassman (1999). 559 

 560 



Table 2. Results for ANOVA and Multiple Regression models. 561 

Species PxA individuals in the 

plot 

Abundance of adults* Number of adults fruiting* Model 

G R G R G R G R 

A. 

attaleoides 

- F  = 0.14, P 

= 0.70 

- R
2
 = 0.03, 

P =0.31 

- R
2
 = 0.03; P 

=0.29 

- R
2 

= 0.31; P 

= 0.006 

A. 

microcarpa 

F = 0.08, 

P = 0.77 

F = 1.84, P 

= 0.18 

R
2 

= 0.02, 

P = 0.44 

R
2 

=0; P 

=0.68 

R
2 

= 0.00, P = 

0.88 

R
2 

=0.01; P 

=0.52 

R
2 

= 0.19; 

Pw = 0.06; 

Pi = 0.08 

R
2 

= 0.09; 

Pw = 0.24; 

Pi = 0.16 

* Without considering an outlier with more than 250 individuals of A. microcarpa. For ANOVA test the Df=1/28 for all models. Pw = p value for 562 

the whole model, Pi = p value for inclination. PxA means presence and absence data. G and R means germination and removal, respectively. 563 

 564 
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Table 3. Ecological and reproductive traits of Attalea attaleoides and A. microcarpa. 565 

Species Distribution Habitat Pollinators  

Attalea 

attaleoides 

French Guiana, 

Surinam and Brazil 

(Amapá e 

Amazonas) 
a
 

Higher areas and 

occasionally slopes 

(study area) 
b
; low 

land rain forest on 

terra firme, rarely to 

750 m elevation 
a
; 

Campinarana (sandy 

soils) 
c
 

Beetle pollinated, 

most by Mystrops 

(Nitidulidae) and 

Phyllotrox 

(Curculionidae)
 d 

Attalea 

microcarpa 

Colombia, 

Venezuela, Guianas, 

Peru and Brazil 

(Amapá, Amazonas 

and Pará) 
a
 

Restricted to 

bottomlands (study 

area); low land rain 

forest; open low 

forest, or rocky 

places, usually on 

sandy soils 
a
. Semi-

open areas or wet 

areas in sandy soils 

in low altitudes 
c
. 

Feeding and 

ovipositing 

(Curculionidae, 

Nitidulidade and 

Staphylinidae)
e 

a 
Henderson (1995); 

b
 Costa et al. (2009); 

c 
Lorenzi (2010); 

d
 Küchmeister et al (1998); 

e
 566 

Küchmeister et al (1993). 567 

568 
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Table 4.  List of possible dispersers of Attalea attaleoides and A. microcarpa, in the Reserva 569 

Ducke including traits, home range and habit. 570 

Possible dispersors 

a
 

Home range Activity period 
b
 Habit 

c
 

Potos flavus 8–50 ha Nocturnal Arboreal 

Tapirus terrestris - Mostly nocturnal, 

partially diurnal 

Terrestrial (can 

negotiate almost 

vertical slippery 

hillsides) 

Tayassu tajacu 30–800 ha 
c
 Diurnal Terrestrial 

Odocoileus 

virginicus 

229 ha 
d
 Diurnal/nocturnal Terrestrial 

Mazama americana - Diurnal/nocturnal Terrestrial 

Mazama 

gouazoubira 

- Mostly diurnal Terrestrial 

Dasyprocta 

leporine 

- Diurnal Terrestrial 

Sciurus spadiceus - Diurnal Terrestrial/Arboreal
 

e
 

Cebus apella 850 ha 
f
; 180 ha 

d
  Diurnal Arboreal/Prefer 

areas bottomlands 

near streams 
a
 

Saimiri sciureus 65 ha 
d
 Diurnal 

g
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a 
Mendes Pontes et al. 2008; 

b 
Emmons and Feer (1997); 

c 
MacDonald (1984); 

d 
Jones et al. 571 

(2009); 
e 
Hershkovitz (1969); 

f 
Gordo et al. (2008); 

g 
Coe and Rosemblum (1974). 572 

573 
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Figure legends 574 

Fig. 1 The central Amazon basin, indicating the position of our study site in the Reserva 575 

Ducke 30 km from Manaus. To the right the PPBio grid where the study was performed 576 

Fig. 2 Abundance of adult Attalea attaleoides (black) and A. microcarpa (gray) along the 577 

topographic gradient in 30 plots in the Reserva Adolpho Ducke. The plots are ordered by 578 

altitude values. 579 

Fig. 3 Large scale distribution of Attalea attaleoides and A. microcarpa. Circles are 580 

distribution in the Amazon according to Henderson (1995). Shades are the distribution in 581 

Brazil according to Lorenzi (2010); hatched shade for A. attaleoides and dark shade for A. 582 

microcarpa. The detail shows local abundance (numbers under bars). The proportions of 583 

seeds removed are represented in dark gray and the proportion of seeds germinated is 584 

represented in light gray in the top for A. microcarpa and in the bottom for A. attaleoides 585 

Fig. 4 Partial regressions showing the proportion of germinated seeds of Attalea microcarpa 586 

(A), the proportion of removed seeds of Attalea attaleoides (filled dots, solid line) and the 587 

proportion of removed seeds of Attalea microcarpa (open dots, dashed line) against 588 

inclination in 30 plots in a 25 km
2
 terra firme area at Reserva Forestal Adolpho Ducke in 589 

Central Amazonia. The partial effects of inclination exclude the effects of other variables 590 

included in each model. The values can be negative since thay are the residuals from the 591 

multiple regression model but the inclination ranges between 0.7 and 26.3° in the area. 592 

593 
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Fig 1. 604 
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Fig 2.  614 
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Síntese 

De maneira geral, a maioria das nove espécies de palmeiras monitoradas apresentou 

algum grau de restrição de sua distribuição ao longo do gradiente de conteúdo de argila 

considerando a fase do desevolvimento, com indivíduos frutificantes mais restritos. A 

produção de frutos da maioria das nove espécies de palmeiras está condicionada à 

disponibilidade de água e nutrientes no solo, embora algumas espécies frutifiquem 

independente da posição no gradiente. Adicionalmente, não foi encontrada estrutura 

filogenética na comunidade de palmeiras local. Além do mais, os caracteres 

morfológicos/reprodutivos analisados não são conservados, mas sim lábeis e não estão 

organizados espacialmente, embora nos baixios haja uma organização com indivíduos mais 

parecidos ocorrendo juntos. Finalmente, as sementes de Attalea germinaram 

independentemente da posição no gradiente topográfico mostrado uma distribuição mais 

ligada a limitação de dispersão do que ao controle ambiental nesta fase do desenvolvimento. 

Muitos estudos sobre reprodução de plantas não abordam a questão de como a 

reprodução é afetada por características do ambiente nas escalas da paisagem. Essa 

abordagem é crucial para entender o nicho realizado e assim tomar decisões de conservação 

de forma correta. Embora seja importante entender quais fatores locais (e.g luz e relações com 

os vizinhos mais próximos) abordados em muitos trabalhos, entender as limitações da 

reprodução na escala da paisagem é crucial para a conservação das espécies, uma vez que 

grande parte da área ocupada pode representar áreas sumidouras onde os indivíduos presentes 

são incapazes de manter a população sem a contribuição de imigrantes. 

No que diz respeito às relações filogenéticas entre as espécies, as palmeiras parecem 

organizadas de forma neutra, com a maioria dos caracteres analisados tendo evoluído de forma 

lábil ao longo do tempo. Além do mais, esses mesmo caracteres não estão organizados no 

espaço, com exceção nos baixios, onde os indivíduos mais parecidos ocorrem juntos, embora 

eles sejam mais distantes filogeneticamente. Isso mostra como os processos evolutivos 

ajudam a moldar a comunidade, principalmente nos baixios. 

Quanto às duas espécies de Attalea, provavelmente a topografia e a habilidade 

dispersivas mediada pelo comportamento dos dispersores é responsável pela distribuição em 

áreas opostas do gradiente topográfico. Além do mais, um controle ambiental no desempenho 

local de cada espécie mediada por filtros ligados à topografia pode ajudar a explicar esse 
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padrão. Todos esses fatores parecem constituir no primeiro passo para confinar Attalea attaleoides 

nos platôs e Attalea microcarpa nos baixios  

Os baixios parecem ser um ambiente muito peculiar quanto a constituição de sua 

comunidade e quanto aos processos ecológicos. Há uma clara restrição das populações das palmeiras 

ao longo do gradiente de conteúdo de argila do solo dividindo as populaçãoes do baixio do resto do 

gradiente. Além do mais, a estrutura filogenética do baixio pode ser reconhecida com espécies mais 

próximas co-ocorrendo juntas enquanto que no resto do gradiente a estrutura parece aleatória. No 

baixio, então a comunidade de palmeiras parece bem melhor definida do que no restante do 

gradiente. 
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Apêndice 1 – Ata da aula de qualificação 
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Apêndice 2 – Pareceres dos avaliadores do trabalho escrito 
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Apêndice 3 Parecer dos avaliadores da defesa pública. 


