Abstract

Aim: A major problem for conservation in Amazonia is that species distribution maps are inaccurate. Consequently, conservation planning needs to be based on other information sources such as vegetation and soil maps, which are also inaccurate. We propose and test the use of biotic data on a common and relatively easily inventoried group of plants to infer environmental conditions that can be used to improve maps of floristic patterns for plants in general.

Location: Brazilian Amazonia.

Methods: We sampled 326 plots of 250 m × 2 m separated by distances of 1–1800 km. Terrestrial fern individuals were identified and counted. Edaphic data were obtained from soil samples and analysed for cation concentration and texture. Climatic data were obtained from Worldclim. We used a multivariate regression tree to evaluate the hierarchical importance of soils and climate for fern communities and identified significant indicator species for the resultant classification. We then tested how well the edaphic properties of the plots could be predicted on the basis of their floristic composition using two calibration methods, weighted averaging and k-nearest neighbour estimation.

Results: Soil cation concentration emerged as the most important variable in the regression tree, whereas soil textural and climatic variation played secondary roles. Almost all the plot classes had several fern species with high indicator values for that class. Soil cation concentration was also the variable most accurately predicted on the basis of fern community composition (R² = 0.65–0.75 for log-transformed data). Predictive accuracy varied little among the calibration methods, and was not improved by the use of abundance data instead of presence–absence data.

Conclusions: Fern species composition can be used as an indicator of soil cation concentration, which can be expected to be relevant also for other components of rain forests. Presence–absence data are adequate for this purpose, which makes the collecting of additional data potentially very rapid. Comparison with earlier studies suggests that edaphic preferences of fern species have good transferability across geographical regions within lowland Amazonia. Therefore, species and environmental data sets already available in the Amazon region represent a good starting point for generating better environmental and floristic maps for conservation planning.
Introduction
Understanding the spatial heterogeneity of environmental conditions and species distributions in Amazonia is a major challenge for conservation planning. A generally accepted principle is that the network of conservation units should contain adequate representation of different habitats, so as to collectively provide living space for species adapted to different habitats. Currently, sufficiently detailed maps that would allow assessing whether this aim has been fulfilled do not exist for Amazonia. The available soil and species distributions maps are inaccurate and give an incomplete representation of the known Amazonian heterogeneity.

Several soil maps are available for Amazonia (RADAMBRASIL 1978; SOTERLAC – Dijkshoorn et al. 2005; Quesada et al. 2011), but all of them are coarse-grained because there is a general paucity of ground data. While information on broad-scale variation in soil properties can be extracted from such maps, this is not sufficient to take into account the documented effects of soil variation on biotic heterogeneity at local to landscape scales (Phillips et al. 2003; Tuomisto et al. 2003a,b,c; Costa et al. 2005; Kinupp & Magnusson 2005; Jones et al. 2006; Ruokolainen et al. 2007; Zuquim et al. 2009a; Higgins et al. 2011). Consequently, there is a general lack of knowledge of the distribution of Amazonian habitat types (Emilio et al. 2010) and species (Schulman et al. 2007a), which forces conservation planning in Amazonia to be based on the use of more or less unreliable surrogates (Schulman et al. 2007b).

When information on environmental gradients is needed but measurements of environmental variables cannot be made, biotic communities have been used as predictors of the environmental conditions. For example, paleo-environmental reconstructions (Birks et al. 2010) use modern species–climatic relationships to infer past climatic conditions according to the analogue fossil record (ter Braak & van Dam 1989; Birks et al. 1990). The same approach was used by Sirén et al. (2013) to generate predictive maps of soil fertility based on fern and lycophyte species composition in a lowland rain forest area in Ecuadorian Amazonia. The authors used floristic and soil data from other parts of western Amazonia (Tuomisto et al. 2003a and H. Tuomisto unpublished data) to determine fern and lycophyte species’ optima on a soil cation concentration gradient. Then they used those optima to estimate soil cation concentrations in their study area, where fern and lycophyte species lists were available but direct measurements of soil properties were not. Suominen et al. (2013) recently evaluated the application of similar estimation techniques for predicting chemical soil properties in western Amazonia using species occurrence data of the plant family Melastomataceae.

Specific taxa can also be used as indicators of particular environments or habitat types (Ruokolainen et al. 1997, 2007; Margules et al. 2002; Tuomisto et al. 2003a; Salovaara et al. 2004). The use of indicator species (Noss 1990) is an important method in conservation biology because it is flexible (Dufrène & Legendre 1997) and conceptually straightforward (McGeoch 1998). Well-chosen indicator taxa can contribute significantly to a conservation strategy by facilitating the recognition and mapping of habitats (Noss 1990; Howard et al. 1998).

Ferns have been proposed as a suitable indicator group in Amazonia because they are easy to observe and identify. Several studies have documented edaphic affinities of selected fern species in the western Amazon region in relation to either a simple classification of soil types (Tuomisto & Poulsen 1996; Salovaara et al. 2004; Cárdenas et al. 2007), or quantitative soil gradients (Tuomisto et al. 1998, 2002; Tuomisto 2006). Some of these studies have only reported results for a few species within selected genera, and none has explicitly assessed the accuracy of soil property estimates when these are based on indicator values of the species.

In this study, we investigate the use of ferns as environmental indicators in central and northern Amazonian lowlands. First, we clarify the main environmental drivers of fern community composition and define the environmental optima and tolerances for each species along each of these gradients. Then we use species optima to predict environmental variable values and test the accuracy of these predictions. Finally, we assess whether species abundance data are needed to obtain useful predictions, or whether the more easily obtainable presence–absence data are adequate.

Methods
Study area and sampling design
A total of 326 plots were sampled (Fig. 1). Plots were located in Brazilian Amazonian lowlands in the states of Acre (seven plots), Amazonas (129 plots), Pará (101 plots), Rondônia (30 plots) and Roraima (59 plots). All study sites are part of the Brazilian Biodiversity Research Program (PBPBio, http://ppbio.inpa.gov.br/). Minimum distance between plots was 1 km and maximum ca. 1800 km. Plots were established in private lands or in conservation units along the highways BR-163, BR-230 (Transamazônica) and BR-319 and in the protected areas of ReBio Uatumã, ESEC Maracá, PN Virituá, BDFFP and PE Chandless. In every location, five to 30 plots were established according to the RAPELD methodology (Magnusson et al. 2005). The plots were 250 × 2 m in size and placed so that the longer axis followed the topographic contour in order to minimize internal heterogeneity in soil properties and

Journal of Vegetation Science
Doi: 10.1111/jvs.12174 © 2014 International Association for Vegetation Science
drainage, which often correlate with topographic position (Chauvel et al. 1987; Mertens 2004). Vegetation structure in the plots varied from tall and dense rain forests to white sand forests with a more simple canopy structure (campinaranas), and in extreme cases edaphic savannas (IBGE 2004). According to the Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC; Dijkshoorn et al. 2005), six main soil classes dominate the areas where the plots were situated: Ferralsols (157 plots), Podzols (29 plots), Plinthosol (91 plots), Acrisols (37 plots), Leptosols (five plots) and Cambisols (seven plots). Because local-scale soil variation does not appear in broad-scale maps, it is possible that some of the plots were in fact situated in a different soil type than the one dominating the region. Average annual rainfall in the plots ranged from 1633 to 2655 mm and annual mean temperature from 25 to 27 °C. General characteristics of the study sites can be found in Table 1, and a more detailed description of each region in Appendix S1.

Data collection

Floristic data

In each plot, all terrestrial fern individuals with at least one leaf longer than 10 cm were counted and identified to species. Inventories were done between 2004 and 2011. Voucher specimens were collected to verify species identities. Full sets of the vouchers are deposited in herbaria at the Instituto de Botânica, São Paulo (SP) and privately with the first author. Duplicates of fertile specimens are also deposited in the nearest regional herbarium, at Instituto Nacional de Pesquisas da Amazônia (INPA), Herbário Rondoniense (RON) or Universidade Federal do Acre (UFACPZ).

Environmental data

Surface soil samples (topmost layer of the mineral soil sampled down to 5–10 cm depth) were taken every 50 m

Table 1. Mean, SD (±) and range (in parentheses) of species richness and environmental variables per plot for 326 plots in Brazilian Amazon. Climatic data was obtained from WorldClim database in 2.5 arc-minute resolution (ca. of 4.7 km).

<table>
<thead>
<tr>
<th></th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species richness</td>
<td>4.9 ± 3.6 (0–20)</td>
</tr>
<tr>
<td>Species abundance (individuals)</td>
<td>90 ± 153 (0–1131)</td>
</tr>
<tr>
<td>Sum of bases (cmol·kg⁻¹)</td>
<td>1.34 ± 4.16 (0.08–38.11)</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>29 ± 22 (0.5–90)</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>25 ± 18 (0.5–76)</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>47 ± 25 (1.7–90)</td>
</tr>
<tr>
<td>Temperature annual range (°C)</td>
<td>12.4 ± 2 (10.2–19.4)</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>2177 ± 270 (1633–2655)</td>
</tr>
<tr>
<td>Precipitation seasonality</td>
<td>57 ± 13 (33–80)</td>
</tr>
<tr>
<td>(coefficient of variation)</td>
<td></td>
</tr>
<tr>
<td>Precipitation of the wettest quarter (mm)</td>
<td>925 ± 57 (815–1082)</td>
</tr>
</tbody>
</table>
Predicting soil fertility using Amazonian ferns

G. Zuquim et al.

Data analysis

Fern species that occurred in less than five plots were excluded from all analyses, as species optima based on so few data points were considered too unreliable. Twenty-one plots were excluded from the analyses because they had no fern species that reached the minimum frequency. Analyses were therefore run on 305 plots. The sum of exchangeable bases (concentration of Ca\(^{2+}\), Mg\(^{2+}\) and K with 1N KCl and K with Mehlich 1 standard methods for exchangeable cations). All soil samples were analysed in the Thematic Laboratory of Soils and Plants at INPA. Floristic data, soil data and geographical coordinates of the plots are publicly available at http://ppbio.inpa.gov.br/knb/style/skins/ppbio/. The plots were georeferenced in the field using a hand-held GPS (Garmin 12XL or Garmin 60X).

Climatic data were derived from monthly temperature and rainfall values available in Bioclim (Hijmans et al. 2005). The variables used were annual temperature range, annual precipitation, precipitation seasonality and precipitation of the wettest quarter (Bioclim variables 7, 12, 15 and 16, respectively). The data were downloaded from WorldClim database (http://www.worldclim.org/bioclim) in 2.5 arc-minute resolution (about 4.7 km). The remaining 15 climatic variables available in Bioclim were not included either because they were strongly correlated with an already selected variable, and hence provided little additional information, or because they varied so little within our study region that it seemed unlikely that it would result in a floristic response. Amazonia has few climate stations, so the real resolution of the data is probably much poorer than the nominal pixel size, and there are known problems of data uncertainty (Hijmans et al. 2005). Nevertheless, this is currently the best available source of temperature and rainfall data for the area. The climatic values for each plot were extracted using the free software DIVA-GIS (Hijmans et al. 2012).

Regression trees and indicator species

To evaluate the hierarchical importance of edaphic and climatic conditions in structuring fern communities, we carried out a distance-based multivariate regression tree analysis (db-MRT; De’ath 2002). MRT is based on repeatedly splitting the plots into two groups that are separated by a single value along one of the environmental gradients. At each split, the gradient and the threshold value are selected so as to minimize the between-plot compositional dissimilarities within each group. As a measure of compositional dissimilarity, we used the extended Bray–Curtis dissimilarity index (De’ath 1999) based on species proportional abundances (number of individuals as a proportion of all individuals in the plot). The extended rather than classical Bray–Curtis index was used because our data covered long environmental gradients, so a large proportion of the plots shared no species. This leads to poor model fit if not corrected for (De’ath 1999; Tuomisto et al. 2012; Zuquim et al. 2012). To find the best db-MRT classification, we used cross-validation and selected the db-MRT with the smallest error, given by the sum of squares (De’ath 2002). We then assessed whether any species were significantly associated with the groups of plots obtained from the db-MRT by calculating the indicator value of each species for each group. A high indicator value is obtained for species that combine high specificity (most individuals of the species are within the group) and high fidelity (most sites of the group contain the species). The IndVal index was used for this purpose (Dufrène & Legendre 1997; Legendre & Legendre 1998).

Environmental predictions based on k-NN and WA

Next, we asked how accurately it is possible to estimate the values of environmental variables for a plot on the basis of its floristic composition. Each variable was estimated for each plot using the species–environment relationships as deduced from the remaining plots. We applied two methods that are commonly used in paleoecology: the \(k\)-nearest neighbour (\(k\)-NN) and weighted averaging calibration (WA) with inverse deshrinking.

The \(k\)-NN is a non-parametric method that estimates the value of an environmental variable in a focal plot on the basis of the average value of the variable in the \(k\) nearest neighbouring plots. We used similarity in species composition as the measure of nearness, and calculated it with either the Bray–Curtis index (for proportional abundance data) or the Sorensen index (for presence–absence data).
Cross-validation was done using the leave-one-out method (eq. 4 in ter Braak & van Dam 1989). We ran these analyses both using the number of individuals as the abundance measure, and using presence-absence data (i.e. abundance was set to unity if the species was present and to zero if it was absent). The optimum value carries no information on how broad the species’ distribution is, so in a second set of analyses we weighted each species’ optimum value by the inverse of its tolerance. Tolerance is a measure of the variability in species occurrences around the optimum, and is obtained as the root mean squared error (RMSE) calculated between the species optimum and the observed environmental variable value for each individual (eq. 7 in ter Braak & van Dam 1989). Because the WA computation involves the taking of averages twice, the range of the estimated values tends to shrink, i.e. to become smaller than the range of the original observations. We used inverse linear deshrinking to restore the original range of the variable (ter Braak & Juggins 1993). WA is based on the idea of unimodal species response curves along the environmental gradients, which we considered appropriate because our data set is highly heterogeneous (Zuquim et al. 2014).

Prediction accuracy was quantified with cross-validation for each environmental variable separately using root mean squared error (RMSE) and the coefficient of determination (R^2) between the measured and predicted values. Cross-validation was done using the leave-one-out method for WA and by bootstrapping for k-NN. In our sampling design, the plots were placed in 37 locations spread across eight regions (Fig. 1). Each location had five to 30 plots with distances from 1 to 5 km between each other and in a regular arrangement within a few square kilometers, so spatial autocorrelation might cause the predictive power of the calibration methods to appear unrealistically high. For this reason, more stringent cross-validations were also done by leaving out all plots that were in the same location as the focal plot when calculating the predicted values.

Both k-NN and WA analyses were carried out separately using abundance and presence-absence data. This was done because collecting abundance data is much more time-consuming than collecting presence-absence data, so it is of interest to test if this is justified by more accurate predictions.

All statistical analyses were carried out using the RStudio interface to R (R Foundation for Statistical Computing, Vienna, AT). Multivariate regression trees were made using the R package mvpart (v 1.6-0) and indicator species analysis with indicspecies (v 1.6.5; De Caceres & Legendre 2009). K-NN, WA and associated calculations of species optima and tolerances were done using the R package Rioja (v 07-3).

Results

General

After excluding species occurring in less than five plots, the 326 plots contained a total of 29,202 individuals of ferns representing 54 species. Twenty-one plots contained no ferns at all, or were left empty after the exclusion of the rare species. Twenty of the excluded plots were in Roraima in the northern part of the study area, and one was in Pará. The most species-rich genera were Adiantum (17 species), Trichomanes (seven species), Lindsaea (five species) and Triplophyllum (five species). The most abundant species were Trichomanes pinnatum Hedw. (8512 individuals), Adiantum argutum Splittg. (8560 individuals) and A. pulverulentum L. (1939 individuals). The most frequent species were Trichomanes pinnatum (205 plots), Lindsaea lancea (L.) Bedd. (132 plots) and Adiantum cajennense Willd. (115 plots).

Fern community structure and indicator species

The first division in the multivariate regression tree (Fig. 2) was determined by the community response to the sum of bases in the soil. One branch contained 79 plots with soil cation concentrations exceeding 0.68 cmol kg$^{-1}$, and the other contained 226 plots with lower cation soils. The second division was defined by soil clay content in the richer soils branch and by annual rainfall in the poorer soils branch. Textural components of soils determined two more hierarchical divisions within the plot groups characterized by low cation soils and low annual rainfall (Fig. 2). The other climatic variables did not define any divisions in the regression tree. In preliminary analyses, we also included latitude and longitude, because the climatic variables show clear spatial gradients across Amazonia. However, neither latitude nor longitude substituted for any of the climatic variables in the regression tree, and since they
are not direct environmental variables, they were left out of the final analyses.

Most of the statistically significant indicator species were associated with the branch containing the high cation sites (Fig. 2). Nine out of 17 species of *Adiantum* were significant indicators of this branch and only two *Adiantum* species were significantly associated with the poorer soils branch, although the genus as a whole was represented over the entire gradient. Both *Pteris* species were also associated with the richer soils branch. Almost all of the 18 richer soils indicator species were also significantly associated with the rich soils–high clay content branch in the second level division.

Five out of seven *Trichomanes* species were indicators of some secondary or tertiary division within the poorer soils branch, and the very frequent *T. pinnatum* indicated poor soils generally. Three out of five *Lindsaea* species were indicators of the poorer soils branch and none was significantly associated with the richer soils. The majority of poor soil indicator species were associated with sites with relatively high total annual rainfall (≥2163 mm). Only a few species were indicators of habitats with both poor soils and low rainfall.

There was a gradual turnover of species optimum values along the soil cation concentration gradient, although most species optima were concentrated towards the low cation end (Fig. 3). In agreement with the results of the indicator value analysis, all species of the genera *Lindsaea* and *Trichomanes* had low cation optima, whereas those of *Thelypteris* and *Pteris* had high optima. *Adiantum phyllitidis* and *Cyclopeltis semicordata* were the two species with the highest optima. Most *Adiantum* species optima were positioned in the intermediate part of the gradient, but the genus had representatives along the whole gradient.

Fig. 2. Results of the distance-based multivariate regression tree (db-MRT) of fern inventories in 305 plots in Brazilian Amazonia. A list of significant (*p* ≤ 0.05) indicator species followed by their indicator value is presented for each branch. The percentage of improvement in model performance given by each division is in parentheses.
Predicting environmental variables from fern inventories

The edaphic variable that could be best predicted by fern species composition was the sum of bases. All methods of calibration produced R^2 values that were between 0.64 and 0.75 when the focal plot was excluded in cross-validation. When all plots from the same locality as the focal plot were excluded in leave-group-out cross-validation, R^2 values decreased to between 0.46 and 0.64 (Table 2). There was variation among the regions in the slope of the regression line between predicted and observed soil cation concentration, with the predictions for the Acre region becoming especially inaccurate when leave-group-out cross-validation was used (Fig. 4). The R^2 values of the predictions for soil clay, sand and silt content were never higher than 0.48 (Table 2). This is in accordance with the regression tree results, which suggested that ferns respond more strongly to soil cation concentrations than to soil textural properties.

The best results (smallest RMSEs) for predictions using k-NN were achieved with between four and seven neighbouring plots ($k = 4$ to $k = 7$). The differences in prediction accuracy between k values in this range were generally small, so for simplicity we report the results for $k = 4$ in all cases. There were slight variations in prediction accuracy among methods, but none of them was consistently better than the others for all the edaphic variables. Weighted averaging achieved lower RMSEs and higher R^2 values than k-NN when abundance data were used (Table 2), but with presence–absence data, k-NN gave similar or higher R^2 values.

Weighting species by the inverse of their tolerance improved the predictions in some cases but not universally. When leave-group-out cross-validation was used, the differences in accuracy between weighted and non-weighted estimations (R^2 and RMSE) were small. In general, the availability of abundance data did not improve model performance. In fact, k-NN always performed better with presence–absence data than with abundance data, and even WA did so in most cases (Table 2).

Discussion

Earlier studies that have been carried out mostly in western Amazonia have proposed that ferns and lycophytes are good indicators of environmental conditions, especially soil cation concentrations and particle size distributions (Ruokolainen et al. 1997, 2007; Tuomisto et al. 2003a,c; Higgins et al. 2011). Here we tested this proposal in central...
Table 2. Prediction accuracy given by the root mean squared error (RMSE) and coefficient of determination (R^2) of the regressions between predicted and observed edaphic properties in 305 plots in Brazilian Amazonia. The accuracy of the predictions for the k-nearest-neighbours (k-NN) method reported here is based on $k = 4$ neighbours. The deshrinking method applied in weighted averaging (WA) was inverse deshrinking. Down-weighting in WA was done by inversely weighting species optima by their tolerances along the environmental gradient when generating the predicted values. In k-NN, down-weighting was done by inversely weighting the selected neighbouring plots by their floristic similarity to the focal. Cross-validation methods were bootstrap (k-NN) and leave-one-out (WA) except when otherwise mentioned. ‘Crossval = lgo’ refers to leave-group-out cross-validation method and ‘Pres.-Abs.’ refers to presence–absence input species data.

<table>
<thead>
<tr>
<th>Species</th>
<th>Log (sum of bases)</th>
<th>Clay</th>
<th>Silt</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downweighting</td>
<td>RMSE</td>
<td>R^2</td>
<td>Crossval = lgo</td>
</tr>
<tr>
<td>k-NN</td>
<td>Abundance</td>
<td>No</td>
<td>0.31</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Similarity</td>
<td>No</td>
<td>0.33</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Pres.-Abs.</td>
<td>No</td>
<td>0.28</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Similarity</td>
<td>No</td>
<td>0.28</td>
<td>0.75</td>
</tr>
<tr>
<td>WA</td>
<td>Abundance</td>
<td>No</td>
<td>0.29</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Tolerance</td>
<td>No</td>
<td>0.27</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Pres.-Abs.</td>
<td>No</td>
<td>0.29</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Tolerance</td>
<td>No</td>
<td>0.27</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Fig. 4. Predicted vs observed sum of bases in 305 plots in Brazilian Amazonia. The grey line is the 1:1 line used in accuracy assessment, i.e. when calculating the root mean squared errors (RMSEs) and R^2 values. The solid black lines correspond to the regression line for all the predicted vs observed values. Regression lines are also shown for each regional subset of the plots separately (broken lines) to illustrate the variation among regions. For weighted averaging, the predicted values shown are those obtained after inverse deshrinking. Both axes are on a logarithmic scale.
Amazonia by making explicit predictions of soil properties and climatic variables on the basis of information about fern species composition.

Our results supported the conclusions of earlier studies. The sum of bases emerged as the most important variable in the regression tree, and was also the variable for which the most accurate predictions could be obtained on the basis of fern community composition. Soil textural and climatic variation played secondary roles in the regression tree, and soil texture was predicted less accurately than soil base cation concentration. Soil texture is not a physiologically important edaphic factor, but it correlates with other relevant environmental characteristics, such as nutrient retention and water-holding capacity. Climate is also relevant in structuring fern communities at broad scales (Zuquim et al. 2012; Jones et al. 2013), but in the present study its role was minor. This is in agreement with the findings of Tuomisto & Poulsen (1996), who found that even in a data set where annual rainfall varied more than in ours, the main floristic gradient still seemed to correspond to soil properties more than to rainfall.

Predicting edaphic conditions from fern inventories

We found that sum of bases in the soil can be well predicted based on fern species composition. Our analyses were carried out with log-transformed data, which means that prediction errors related to large values of the variable of interest are down-weighted. In other words, whether a prediction is considered accurate or not depends more on how large the error is in relation to the actual value of the variable of interest, rather than on the absolute error value. This is an appropriate model in the present context, given that the final aim is to use the predicted soil values to infer habitat characteristics and occurrence patterns for such plant groups that have not been directly observed in the field.

Another result that has practical implications is that prediction accuracy for a particular environmental variable was rather consistent among calibration methods. This parallels the observations of Suominen et al. (2013), who tested the k-NN and WA methods in western Amazonian transects using the family Melastomataceae as a model group. In a theoretical sense, both methods have their strengths and weaknesses (Birks et al. 2010), but in practical applications both seem to perform equally well. As could be expected, prediction accuracy appeared generally higher when only the local plot was left out of the training set than when all the plots from the same site were left out (R^2 between 0.64 and 0.75 vs 0.46–0.64). Figure 4 shows that the decrease in prediction accuracy was most notable for the plots situated in Acre state, for which the predictions fell dramatically below the observed values in the leave-group-out cross-validation. This reflects the fact that the plots in Acre had the highest observed cation concentrations in the entire data set, so when all of them were excluded from the training set, no accurate analogue remained for the Acre plots. As with other modelling methods, attempts to extrapolate predictions of WA calibration and k-NN estimation beyond the observed range of the input variables can lead to seriously inaccurate results.

A third interesting result is that the prediction accuracies for the edaphic variables were very similar whether species presence–absence data or abundance data were used. Even though we expected abundance data to provide better estimates of species optima, and that this would lead to more accurate predictions, this was not the case. One possible reason is that the species abundances are so symmetrically distributed along the relevant environmental gradients that the optimum is in practice at the midpoint of the species range, and can hence be identified equally well with presence–absence and abundance data. Another possibility is that species abundances depend on many different factors that are not necessarily linked to the factor being evaluated. For example, fertility may limit the range of species, which is captured by presence–absence data, but may not be the main driver of local abundances, which may be controled by biotic interactions or more local factors such as light. These unmeasured factors may cause a species to be relatively abundant far away from its optimum for a given variable, or not so abundant close to its optimum, which then biases the estimate for that variable.

Earlier studies have obtained mixed results on whether using abundance data increases or decreases the correlations between species turnover and edaphic differences (Tuomisto et al. 2003a; Ruokolainen et al. 2007). Our results support the suggestion that at least when the observed soil gradients are relatively long, presence–absence data are adequate for many purposes (Tuomisto et al. 2002, 2003a; Higgins & Ruokolainen 2004; Higgins et al. 2011). This is good news, because collecting only presence–absence data speeds up the fieldwork considerably. Moreover, these results suggests that it is feasible to tap edaphic information from non-quantitative species lists and floras (e.g. Tuomisto & Poulsen 1996; Edwards 1998; Costa et al. 1999, 2006; Freitas & Prado 2005; Costa & Pietrobom 2007; Maciel et al. 2007; Prado & Moran 2009; Zuquim et al. 2009b), and perhaps even from herbarium records through online databases such as GBIF. For example, linking species lists with the species’ environmental optima and tolerances enables inferences about site environmental conditions. This opens up new and unexplored possibilities for assessing representativeness of conservation area networks based on the use of readily available biotic data as indicators of habitat types.
Species optima, tolerances and indicator values

It is noteworthy how well our results on species optima agree with the suggestions made in earlier studies, although the earlier data sets were much smaller, less quantitative and represented a different geographical region (e.g. Tuomisto & Poulsen 1996; Tuomisto et al. 1998, 2002, 2003b; Cárdenas et al. 2007). Such congruence indicates that the inferences on the edaphic preferences of ferns have a good transferability across geographical regions.

In our data set, the species optimum values were distributed along the entire gradient of soil cation concentration (Fig. 3), but most of them were at the low end. This contrasts with the results of earlier studies, which have found more fern species in high cation soils than in low cation soils (Tuomisto & Poulsen 1996; Tuomisto et al. 2002, 2003b). The difference is likely due to biases in sampling. Our data set contained many more plots with low cation concentration than high cation concentration, and most of the plots that in our data represent the high end of the gradient were relatively cation-poor compared to the cation-rich soils in the western Amazonian data. This probably explains why most of the genera that in earlier studies have been thought to indicate cation-rich soils (e.g. Diplazium, Tectaria and Thelypteris) were absent or rare in our data.

For those genera that were well represented in both geographical areas, our results agreed with the earlier ones from western Amazonia. The genus Adiantum was found throughout the soil nutrient gradient, but most Adiantum species occurred in intermediate to richer soils, in agreement with the results of Tuomisto et al. (1998). They observed that A. tomentosum and A. pulverulentum occur at opposite ends of the soil cation gradient and never co-occur, and this was the case also in our data.

Species differed in how accurate they seem to be as indicators of environmental variables. For example, Trichomanes pinnatum had a high indicator value for cation-poor soils in general, and some other species of the same genus appeared as significant indicators for the finer clusters within that group of sites. Although our sampling is relatively extensive, it still covers only a small part of the environmental variation within Amazonia. Therefore, the optima and tolerances of species shown in Fig. 3 are still preliminary, and should not be taken at face value. A veiled gradient will push optimum values towards the mean of the gradient for those species whose ranges extend beyond the part of the gradient sampled, so the values we obtained for the species at the cation-rich end of the gradient can be expected to be especially inaccurate. However, the high congruence between our results and those from western Amazonia suggest that the positions of the species optima in relation to each other, and the degrees of overlap in tolerance ranges, are probably rather reliable.

The methods we used are based on general ecological principles and can therefore be applied to any biogeographical area. The prerequisite is that the training data set is suitable for the task at hand: it needs to cover the relevant environmental gradients sufficiently well and to contain an adequate number of species from the area of interest. Our present data can be used as the training set for other studies in central Amazonia, but studies focusing on western or eastern Amazonia should complement the training set locally. Failure to do so would compromise the accuracy of the predictions, as illustrated with the relatively low prediction accuracy for the Acre sites in the leave-group-out cross-validation. At least one study in Ecuadorian Amazonia (Sirén et al. 2013) has produced a map of estimated soil cation concentrations without having had access to direct soil data from the area of interest. Instead, they made fern inventories and used data from existing inventories from other parts of NW Amazonia as the training set to estimate soil cation concentrations through calibration. Then they used satellite imagery to generate extrapolated soil fertility maps. These kinds of maps can be used to identify areas with different site conditions, and thereafter to assess whether all the recognized habitat variation is adequately represented in conservation area networks.

Additional data with a more complete geographical coverage will make it possible to select a limited number of good indicator species that combine high environmental specificity with sufficient frequency in suitable conditions (Diekmann 2003). Indicator plants reflect environmental conditions as integrated over extended time periods, whereas soil samples give snapshot information of the measured variables. Therefore, the species composition of an indicator plant group can be expected to provide information that is relevant for plants in general. The same approach could also be tested in other relatively well inventoried plant groups such as palms (Svenning 1999; Vormisto et al. 2000; Costa et al. 2009), trees (Pitman et al. 2001; Castilho et al. 2006; Stropp et al. 2009) and gingers (Figueiredo et al. 2013). Our results demonstrate that the species and environmental data sets already available in the Amazon region are a good starting point towards better tools and maps for conservation planning.

Acknowledgements

We thank several field assistants that made this work possible. ICMBIO provided permits and infrastructure facilities. Financial support for fieldwork was provided by Biological Dynamics of Forest Fragments (BDFFP), MCT/CNPq/PPG7.
no. 48/2005 (led by William E. Magnusson), Brazilian Program of Biodiversity Research – PPBio, CNPq/FAPEAM/PRONEX project no. 673/2010 (led by William E. Magnusson, INPA), FINEP/Projeto Integrado MCT-EMBRAPA (led by Ana L. K. M. Albernaz), HidroVeget Project – FAPEAM/FAPESP no. 1428/2010 (led by Flávia R. C. Costa and Javier Tomasella). Gabriela Zuquim was supported by CNPq, CAPES and Academy of Finland (research grant to Hanna Tuomisto). We thank Lassi Suominen for helpful comments on the manuscript. Many people are acknowledged for their efforts to make data and analytical tools freely available. This is publication number 627 ST of the BDFFP technical series.

References

Predicting soil fertility using Amazonian ferns

G. Zuquim et al.

Mertens, J. 2004. *The characterization of selected physical and chemical soil properties of the surface soil layer in the ‘Reserva Dukie’, Manaus, Brazil, with emphasis on their spatial distribution*. Bachelor thesis, Humboldt University, Berlin, DE.

Supporting Information

Additional supporting information may be found in the online version of this article:

Appendix S1. Detailed study locations description.