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Abstract
1.	 Maps	of	environmental	characteristics	are	needed	to	improve	our	understanding	
of	species	distributions	and	ecosystem	dynamics.	Despite	the	growing	demand	for	
digital	environmental	maps,	scarcity	of	environmental	field	samples	to	be	used	as	
input	data	often	constrains	the	accuracy	of	such	maps,	especially	for	soils.

2.	 We	developed	and	tested	a	method	that	combines	information	on	species–envi-
ronment	associations	and	the	spatial	distribution	of	indicator	species	(as	retrieved	
from	repositories	such	as	GBIF)	to	improve	mapping	accuracy	of	environmental	
variables.

3.	 Our	approach	 includes:	 (a)	Compile	 field	data	on	 the	environmental	 variable	of	
interest	(direct	environmental	data)	and	documented	occurrences	of	the	species	
to	be	used	as	indicators;	(b)	define	species	optima	for	the	environmental	variable;	
(c)	use	georeferenced	records	of	the	indicator	species	to	calculate	species-based	
environmental	values	(indirect	environmental	data);	(d)	generate	maps	using	direct	
and	 indirect	environmental	data	as	 input	data	 for	 interpolation;	 (e)	 validate	 the	
maps.	We	applied	 the	method	 to	map	 the	 concentration	of	 exchangeable	base	
cations	in	Amazonian	soils	using	fern	and	lycophyte	species	as	indicators.

4.	 Including	 soil	 values	 that	 had	been	 indirectly	 estimated	using	 indicator	 species	
represented	a	12-fold	increase	in	the	number	of	input	data	points	used	for	map-
ping.	At	the	same	time,	map	accuracy	improved	considerably:	the	correlation	be-
tween	 mapped	 soil	 cation	 concentration	 estimates	 and	 field-measured	 values	
from	an	independent	validation	dataset	increased	from	r	=	0.48	to	r = 0.71.

5.	 Knowledge	 on	 species–environment	 relationships	 can	 be	 useful	 for	 modelling	
ecologically	relevant	environmental	variables	in	areas	where	species	occurrence	
data	 are	 more	 readily	 available	 than	 direct	 environmental	 measurements.	 The	
method	 works	 even	 with	 haphazard	 species	 occurrence	 points	 obtained	 from	
public	repositories	such	as	GBIF	and	can	be	applied	to	other	environmental	vari-
ables	and	other	indicator	groups,	provided	that	the	environmental	variable	of	in-
terest	is	relevant	as	a	determinant	of	species	occurrences	in	the	indicator	group.	
The	Amazonian	soil	cation	concentration	maps	produced	(available	at	https://doi.
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1  | INTRODUC TION

Environmental	 maps	 are	 useful	 for	 a	 wide	 range	 of	 studies,	 from	
landscape	evolution	and	dynamics	to	species	distribution	modelling,	
with	implications	for	conservation	planning	(Guisan	&	Zimmermann,	
2000;	 Rylands,	 1990).	 The	 reliability	 of	 the	 results	 of	 such	 stud-
ies	 depends	 to	 a	 large	degree	on	 the	quality	 of	 available	 environ-
mental	 maps	 (Araújo	 &	 Guisan,	 2006;	 Carneiro,	 Lima,	 Machado,	
&	Magnusson,	 2016;	 Dawson,	 Jackson,	 House,	 Prentice,	 &	Mace,	
2011).	For	example,	soils	play	a	central	role	in	shaping	plant	commu-
nities	 and	 constraining	 species	 distributions	 across	 scales	 (Phillips	
et	al.,	 2003;	 Baldeck	 et	al.,	 2012,	 Tuomisto	 et	al.	 1995,	 2016),	 so	
thematically	and	spatially	accurate	soil	maps	are	needed	 for	many	
purposes.	 Even	 though	 considerable	 effort	 has	 been	 invested	 in	
producing	digital	soil	maps	that	cover	the	entire	world	(Dijkshoorn,	
Huting,	 &	 Tempel,	 2005;	 Hengl	 et	al.,	 2017;	 Nachtergaele,	 van	
Velthuizen,	Verelst,	&	Wiberg,	2012),	in	data-	poor	areas	these	maps	
still	suffer	from	serious	inaccuracies	(Moulatlet	et	al.,	2017).

One	reason	for	map	inaccuracy	is	that	values	in	data-	poor	areas	
are	estimated	using	spatial	interpolation	over	large	unsampled	areas.	
Moreover,	 global	 digital	 soil	maps	 are	 based	on	 global	models,	 al-
though	 data	 availability	 varies	 considerably	 among	 regions	 (Hengl	
et	al.,	2014).	Because	predictive	models	cannot	be	optimized	for	all	
regions	at	the	same	time	(Grunwald,	Thompson,	&	Boettinger,	2011),	
producing	maps	specifically	for	a	smaller	area	of	interest	and	finding	
novel	ways	to	increase	the	density	of	input	data	points	for	that	area	
can	contribute	greatly	 to	 improving	modelling	accuracy	 (Grunwald	
et	al.,	2011).

If	direct	measurements	of	an	environmental	variable	are	scarce,	
surrogates	can	be	used	to	alleviate	data	paucity.	In	Europe,	the	use	
of	indicator	plant	species	to	infer	site	conditions	dates	back	to	the	
1920s	(Cajander,	1926;	Ellenberg	et	al.,	1992),	and	the	general	idea	
has	been	 applied	 to	distinguishing	habitats	 or	 forest	 types	 also	 in	
Amazonia	(Salovaara,	Cárdenas,	&	Tuomisto,	2004;	Tuomisto	et	al.,	
2003;	 Tuomisto	 &	 Ruokolainen,	 1994).	 Palaeoecologists	 use	 indi-
cator	 species	 (such	 as	 diatoms	 observed	 in	 sediment	 samples)	 to	
reconstruct	past	environmental	 conditions	 that	 cannot	be	directly	
measured	(such	as	past	pH	in	lakes)	through	calibration	by	weighted	
averaging	(WA;	Birks,	2003;	ter	Braak	&	Juggins,	1993).	WA	is	based	
on	the	idea	that	the	optimum	value	along	a	gradient	for	a	species	can	
be	 estimated	 as	 the	 abundance-	weighted	 average	 of	 the	 environ-
mental	variable	values	at	the	sites	where	the	species	occurs,	which	
also	 corresponds	 to	 the	peak	of	 a	 species-	abundance	 curve	 along	
that	 environmental	 gradient.	 Thus,	 the	 presence	 of	 a	 species	 in	 a	

certain	site	implies	that	the	environmental	variable	value	at	that	site	
is	close	to	the	species-	specific	optimum.

Following	 these	 principles,	 knowledge	 of	 soil	 associations	 of	
plant	species	can	be	used	to	infer	soil	conditions:	once	the	optimum	
of	a	given	species	for	the	soil	variable	of	interest	is	known,	it	can	be	
used	as	an	estimate	of	the	soil	variable	at	the	sites	where	the	spe-
cies	occurs.	The	motivation	for	using	 indicator	species	stems	from	
the	fact	that	chemical	analyses	of	soil	samples	are	costly	and,	there-
fore,	direct	measurements	of	soil	data	are	available	from	relatively	
few	sites	only.	In	contrast,	taxonomical	work	is	based	on	collecting	
plant	specimens	in	as	many	sites	as	possible,	and	botanists	tend	to	
maximize	the	number	of	species	collected	(ter	Steege,	Haripersaud,	
Banki,	&	Schieving,	2011).	The	volume	of	georeferenced	plant	oc-
currence	 records	available	digitally	 through	herbaria	or	other	data	
repositories	has	 increased	dramatically,	 and	so	has	our	knowledge	
about	species	distributions	 (Lavoie,	2013).	Consequently,	 localities	
with	 plant	 species	 records	 are	 usually	much	more	 numerous	 than	
localities	with	soil	 samples	 in	any	geographical	area.	The	 indicator	
species	 approach	 makes	 it	 possible	 to	 derive	 soil	 information	 for	
localities	 that	 have	 been	 sampled	 for	 plants	 but	 not	 soils,	 which	
substantially	increases	the	number	of	points	available	as	input	data	
in	soil	mapping.	Information	on	species	optima	along	soil	gradients	
is	more	difficult	 to	obtain,	 but	 here	we	present	 such	data	 for	 un-
derstorey	 ferns	and	 lycophytes.	Data	 for	other	plant	groups,	 such	
as	 trees,	 may	 eventually	 become	 available	 through	 some	 of	 the	
standardized	 inventory	efforts	both	 in	Amazonia	 (e.g.	 the	Amazon	
Forest	 Inventory	Network—RAINFOR,	 the	 Amazon	 Tree	Diversity	
Network—ATDN,	 the	 Brazilian	 Program	 in	 Biodiversity—PPBio,	
and	 Forest	Global	 Earth	Observatory—ForestGEO)	 and	 elsewhere	
(Jürgens	et	al.,	2012).

The	 use	 of	 understorey	 plants	 as	 indicators	 of	 soil	 proper-
ties	 has	 already	 been	 formally	 evaluated	 in	 Amazonia	 (Suominen,	
Ruokolainen,	 Tuomisto,	 Llerena,	 &	 Higgins,	 2013;	 Zuquim	 et	al.,	
2014)	and	even	applied	at	 the	 landscape	scale	 (Sirén,	Tuomisto,	&	
Navarrete,	2013).	Here,	we	describe	how	field	data	containing	both	
species	occurrence	and	environmental	data	can	be	combined	with	
georeferenced	 species	 occurrence	 records	 downloaded	 from	 the	
Internet	 to	map	 an	 environmental	 variable	 of	 interest	 over	 an	 ex-
tensive,	data-	poor	area.	As	an	example,	we	map	the	concentration	
of	exchangeable	base	cations	in	Amazonian	soils	using	ferns	and	ly-
cophytes	as	indicator	species.	Soil	properties	are	of	interest	because	
they	are	major	factors	determining	ecosystem	services,	forest	struc-
ture,	carbon	stocks	and	species	distributions	(Figueiredo	et	al.,	2018;	
Quesada	et	al.,	2010;	Schaefer	et	al.,	2008).	Nevertheless,	existing	

pangaea.de/10.1594/PANGAEA.879542)	can	be	used	as	digital	 layers	 in	species	
distribution	and	habitat	modelling,	and	to	guide	conservation	actions	in	Amazonia.
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soil	maps	covering	Amazonia	 contain	many	problems,	 from	spatial	
inaccuracies	to	failure	to	include	variables	that	are	relevant	to	many	
ecological	 questions	 (Moulatlet	 et	al.,	 2017;	Quesada	 et	al.,	 2011).	
Our	method	can	be	applied	to	any	environmental	variables	for	which	
species	 affinities	 are	 quantifiable	 and	 sufficiently	 strong.	 Details	
such	as	spatial	resolution	and	extent	of	the	mapping,	 interpolation	
method	and	possible	corrections	for	spatial	bias	can	be	adjusted	to	
match	specific	interests.

2  | MATERIAL S AND METHODS

2.1 | General framework

2.1.1 | Step 1: Compile available data on the 
environmental variable of interest and the potential 
indicator group

The	first	step	is	to	compile	as	much	data	as	possible	on	the	environ-
mental	 variable	 to	be	mapped	and	on	 the	potential	 set	 of	 species	
to	 be	 used	 as	 indicators.	 Appropriate	 data	 may	 include	 quantita-
tive	 plot	 data	 as	 well	 as	 data	 from	 other	 sources,	 such	 as	 public	
data	 repositories.	Plot	data	often	 contain	both	environmental	 and	
species	 information	for	 the	same	 locations,	and	are,	 therefore,	es-
sential	 to	 determine	 species–environment	 relationships	 in	 step	 2.	
Data	 obtained	 from	online	 data	 portals	 typically	 provide	 informa-
tion	on	either	environmental	variables	(e.g.	Global	Soil	Information	
Facility—GSIF)	 or	 species	 occurrence	 (e.g.	 Global	 Biodiversity	
Information	 Facility—GBIF,	 Specieslink,	 or	 Botanical	 Information	
Ecology	Network—BIEN),	but	not	both.	These	data	can	be	used	 in	
step	3,	 as	 they	 typically	 represent	both	a	wider	geographical	 cov-
erage	and	many	more	sites	 than	the	plot	data	do.	Since	data	 from	
data	portals	usually	contain	many	identification	and	georeferencing	
errors	(Maldonado	et	al.,	2015),	data	cleaning	is	important	to	ensure	
adequate	data	quality.

2.1.2 | Step 2: Determine environmental optima for 
all species and verify their utility as indicators

The	second	step	 is	to	calculate	the	species-	specific	optima	for	the	
environmental	variable	of	 interest.	The	optimum	value	 is	obtained	
using	data	from	locations	for	which	both	species	and	environmental	
data	are	available	(plot	data).	Once	the	optima	have	been	calculated,	
they	can	be	used	to	estimate	the	environmental	variable	values	at	
new	sites	with	known	species	 composition.	Various	 transfer	 func-
tions	 can	 be	 used	 for	 this	 purpose;	 here	 we	 use	 the	 Weighted	
Averaging	 calibration	 method	 (WA;	 ter	 Braak	 &	 van	 Dam,	 1989).	
Transfer	functions	are	widely	used	by	palaeoecologists	to	infer	past	
environmental	 conditions	 from	 fossil	 and	 extant	 species	 records,	
but	here	we	apply	them	to	predict	current	conditions.	Care	should	
be	taken	to	ensure	that	a	sufficient	number	of	observations	of	the	
indicator	 species	are	used	 to	calculate	 the	species-	specific	optima	
(Zuquim	et	al.,	2014).	This	will	minimize	 the	overall	 impact	of	con-
founding	 factors,	 such	 as	 other	 environmental	 variables	 or	 local	

species	interactions,	on	the	species-	specific	optimum	values.	In	WA,	
species	occurrence	optima	along	the	environmental	gradient	are	cal-
culated	as	the	average	(for	presence–absence	data)	or	weighted	av-
erage	(for	abundance	data,	using	species	abundances	as	weights)	of	
the	environmental	variable	values	in	those	plots	where	the	species	
occurred	(eq.	4	in	ter	Braak	&	van	Dam,	1989).	Tolerance	is	calculated	
as	 the	 root-	mean	squared	error	 (RMSE)	between	the	species	opti-
mum	and	the	observed	environmental	variable	values	corresponding	
to	each	species	observation	 (eq.	7	 in	 ter	Braak	&	van	Dam,	1989).	
Due	to	the	repeated	taking	of	means,	WA	suffers	from	the	tendency	
of	the	predicted	values	to	be	biased	towards	the	overall	mean	value	
of	 the	 modelled	 variable	 (i.e.	 small	 values	 get	 overestimated	 and	
large	 values	 underestimated).	 To	 prevent	 this,	 several	 deshrinking	
methods	were	developed	to	restore	the	original	variable	range	(ter	
Braak	&	Juggins,	1993).

Comparing	 the	 predicted	 environmental	 variable	 values	 with	
observed	 values	 (e.g.	 using	 leave-	one-	out	 cross-	validation)	 gives	
a	measure	of	 the	utility	of	 the	 chosen	 indicator	 species	 group	 for	
the	 variable	 of	 interest.	 It	 is	 possible	 that	 prediction	 accuracy	 is	
adversely	 affected	 by	 generalist	 species.	 Making	 a	 second	 set	 of	
predictions	 such	 that	 species	 are	 downweighted	 in	 proportion	 to	
their	tolerance	can	be	used	to	assess	the	magnitude	of	this	effect.	If	
tolerance-	weighted	predictions	are	clearly	more	accurate	than	un-
weighted	predictions,	the	species	with	broad	tolerances	(=	the	gen-
eralists)	can	be	excluded	from	the	final	analyses.

2.1.3 | Step 3: Obtain species- derived estimates and 
combine with direct environmental measurements

In	 the	 third	 step,	 every	geo-	referenced	occurrence	 location	of	 a	
species	(such	as	a	record	found	in	a	public	portal)	is	assigned	the	
WA-	estimated	 species	 environmental	 optimum	 value.	 Then	 the	
geo-	referenced	 locations	 are	 rasterized	 to	 the	 desired	 grid	 cell	
size,	and	the	average	of	the	optima	within	a	given	grid	cell	is	used	
as	the	estimate	of	 the	environmental	variable	value	for	 that	grid	
cell.	Averaging	provides	more	accurate	estimates	of	the	environ-
mental	variable	 than	the	 individual	species	optima	would.	 It	also	
reduces	 spatial	bias	 in	 sampling,	as	each	grid	cell	 is	 assigned	ex-
actly	one	environmental	variable	value	no	matter	how	many	plant	
collections	were	available	for	it.	The	species-	derived	environmen-
tal	data	points	 thus	obtained	are	 then	combined	with	 the	direct	
environmental	measurements	 into	a	 single	dataset	 to	be	used	 in	
step	4.

2.1.4 | Step 4: Generate maps by interpolating 
between data points

The	 fourth	 step	 is	 to	 submit	 all	 the	 measured	 (direct)	 and	 species-	
derived	(indirect)	environmental	data	points	as	input	data	to	a	proce-
dure	that	interpolates	the	values	and	produces	an	environmental	map	
covering	the	whole	area	of	interest.	Various	interpolation	methods	are	
available	for	this	purpose;	here	we	focus	on	Kriging	but	also	provide	
results	obtained	with	inverse	distance	weighting	(IDW)	for	comparison.
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2.1.5 | Step 5: Validate the maps

Finally,	the	obtained	maps	can	be	validated.	Their	accuracy	can	be	
tested	 by	 using	 an	 external	 validation	 dataset,	 or	 by	 splitting	 the	
existing	data	 into	 a	 training	 set	 and	 a	 test	 set	 for	 cross-	validation	
(Chatfield,	1995).

2.2 | Applied case: soil cation concentration 
map for Amazonia based on occurrences of 
ferns and lycophytes

We	 applied	 the	 approach	 outlined	 above	 to	 create	 maps	 of	
exchangeable	 base	 cations	 soil	 concentration	 in	 Amazonia	
(Ca	+	Mg	+	K	measured	in	cmol(+)/kg;	henceforth,	soil	cation	con-
centration),	 using	 ferns	 and	 lycophytes	 as	 the	 indicator	 species	
group.	We	 used	 ferns	 and	 lycophytes	 because	 earlier	 ecological	
studies	provide	a	solid	basis	for	the	calculation	of	their	soil	cation	
concentration	 optima	 (Sirén	 et	al.,	 2013;	 Tuomisto,	 Ruokolainen,	
&	Yli-	Halla,	2003;	Tuomisto,	Zuquim,	&	Cárdenas,	2014;	Tuomisto	
et	al.,	2016;	Zuquim	et	al.,	2014).

2.2.1 | Step 1: Compile available data on soil 
cation concentration and occurrences of ferns and 
lycophytes in Amazonia

Points with both species and soil data (Plot data)
We	compiled	data	 from	1,353	quantitative	 fern	 and	 lycophyte	 in-
ventory	plots	across	Amazonia	that	also	provided	locally	measured	
soil	cation	concentration	(Figure	1a).	Of	these	plots,	371	are	part	of	
the	Brazilian	Biodiversity	 Research	 Program	database	 (PPBio)	 and	
982	are	part	of	the	University	of	Turku	Amazon	Research	Team	da-
tabase	(UTU).	The	PPBio	plots	were	2	m	wide	and	250	m	long	and	
placed	along	 terrain	 isoclines,	 following	 the	guidelines	of	RAPELD	
(Portuguese	acronym	 for	Rapid	Assessment—Long-	term	Ecological	
Research;	Magnusson	et	al.,	2005).	The	UTU	plots	were	150	m	×	5	m	
in	 size	 and	 followed	 a	 predefined	 compass	 bearing.	 In	 every	 plot,	
ferns	and	lycophytes	were	inventoried	and	soils	were	collected	and	
analysed	as	detailed	in	(Moulatlet	et	al.,	2017).

Points with species data only (Herbarium data)
We	searched	for	occurrence	records	within	Amazonia	(as	delimited	
by	 Eva	&	Huber,	 2005)	 for	 those	 fern	 and	 lycophyte	 species	 that	
were	 present	 in	 the	 plot	 data.	 Species	 occurrence	 records	 were	
downloaded	from	the	Global	Biodiversity	Information	Facility	(GBIF;	
gbif.org)	 and	 SpeciesLink	 (http://www.splink.org.br)	 in	 November	
2016	 and	both	datasets	were	 combined.	Duplicate	 records	of	 the	
same	species	with	the	same	latitude	and	longitude	were	excluded.	
We	also	excluded	species	records	with	any	of	the	following	issues:	
(a)	coordinates	 (in	decimal	degrees)	were	given	with	a	precision	of	
less	than	three	decimal	places;	(b)	coordinates	landed	in	a	different	
country	 than	 that	 indicated	 in	 the	 ‘country’	 field	 of	 the	 specimen	
metadata;	(c)	coordinates	coincided	with	the	centre	of	a	city	or	major	
village	 (places	 classified	 as	 ‘administrative	 level	 2’	 or	 ‘populated	

places’	in	the	GEONAMES	database);	(d)	the	record	came	from	the	
UTU	or	PPBio	plots	and	had	already	been	used	in	the	species	opti-
mum	calculations.	These	four	steps	of	data	filtering	removed	2,667	
species	occurrence	 records	out	of	33,604	and	 left	30,937	 for	 the	
analyses	(Figure	1b).

Points with soil data only (Public repositories)
Values	 of	 soil	 cation	 concentration	 were	 retrieved	 from	 the	
Harmonized	World	Soil	Database	v1.2	(HWSD)	(Nachtergaele	et	al.,	
2012)	 and	 a	 Brazilian	 national	 database	 (BND)	 (Cooper,	 Mendes,	
Silva,	 &	 Sparovek,	 2005).	We	 used	 the	 data	 from	 those	 347	 soil	
samples	that	had	geographic	coordinates	within	Amazonia	and	had	
been	collected	at	a	maximum	depth	of	no	more	than	30	cm.	In	addi-
tion,	we	used	the	soil	cation	concentration	information	from	around	
2,300	soil	samples	from	the	UTU	and	PPBio	databases.	In	the	PPBio	
plots,	six	surface	soil	samples	(the	top	5	cm	of	the	mineral	soil)	were	
taken	at	every	50	m	and	bulked	to	obtain	a	single	composite	sam-
ple.	The	samples	were	analysed	in	the	Soil	Thematic	Laboratory	of	
Brazilian	 National	 Institute	 for	 Amazonian	 Research	 (LTSP-	INPA)	
using	 the	Mehlich	 I	protocol	 (KCl	1	Normality	method;	Donagena,	
Campos,	Calderano,	Teixera,	&	Viana,	2011).	Each	UTU	plot	was	rep-
resented	by	one	composite	surface	soil	sample	(top	5	cm	of	the	min-
eral	soil)	that	consisted	of	five	subsamples	collected	within	an	area	
of	about	5	m	×	5	m.	These	samples	were	analysed	at	MTT	Agrifood	
Research	(Jokioinen,	Finland)	using	extraction	in	1	M	ammonium	ac-
etate	(van	Reeuwijk,	1993).	Details	of	the	soil	sampling	can	be	found	
in	(Moulatlet	et	al.,	2017).

2.2.2 | Step 2: Determine environmental optima for 
all fern and lycophyte species and verify their utility 
as indicators

We	 used	 the	 Weighted	 Averaging	 calibration	 method	 with	
monotonic	curvilinear	deshrinking	to	calculate	optima	and	toler-
ances	 along	 the	 log-	transformed	 (base	 10)	 soil	 cation	 concen-
tration	gradient	for	each	of	the	282	fern	and	lycophyte	species	
observed	in	the	plots.	The	nonlinear	deshrinking	procedure	ap-
plied	 is	 similar	 to	 the	 linear	 deshrinking	 described	 in	 eq.	 5	 of	
ter	Braak	and	van	Dam	(1989).	The	curvilinear	approach	avoids	
nonlinear	distortions	such	as	edge	effects	(ter	Braak	&	Juggins,	
1993)	and	was	developed	by	 fitting	a	 smooth	monotonic	 func-
tion	to	the	inverse	deshrinking	as	implemented	in	the	r	package	
‘rioja’	(Juggins,	2017).

To	confirm	that	the	species	were	good	predictors,	we	estimated	
soil	 cation	 concentrations	 for	 the	PPBio	 and	UTU	plots	 and	 com-
pared	the	estimates	with	the	observed	values	using	 leave-	one-	out	
cross-	validation.	 RMSE	 and	 the	 coefficient	 of	 determination	 (R2)	 
between	 the	 predicted	 and	 the	 laboratory-	analysed	 soil	 cation	
concentrations	were	used	 to	quantify	prediction	accuracy.	To	 test	
whether	species	with	a	wide	tolerance	decreased	prediction	accu-
racy,	we	repeated	the	WA	calculations	using	the	inverse	of	species	
tolerance	as	an	additional	weight.	All	calculations	were	carried	out	
separately	for	presence–absence	and	abundance	data.

http://www.gbif.org
http://www.splink.org.br
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Some	closely	related	species	are	difficult	to	reliably	distinguish	
in	 the	field,	and	such	complexes	were	 lumped	before	calculating	
species	 optima.	 For	 simplicity,	 we	make	 no	 distinction	 between	
these	 complexes	 and	what	 are	 thought	 to	be	 real	 species	 in	 the	
text.	Calculations	of	species	optima	were	done	using	the	r	pack-
age	‘rioja’	(Juggins,	2017).	The	analysis	code	is	available	at	https://
github.com/gabizuquim/paper_fern-soil_map/blob/master/
spp_optima.R.

2.2.3 | Step 3: Obtain species- derived soil cation 
concentration estimates and combine with direct soil 
measurements

Each	 geo-	referenced	 location	 of	 a	 species	 occurrence	 obtained	
from	GBIF	and	SpeciesLink	was	assigned	the	optimum	soil	value	
of	the	corresponding	species.	We	then	aggregated	the	points	to	
grid	cells	of	1	arcmin	(~2	km	at	the	equator)	and	used	the	average	
value	per	cell	 as	a	plant-	derived	 (indirect)	 soil	 cation	concentra-
tion	 value.	 Similarly,	we	 averaged	 for	 each	 grid	 cell	 the	 directly	
measured	soil	data	obtained	 from	the	PPBio	and	UTU	plots	and	
the	HWSD	and	BND	databases.	A	third	soil	dataset	was	obtained	
by	combining	the	indirect	and	direct	soil	values;	an	average	value	

was	used	if	both	indirect	and	direct	soil	data	were	available	for	the	
same	grid	cell.	Each	of	the	three	soil	datasets	(indirect	data	only,	
direct	 data	 only,	 both	 combined)	 was	 used	 separately	 as	 input	
data	in	step	4.

2.2.4 | Step 4: Generate maps by interpolating 
between data points

A	raster	map	of	estimated	soil	cation	concentration	values	covering	
all	Amazonia	was	obtained	by	interpolation	at	the	spatial	resolution	
of	6	arcmin	(~11	km	at	the	equator).	Even	though	there	are	general	
spatial	trends	in	soil	cation	concentration	across	Amazonia	(Quesada	
et	al.,	 2010)	 that	 divides	 into	 major	 geochemical	 regions,	 abrupt	
changes	 in	 soil	 characteristics	 have	 also	 been	 documented	 (e.g.	
Higgins	et	al.,	2011;	Tuomisto	et	al.,	2016).	This	means	the	stationar-
ity	assumption	of	simple	Kriging	does	not	hold.	Therefore,	we	used	
ordinary	Kriging,	where	 parameters	 of	 the	 semi-	variogram	 (model	
type,	nugget,	partial	sill	and	range)	were	estimated	by	visual	inspec-
tion	and	then	improved	by	an	automatic	fitted	variogram	function.	
An	 associated	 layer	 indicating	 the	 Kriging	 standard	 deviation	was	
also	generated	to	illustrate	the	uncertainty	associated	with	the	inter-
polated	soil	cation	concentration	values.	In	order	to	evaluate	to	what	

F IGURE  1 Distribution	of	data	points	used	to	produce	and	test	estimates	of	exchangeable	base	cation	concentration	in	surface	soil	
across	Amazonia.	(a)	Soil	sample	points	from	our	own	database	(UTU+PPBio)	and	from	external	databases	used	as	input	data	(HWSD+BND	
-	Harmonized	World	Soil	Database	+Brazilian	National	Database)	and	as	validation	data	(RAINFOR	-	Amazon	Forest	Inventory	Network).	
(b)	Fern	and	lycophyte	species	occurrence	records	retrieved	from	the	Global	Biodiversity	Information	Facility	and	SpeciesLink	data	portals	
(GBIF+SpLink).	Analyses	were	done	over	all	Amazonia	as	defined	by	Eva	&	Huber	(2005;	black	line,	white	polygon)	and	over	a	subset	limited	
by	the	wetlands	map	of	Hess	et	al.	(2015;	orange	line,	pale	green	polygon)
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https://github.com/gabizuquim/paper_fern-soil_map/blob/master/spp_optima.R
https://github.com/gabizuquim/paper_fern-soil_map/blob/master/spp_optima.R
https://github.com/gabizuquim/paper_fern-soil_map/blob/master/spp_optima.R
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degree	the	results	depend	on	the	selected	interpolation	method,	we	
performed	the	spatial	interpolations	also	using	IDW	with	a	weighting	
power	of	2.

Both	 spatial	 interpolation	 methods	 are	 implemented	 in	 the	
r	 package	 (R	Core	Team,	2017)	 ‘gstat’	 (Pebesma	&	Graeler,	 2017).	
Automated	fitting	was	carried	out	using	the	 fit.variogram	 function.	
The	 codes	 for	 averaging	 the	 fern	 and	 lycophyte	 species	 optima	
values	and	Kriging	are	available	at	https://github.com/gabizuquim/
paper_fern-soil_map/blob/master/script_krig_share.R.

To	 visualize	 the	 effect	 of	 input	 data	on	 the	 final	maps,	we	 re-
peated	 the	 interpolations	 using	 different	 subsets	 of	 the	 available	
point	data.	These	were	as	follows:	(a)	direct	soil	measurements	only	
(1,033	grid	cells	with	soil	samples	obtained	from	HWSD,	BND,	UTU	
and	PPBio	datasets);	 (b)	plant-	derived	 (indirect)	soil	estimates	only	
(6,041	grid	cells	with	species	occurrence	data	obtained	from	GBIF	
and	 SpeciesLink);	 (c)	 direct	 and	 plant-	derived	 soil	 data	 together	
(6,945	grid	cells);	and	(d)	direct	and	plant-	derived	soil	data	together,	
but	analysis	 limited	to	the	area	covered	by	a	recent	wetlands	map	
(Hess	et	al.,	2015).	The	data	points	in	subset	4	were	first	classified	
into	 terra-firme	 (non-	inundated	 uplands)	 versus	 wetlands,	 and	 the	
interpolation	 was	 done	 separately	 for	 each	 landscape	 type.	 The	
wetlands	map	covers	about	87%	of	Amazonia	as	defined	by	(Eva	&	
Huber,	2005)	(Figure	1).

2.2.5 | Step 5: Validate the maps

To	evaluate	the	accuracy	of	the	maps,	we	obtained	external	valida-
tion	 data	 on	 soil	 cation	 concentration	 taken	 at	 a	maximum	 depth	
of	 30	cm	 from	 194	 soil	 samples	 of	 the	 Amazon	 Forest	 Inventory	
Network	(RAINFOR;	http://www.rainfor.org)	(Figure	1a).	Laboratory	
methods	 applied	 by	 RAINFOR	 are	 described	 by	 Quesada	 et	al.	
(2010).

We	used	the	RAINFOR	soil	sample	coordinates	to	match	mea-
sured	 exchangeable	 cation	 concentrations	 with	 the	 estimated	
values	 from	 each	 of	 our	maps	 and	 assessed	 the	 accuracy	 of	 the	
estimates	by	calculating	the	Pearson	correlation	between	the	es-
timated	and	measured	values.	Even	though	the	validation	dataset	
is	 spatially	 clustered,	 we	 expect	 independently	 collected	 valida-
tion	data	to	be	less	prone	to	bias	than	cross-	validation	approaches	
would	 be,	 since	 the	 estimates	 used	 in	 validation	 are	 model-	free	
(Brus,	 Kempen,	 &	 Heuvelink,	 2011).	 Cross-	validation	 also	 often	
over-	estimates	mapping	accuracy	(Chatfield,	1995).

For	comparison,	we	also	obtained	the	map	of	soil	cation	exchange	
capacity	 (CEC)	values	at	maximum	depth	of	30	cm	made	available	
by	the	SoilGrids	project	(Hengl	et	al.,	2017);	www.soilgrids.org,	ac-
cessed	in	December	2016)	and	calculated	the	correlation	with	CEC	
values	 from	SoilGrids	and	 the	exchangeable	cation	concentrations	
from	the	RAINFOR	soil	data.	CEC	is	a	soil	variable	that	is	commonly	
used	in	ecological	studies	(Figueiredo	et	al.,	2018;	Levis	et	al.,	2017;	
McMichael	et	al.,	2014).

Next,	we	evaluated	how	much	the	pixel-	by-	pixel	patterns	in	the	
maps	depend	on	the	input	data	and	interpolation	technique.	To	do	
this,	we	correlated	all	the	maps	generated	by	Kriging	with	each	other	
and	with	the	CEC	map,	as	well	as	with	the	maps	based	on	the	same	
input	data	as	the	Kriged	map	but	applying	IDW	for	interpolation.

Finally,	 we	 took	 the	 map	 that	 performed	 best	 (=	 with	 higher	
correlation	between	mapped	and	observed	values	in	the	validation	
dataset)	and	assessed	how	its	errors	and	uncertainties	were	related	
to	the	heterogeneity	and	distribution	of	input	points.	We	extracted	
the	Kriging	standard	deviation	and	the	mapped	cation	concentration	
values	 for	 each	 point	 in	 the	 validation	 dataset	 and	 quantified	 the	
error	of	the	map	as	the	absolute	difference	between	the	mapped	and	
measured	soil	values.	We	obtained	the	number	of	input	points	and	
the	standard	deviation	of	the	soil	values	within	buffers	of	6	arcmin	

F IGURE  2 Fern	and	lycophyte	species	
optima	(black	dots)	and	tolerances	
(grey	horizontal	bars;	based	on	root	
mean	squared	error)	for	soil	cation	
concentration	(exchangeable	Ca+Mg+K)	
as	calculated	using	data	from	1,353	
inventory	plots	in	lowland	Amazonia.	
The	species	are	ranked	by	their	cation	
optimum.
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https://github.com/gabizuquim/paper_fern-soil_map/blob/master/script_krig_share.R
https://github.com/gabizuquim/paper_fern-soil_map/blob/master/script_krig_share.R
http://www.rainfor.org
http://www.soilgrids.org
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(~11	km	 radius)	 around	 the	 location	of	 the	validation	 samples.	We	
further	accessed	uncertainty	in	structurally	random	by	obtaining	the	
number	of	sampling	points	and	standard	deviations	in	one	point	or	
buffer	randomly	chosen	inside	each	cell	of	a	20	×	20	arcmin	grid	to	
Amazonia.	This	assures	that	the	uncertainty	assessment	has	covered	
the	whole	Amazonia	and	was	not	biased	by	the	locations	of	the	val-
idation	sampling	points.

3  | RESULTS

In	the	1,353	plots	across	Amazonia,	we	recorded	63,104	individuals	
of	ferns	and	lycophytes	belonging	to	268	species.	Species	that	were	
confused	 in	 the	 field	were	 lumped	 before	 the	 analyses,	 so	 these	
were	based	on	245	taxa	(species,	species	complexes	or	genera;	all	
referred	to	as	species	for	simplicity).	Field	data	covered	a	long	gra-
dient	 of	 exchangeable	 base	 cation	 concentration	 (median	=	0.37,	
mean	=	4.11,	 range	=	0.03–54.67	 cmol(+)/kg),	 and	 species	 optima	
were	well	spread	along	this	gradient	(Figure	2).	The	cation	concen-
tration	optima	based	on	species	presence–absence	and	abundance	
data	were	highly	correlated	(r	=	0.98;	note	that	all	correlations	and	
other	results	reported	here	were	obtained	using	the	log-	transformed	
values).	The	accuracy	of	soil	cation	concentration	predictions	based	
on	 species	 composition	was	 also	 high	 (R2	=	0.74–0.85)	 regardless	
of	the	input	data	type	(presence–absence	or	abundance	data)	used	
in	 the	 estimations	 (Table	1).	 Moreover,	 it	 made	 little	 difference	
whether	species	tolerances	were	used	as	inverse	weights	in	the	WA	
calculations	or	not.	This	indicates	that	species	with	broad	tolerance	
did	 not	 substantially	 decrease	 the	 accuracy	 of	 the	 estimated	 soil	
values.	Since	prediction	accuracy	was	high	overall,	and	taking	spe-
cies	tolerances	into	account	had	little	effect,	we	retained	all	species	
that	had	been	observed	 in	 the	plots	 in	 the	 indicator	 species	pool	
to	be	used	when	predicting	soil	cation	concentration	for	the	final	
mapping	exercise.

There	were	big	differences	among	the	maps	depending	on	which	
input	dataset	was	used.	Soil	cation	concentration	values	extracted	

from	the	maps	that	were	based	on	the	combined	direct	and	plant-	
derived	soil	data	(soil	data	subset	3	as	defined	in	Step	3	above)	and	
interpolated	using	Kriging	had	the	highest	correlations	with	the	mea-
sured	values	 in	the	validation	dataset	 (r	=	0.71).	The	map	based	on	
species-	derived	 soil	 data	 only	 (subset	 2)	 performed	 slightly	worse	
(r	=	0.68	and	0.61	 for	Kriging	and	 IDW,	 respectively)	 and	 the	map	
based	 on	 direct	 soil	 data	 only	 (subset	 1)	 performed	 clearly	worse	
(r	=	0.48	and	0.52	for	Kriging	and	IDW,	respectively).	The	lowest	cor-
relations	with	exchangeable	soil	cation	concentration	were	obtained	
for	the	CEC	values	of	the	SoilGrids	map	(r	=	0.30).

In	all	interpolated	maps	(Figure	3a,c,e,g),	most	of	the	cation-	rich	
soils	were	predicted	to	be	 in	western	and	southern	Amazonia	and	
most	of	 the	 cation-	poor	 soils	 in	 central	Amazonia.	However,	 large	
areas	 especially	 in	 eastern	Amazonia	 had	 unstable	model	 outputs	
that	predicted	either	cation-	rich	or	cation-	poor	soils,	depending	on	
the	input	data.	Soil	cation	concentration	maps	using	direct	and	plant-	
derived	soil	data	 together	were	more	strongly	correlated	with	 the	
maps	 using	 only	 plant-	derived	 estimates	 (r	=	0.90–0.92)	 than	with	
the	maps	 using	 only	 direct	 soil	 measurements	 (r	=	0.70;	 Figure	4).	
This	is	no	surprise	since	more	than	90%	of	the	total	input	data	points	
were	obtained	 from	plant-	derived	estimates	based	on	 species	op-
tima.	Values	of	the	CEC	map	were	only	weakly	correlated	with	the	
values	 from	 the	 other	maps	 (r	=	0.10–0.28)	 (Figure	4).	 Kriging	 and	
IDW	maps	 (Figure	S1)	 that	 used	 the	 same	 input	 data	were	 highly	
correlated	(Figure	4)	but	the	mapped	values	using	Kriging	tended	to	
have	a	higher	correlation	with	the	measured	soil	cation	concentra-
tions	of	the	validation	dataset	(compare	r	values	from	Figure	3	and	
Figure	S1).

The	maps	of	Kriging	standard	deviation	(square	root	of	Kriging	
variance;	 Figure	3b,d,f,h)	 obviously	 reflect	 the	 unequal	 density	
of	 sampling.	 In	 some	 areas,	 neighbouring	 soil	 data	 points	 were	
more	than	200	km	apart,	such	as	in	the	large	red	patch	in	eastern	
Amazonia	 (Figure	3f).	 The	 uncertainty	 is	 generally	 the	 highest	 in	
the	map	 based	 on	 direct	 soil	 measurements	 only,	 which	 has	 the	
fewest	 input	data	points	 (Figure	3b).	The	maps	based	on	both	di-
rect	 and	 indirect	 soil	 data	 points	 were	 similar	 whether	 the	wet-
lands	mask	was	used	or	 not,	 but	 the	Kriging	 standard	deviations	
were	higher	in	the	map	with	the	wetlands	mask.	This	is	probably	re-
lated	to	the	loss	of	densely	sampled	areas	in	northern	and	eastern	
Amazonia	and	inaccurate	georeferencing	in	GBIF	points,	leading	to	
species	occurrences	being	incorrectly	assigned	to	wetlands	versus	
terra- firme.

The	difference	between	measured	and	mapped	soil	values	was	
not	linearly	related	to	either	density	or	heterogeneity	of	the	soil	sam-
ples	within	a	local	buffer	(Figure	5a,b).	This	indicates	that	the	num-
ber	and	distribution	of	sampling	points	may	have	weak	or	no	effect	
on	 the	 overall	 accuracy	 of	 the	 estimated	 values.	 Kriging	 standard	
deviation	significantly	decreased	with	increasing	density	of	sampling	
points	regardless	of	whether	it	was	assessed	in	the	locations	of	the	
validation	dataset	(Figure	5c)	or	in	random	locations	(Figure	5e).	We	
found	a	negative	relationship	between	the	mapped	Kriging	standard	
deviation	and	the	standard	deviation	estimated	for	all	sample	values	
within	each	buffer	(Figure	5d,f).

TABLE  1 Accuracy	of	predictions	of	soil	cation	concentration	
using	fern	and	lycophyte	species	as	indicators.	Accuracies	are	
measured	by	root	mean	squared	error	(RMSE)	and	coefficient	of	
determination	(R2)	of	the	linear	regressions	between	predicted	and	
observed	values.	The	combination	of	high	R2	and	low	RMSE	
indicates	a	good	regression	fit.	The	transfer	method	was	weighted	
averaging	(WA)	with	monotonic	deshrinking.	The	inverse	of	species	
tolerance	was	used	as	weight	where	indicated.	Values	are	based	on	
leave-	one-	out	cross-	validation

Data
Tolerance  
weighing RMSE R2

Abundance No 0.536 0.742

Yes 0.521 0.757

Presence–Absence No 0.529 0.749

Yes 0.492 0.782
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4  | DISCUSSION

4.1 | Using indicator species to mitigate 
environmental data paucity

Using	soil	cation	concentrations	as	estimated	from	the	occurrences	
of	 indicator	 plant	 species	 gave	us	 a	 nearly	12-	fold	 increase	 in	 the	
volume	of	input	data	for	modeling,	compared	to	using	soil	data	avail-
able	 from	 direct	measurements	 only.	 This	 explains	why	 the	maps	
that	 included	plant-	based	 soil	 data	 performed	 considerably	 better	
than	maps	 that	were	 based	 on	 direct	 soil	measurements	 only.	 An	
increase	in	the	volume	of	input	data	not	only	tends	to	improve	mod-
elling	 accuracy	 as	 such	 (Grunwald	 et	al.,	 2011)	 but	 it	 also	 reduces	
mapping	sensitivity	to	different	interpolation	methods,	which	makes	
map	accuracy	 less	dependent	on	methodological	 choices	 (Chaplot	
et	al.,	2006;	Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005).

Species-	derived	 environmental	 values	 can	 be	 less	 accurate	
than	 directly	measured	 values,	 so	 there	may	 be	 a	 trade-	off	 be-
tween	data	density	and	data	accuracy	(Chaplot	et	al.,	2006).	This	
is	because	species	occurrences	are	affected	by	other	factors	than	
the	variable	of	 interest,	 such	as	biological	 interactions,	different	
aspects	of	climate	and	various	soil	properties.	The	effects	of	such	
confounding	factors	can	bias	the	species	optima	for	the	environ-
mental	variable	of	interest.	Thus,	although	validation	results	sug-
gest	 that	 the	 maps	 presented	 here	 mostly	 reflect	 the	 modelled	
environmental	gradient,	 it	 is	 important	to	be	aware	that	residual	
effects	of	other	factors	may	also	influence	the	mapped	patterns.

If	 the	modelled	variable	corresponds	 to	 the	strongest	environ-
mental	 gradient	 that	 the	 species	 respond	 to,	 residual	 effects	 are	
likely	to	be	small,	but	if	the	interest	is	in	modelling	a	less	important	
environmental	variable,	 confounding	 factors	are	 likely	 to	be	a	 real	

F IGURE  3 Maps	of	soil	cation	
concentration	(left	column)	and	Kriging	
standard	deviation	(right	column)	as	
modelled	using	different	sets	of	input	data	
(rows).	Pearson's	correlation	(r)	between	
soil	cation	concentrations	as	read	off	the	
map	and	as	measured	in	soil	samples	of	
the	Amazon	Forest	Inventory	Network	
(RAINFOR)	is	shown	in	the	upper	right	
corner.	Input	data	used	in	the	maps	are:	
(a,	b)	direct	soil	data	only	(measured	from	
soil	samples);	(c,	d)	indirect	soil	data	only	
(plant-	derived	estimates);	(e,	f)	direct	
and	plant-	derived	soil	data	together;	
(g,	h)	direct	and	plant-	derived	soil	data	
together	with	Kriging	run	separately	
for	wetlands	and	terra-firme	areas	(map	
extent	limited	to	the	area	covered	by	the	
available	wetlands	map).	The	scale	bars	
show	10-	based	logarithms	of	base	cation	
concentration	(Ca	+	Mg	+	K)	as	expressed	
in	cmol(+)/kg.	High-	resolution	versions	of	
the	maps	obtained	by	Kriging	are	available	
in	Supplementary	Material	S1.	Raster	
versions	of	maps	e,	f,	g,	and	h	are	available	
in	Pangaea	(see	Data	Accessibility	section)
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problem.	 In	 addition,	 species	 tolerances	 will	 be	 very	 broad	 along	
an	environmental	gradient	that	is	irrelevant	to	them,	which	further	
reduces	 species	 predictive	 power.	 In	 our	 example,	 the	 increase	 in	
the	number	of	data	points	amply	compensated	for	any	decrease	in	
point	accuracy	there	might	have	been	due	to	the	use	of	surrogate	
data.	 This	 is	 consistent	with	 earlier	 studies	 having	 found	 that	 soil	
base	cation	concentration	is	a	very	strong	determinant	of	fern	and	
lycophyte	species	occurrence	patterns	in	Amazonia	(Tuomisto	et	al.,	
2016;	Tuomisto,	Ruokolainen,	et	al.,	2003;	Zuquim	et	al.,	2014).

Many	data-	poor	regions	are	similar	to	Amazonia	 in	that	directly	
measured	soil	data	are	much	sparser	than	species	occurrence	records.	
Moreover,	the	latter	are	increasingly	accessible	thanks	to	biodiversity	
data	portals	such	as	GBIF	and	SpeciesLink,	which	facilitates	the	use	
of	indicator	species	for	modeling	ecologically	relevant	environmental	
variables.	We	used	ferns	and	lycophytes	as	indicators,	because	earlier	
studies	have	both	shown	them	to	be	useful	for	this	purpose	and	pro-
vided	the	field	data	needed	to	calculate	species	optima	(Ruokolainen,	
Tuomisto,	Macía,	Higgins,	&	Yli-	Halla,	 2007;	 Tuomisto	 et	al.,	 2003;	
Tuomisto,	 Ruokolainen,	 et	al.,	 2003;	 Tuomisto	 et	al.,	 2014,	 2016;	
Zuquim	 et	al.,	 2014).	 The	 method	 we	 propose	 here	 for	 modelling	
an	environmental	variable	is	not	restricted	to	ferns	and	lycophytes,	
however;	any	biological	group	that	has	a	strong	affinity	with	the	vari-
able	of	interest	and	enough	data	for	model	calibration	could	be	used.	
For	 soil	 variables,	 other	 plant	 groups	 that	 have	 indicator	 potential	
in	the	tropics	include	the	Melastomataceae,	palms	and	Zingiberales	
(Cámara-	Leret,	Tuomisto,	Ruokolainen,	Balslev,	&	Munch	Kristiansen,	
2017;	Suominen	et	al.,	2013;	Tuomisto	et	al.,	2016).

Our	approach	for	modelling	environmental	variables	using	indica-
tor	species	has	the	potential	to	inform	both	fundamental	and	applied	

research	on	ecology	and	biogeography	in	Amazonia	and	other	poorly	
sampled	areas.	The	currently	available	digital	soil	maps	have	prob-
lems	of	 low	spatial	accuracy	and	 lack	of	ecologically	 relevant	vari-
ables	(Moulatlet	et	al.,	2017).	This	may	have	caused	researchers	to	
underestimate	the	role	of	soils	in	shaping	tropical	forests,	as	several	
studies	have	found	only	a	weak	relationship	between	map-	derived	
soil	 information	 and	 the	 structure,	 composition	 and	 resilience	 of	
tropical	 forests	 (Albuquerque	 &	 Beier,	 2015;	 Kissling	 et	al.,	 2012;	
Levis	et	al.,	2017;	McPherson,	2014;	Poorter	et	al.,	2015;	Thomas,	
Alcázar	Caicedo,	Loo,	&	Kindt,	2014).	In	stark	contrast,	such	studies	
that	have	sampled	soils	in	the	field	have	found	soil	variables,	includ-
ing	 soil	 cation	 concentration,	 very	 important	 (Cámara-	Leret	 et	al.,	
2017;	Higgins	et	al.,	2015;	Pansonato,	Costa,	de	Castilho,	Carvalho,	&	
Zuquim,	2013;	Phillips	et	al.,	2003;	Suominen	et	al.,	2013;	Tuomisto,	
Ruokolainen,	et	al.,	2003;	Tuomisto	et	al.,	2014;	Zuquim	et	al.,	2014).

Although	 soil	 base	 cations	 are	 important	 plant	 nutrients	 and	
therefore	directly	linked	to	plant	physiology	and	growth,	broad-	scale	
maps	of	their	concentration	in	the	soil	are	currently	lacking	for	many	
areas,	such	as	Amazonia.	Our	maps	provide	estimates	of	this	infor-
mation	and	can	be	incorporated	in	habitat	and	species	distribution	
models	 across	Amazonia.	When	using	 such	plant-	derived	 environ-
mental	data	 layers,	 it	 is	 important	 to	be	aware	of	which	data	 they	
were	based	on	in	order	to	avoid	circularity.	For	example,	species	dis-
tribution	models	(SDM)	should	never	use	as	 input	occurrence	data	
the	same	plant	occurrence	records	that	were	already	used	to	gen-
erate	the	soil	map.	Therefore,	if	our	soil	cation	concentration	map	is	
used	for	SDMs	of	ferns	or	lycophytes,	the	species	occurrence	data	
that	is	currently	included	in	GBIF	or	SpeciesLink	should	not	be	used	
as	input	data.	However,	SDMs	concerning	any	other	plant	or	animal	
group	do	not	have	this	limitation.

4.2 | Transfer functions and indicator species  
optima

One	can	test	if	a	given	organism	group	is	informative	regarding	an	
environmental	variable	of	interest	by	applying	a	transfer	function	
to	first	calculate	species	optima	and	then	use	these	optima	to	re-
construct	the	variable	at	sites	for	which	direct	measurement	data	
are	available	(Birks,	2003).	Our	tests	using	weighted	averaging	con-
firmed	 that	 ferns	 and	 lycophytes	 provide	 good	predictors	 of	 soil	
cation	 concentration	 in	 Amazonia.	We	 also	 found	 that,	 although	
species	with	broad	tolerances	along	an	environmental	gradient	are	
less	 informative	 than	 species	 with	 narrow	 tolerances,	 there	 was	
no	need	to	exclude	the	generalist	species	as	they	did	not	notice-
ably	 increase	 the	 error	 in	 the	 environmental	 variable	 estimates.	
It	 is	 also	noteworthy	 that	we	obtained	similar	 results	using	pres-
ence–absence	 and	 abundance	 data,	 which	 is	 in	 agreement	 with	
an	earlier	study	using	a	smaller	dataset	(Zuquim	et	al.,	2014).	This	
is	 good	 news	 both	 for	 the	 calculation	 of	 species	 optima	 and	 for	
applying	 them	 for	 modelling	 environmental	 conditions,	 because	
several	 existing	 datasets	 do	 not	 contain	 abundance	 information.	
Furthermore,	presence–absence	data	are	easier	and	faster	to	col-
lect	than	abundance	data.

F IGURE  4 Pixel-	by-	pixel	Pearson's	correlations	(r)	between	
soil	cation	concentration	maps	obtained	using	four	different	input	
datasets	and	two	different	interpolation	methods	as	well	as	the	
cation	exchange	capacity	(CEC)	map	obtained	from	SoilGrids.	Both	
cation	concentrations	and	CEC	were	log-	10-	transformed	before	
analysis
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The	accuracy	of	the	calculated	species	optima	is	dependent	on	
how	representative	the	training	data	is	of	the	environmental	gradi-
ent	of	interest.	If	only	a	part	of	the	gradient	is	sampled,	or	sampling	
density	varies	along	the	gradient,	the	optima	may	become	biased.	
Our	 sampling	 covers	 a	 long	 edaphic	 gradient,	 but	 whether	 it	 is	
representative	of	all	Amazonia	is	difficult	to	assess.	Nevertheless,	
we	 believe	 that	 the	 optima	 are	 robust,	 because	 earlier	 studies	
have	 found	 soil	 associations	 of	 fern	 and	 lycophyte	 species	 to	 be	
consistent	 among	 non-	overlapping	 study	 areas	 in	 different	 parts	
of	 Amazonia	 (Salovaara	 et	al.,	 2004;	 Tuomisto	 &	 Poulsen,	 1996;	
Tuomisto	 et	al.,	 2002;	 Zuquim	 et	al.,	 2014).	 Furthermore,	 there	
seems	to	be	much	redundancy	 in	floristic	communities,	such	that	
several	 species	 with	 similar	 optima	 coexist	 in	 any	 one	 locality.	

Consequently,	 relatively	 good	 predictions	 can	 be	 obtained	 even	
with	superficial	sampling	that	has	many	false	absences,	such	as	the	
entirely	 opportunistic	 species	 occurrence	 points	 that	 can	 be	 ob-
tained	 from	herbarium	data	 through	online	portals	 such	 as	GBIF	
and	SpeciesLink.

When	weighted	averaging	is	used	to	calculate	plant-	derived	en-
vironmental	values,	the	repeated	calculations	of	averages	necessar-
ily	 bias	 optimum	values	 towards	 the	 overall	mean	of	 the	 variable,	
especially	for	data	points	at	the	extremes	of	the	gradient.	The	result-
ing	underestimation	of	the	length	of	the	environmental	gradient	can	
be	mitigated	with	a	deshrinking	step	(see	Step	2),	which	restores	the	
original	gradient	length	and	gives	more	reliable	estimates	(ter	Braak	
&	van	Dam,	1989;	Juggins,	2017).

F IGURE  5 Relationships	between	
error,	uncertainty	and	sampling	density	
in	the	soil	cation	concentration	map	
shown	in	Figure	3e.	Sampling	density	
was	defined	as	the	number	of	data	points	
within	a	buffer	of	6	arcmin	radius	(~11	km)	
around	each	validation	data	point	(N. of 
samples in buffer [RAINFOR]) or around 
points	randomly	chosen	in	each	of	a	
20	×	20	arcmin	cells	of	an	Amazonian	grid	
(N. of samples in buffer [random]). Error 
was	defined	as	the	absolute	difference	
between	values	observed	in	the	RAINFOR	
validation	dataset	and	mapped	values	 
(Δ measure- map).	Two	kinds	of	indices	
were	used	to	quantify	uncertainty.	The	
first	was	based	on	the	standard	deviation	
of	input	values	inside	each	buffer	(sd in 
buffer [RAINFOR]; SD in buffer [random]) 
and	the	second	on	the	mapped	value	
of	Kriging	standard	deviation	for	the	
centre	points	of	the	buffers	(Mapped 
sd [RAINFOR]; Mapped sd [random]). 
Significant	Pearson's	correlation	values	
(r)	are	shown	in	the	upper	right	corner	
of	each	panel.	When	significant,	linear	
regressions	are	shown	with	blue	solid	
lines.	Black	dashed	lines	are	loess	smooth	
curves	with	two	degrees	of	freedom	and	
confidence	intervals	shown	in	gray
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4.3 | Interpolation and validation

In	our	example	case,	we	used	popular	and	simple	interpolation	meth-
ods	 that	are	widely	applied	 in	digital	 soil	mapping	 (Cook,	 Jarvis,	&	
Gonzalez,	 2008;	 Grunwald,	 2009).	 Because	 Kriging	 implements	
distance-	based	 averaging,	 it	 gives	 relatively	 smooth	 and	 gradual	
changes	 in	 the	 modelled	 values,	 whereas	 IDW	 tends	 to	 respond	
more	 strongly	 to	 the	 values	 found	 at	 individual	 data	 points.	With	
our	data,	the	maps	of	soil	cation	concentration	generated	by	Kriging	
were	more	accurate	than	those	generated	by	IDW.

Digital	mapping	 techniques	 are	 evolving	 rapidly,	 and	more	 so-
phisticated	 and	 computation-	intensive	 interpolation	 methods	 are	
becoming	increasingly	available	(Hengl	et	al.,	2017).	These	methods	
may	use	covariates	and	machine	learning	to	refine	the	accuracy	and	
resolution	of	maps.	Modern	machine-	learning	techniques	have	been	
applied	 to	 fit	 predictive	models	 of	 edaphic	 conditions	 and	 create	
maps	with	global	accuracy	often	close	to	a	correlation	of	60%	(Hengl	
et	al.,	 2017).	However,	 high	global	 accuracy	does	not	mean	 that	 a	
map	is	uniformly	accurate.	On	the	contrary,	map	accuracy	can	vary	
drastically	among	areas,	being	lowest	where	data	density	is	low	(e.g.	
Amazonia,	Africa).

Validation	is	an	important	step	to	evaluate	the	quality	of	maps.	
Surprisingly,	 it	 has	 been	 estimated	 that	 more	 than	 one-	third	 of	
the	 published	 soil	maps	 have	 not	 been	 validated	 at	 all	 (Grunwald,	
2009).	Validation	can	be	done	using	an	independent	test	dataset,	or	
by	cross-	validation	 (Chatfield,	1995),	even	 though	 the	 latter	might	
overestimate	the	accuracy	of	the	maps	(Brus	et	al.,	2011).	We	used	
an	 independent	 validation	dataset	with	broad	 coverage.	However,	
sampling	 in	 Amazonia	 is	 strongly	 biased	 towards	 accessible	 areas	
(Nelson,	Ferreira,	da	Silva,	&	Kawasaki,	1990;	Schulman,	Toivonen,	
&	Ruokolainen,	2007),	so	both	the	input	dataset	used	for	mapping	
and	the	validation	dataset	are	spatially	biased	and	large	areas	have	
very	low	data	density.	Yet,	this	bias	seems	to	have	a	minor	impact	on	
our	validation	since	the	results	obtained	from	random	and	sparsely-	
distributed	points	were	similar.

Despite	 the	 advance	 in	 new	 modeling	 techniques,	 significant	
improvement	 in	map	accuracy	for	data-	poor	areas	can	only	be	ex-
pected	if	the	quality	of	modeling	input	data	increases.	This	can	be	
achieved	by	 including	covariates	 in	 the	models	 (Hengl	et	al.,	2017)	
with	the	aid	of	remote	sensed	data	(Van	Doninck	&	Tuomisto,	2018)	
and/or	 increasing	the	number	of	 input	points.	Our	method	tackles	
the	latter	by	taking	advantage	of	already	existing	information	avail-
able	in	natural	history	museums,	which	makes	it	possible	to	obtain	
species-	derived	 environmental	 variable	 estimates	 for	 sites	 lacking	
direct	environmental	measurements.

5  | CONCLUSIONS

Scarcity	of	 input	data	 is	often	a	major	 constraint	 to	 the	quality	
of	thematic	maps	(Hengl	et	al.,	2014;	Lagacherie,	2008;	Minasny,	
McBratney,	&	Lark,	2008).	Here,	we	developed	a	method	 to	al-
leviate	data	paucity	and	 improve	digital	environmental	mapping	

of	data-	poor	areas.	Our	results	demonstrate	that	georeferenced	
biological	data	can	be	used	 to	 interpolate	environmental	values	
over	large,	otherwise	unsampled	areas.	We	tested	the	method	by	
using	fern	and	lycophyte	occurrences	to	map	soil	cation	concen-
tration	in	Amazonia,	but	the	method	is	flexible	and	can	be	applied	
to	 other	 environmental	 variables	 and	 other	 organism	 groups.	
The	 prerequisite	 for	 success	 is	 that	 the	 variable	 to	 be	mapped	
is	 strongly	 related	 to	 the	 occurrences	 of	 the	 selected	 indicator	
species	group.	This	can	be	tested	with	transfer	function	analysis	
using	field	data	that	provide	both	species	occurrence	information	
and	measurements	 of	 the	 environmental	 variable	 of	 interest	 at	
the	same	sites.	Species	with	broad	tolerances	can	be	removed	if	
their	 inclusion	would	 reduce	 accuracy	 of	 predictions.	Once	 the	
set	of	indicator	species	has	been	chosen,	their	optima	along	the	
gradient	can	be	calculated	and	assigned	to	geographical	locations	
where	the	species	have	been	documented	to	occur.	For	this	pur-
pose,	 data	 from	 public	 repositories	 such	 as	 GBIF,	 SpeciesLink,	
VertNet,	etc.	can	be	used	after	appropriate	cleaning.	The	values	
of	the	species-	derived	environmental	variable	can	then	be	com-
bined	with	actually	measured	values	and	used	as	input	data	points	
in	 interpolation	 to	 create	 a	 raster	 surface	 for	 the	 area	 of	 inter-
est.	Finally,	the	output	digital	maps	can	be	used	as	environmental	
layers	 in	 studies	 such	 as	 species	 distribution	modelling,	 habitat	
modelling,	and	development	of	habitat	suitability	scenarios	under	
climate	change.	The	results	of	such	studies	can	contribute	both	to	
advancing	future	research	and	to	conservation	planning	in	poorly	
sampled	areas.
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