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Abstract
Aim: To map and interpret floristic and geoecological patterns across the Amazon basin 
by combining extensive field data with basin‐wide Landsat imagery and climatic data.
Location: Amazonia.
Taxon: Ground truth data on ferns and lycophytes; remote sensing results reflect 
forest canopy properties.
Methods: We used field plot data to assess main ecological gradients across Amazonia 
and to relate floristic ordination axes to soil base cation concentration, Climatologies 
at High Resolution for the Earth's Land Surface Areas (CHELSA) climatic variables 
and reflectance values from a basin‐wide Landsat image composite with generalized 
linear models. Ordination axes were then predicted across all Amazonia using Landsat 
and CHELSA, and a regional subdivision was obtained using k‐medoid classification.
Results: The primary floristic gradient was strongly related to base cation concen‐
tration in the soil, and the secondary gradient to climatic variables. The Landsat 
image composite revealed a tapestry of broad‐scale variation in canopy reflectance 
characteristics across Amazonia. Ordination axis scores predicted using Landsat and 
CHELSA variables produced spatial patterns consistent with existing knowledge on 
soils, geology and vegetation, but also suggested new floristic patterns. The clearest 
dichotomy was between central Amazonia and the peripheral areas, and the available 
data supported a classification into at least eight subregions.
Main conclusions: Landsat data are capable of predicting soil‐related species com‐
positional patterns of understorey ferns and lycophytes across the Amazon basin 
with surprisingly high accuracy. Although the exact floristic relationships may differ 
among plant groups, the observed ecological gradients must be relevant for other 
plants as well, since surface reflectance recorded by satellites is mostly influenced 
by the tree canopy. This opens exciting prospects for species distribution modelling, 
conservation planning, and biogeographical and ecological studies on Amazonian 
biota. Our maps provide a preliminary geoecological subdivision of Amazonia that 
can now be tested and refined using field data of other plant groups and from hith‐
erto unsampled areas.
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1  | INTRODUC TION

Amazonian rainforests have long fascinated biologists, but their in‐
ternal heterogeneity remains poorly understood. One of the open 
questions is how to best subdivide them into floristically and biogeo‐
graphically meaningful units. Such subdivision would be useful for 
biogeographical inferences, conservation planning, and forecasting 
potential effects of climate change or deforestation on species dis‐
tributions and their viability.

Amazonia has been subdivided into areas of endemism using in‐
formation about species and subspecies distributions especially for 
birds (Cracraft, 1985; Haffer, 1974; Ribas, Aleixo, Nogueira, Miyaki, 
& Cracraft, 2012), but the low collecting density within Amazonia 
necessarily renders maps based on species occurrence records 
speculative. The most detailed subdivision of Amazonia is probably 
the WWF ecoregion map, which takes into account both landscape 
features and information about rivers as dispersal barriers (Olson et 
al., 2001). Animal distributions and abundances have been found to 
vary between seasonally inundated versus non‐inundated forests 
and even in response to more subtle changes in soil productivity 
and floristic composition (Halme & Bodmer, 2007; Peres, 1999; 
Stevenson, 2014). Therefore, knowledge on floristic variability and 
related environmental heterogeneity can provide the kind of base‐
line information needed to understand general biogeographical rela‐
tionships and ecological patterns across Amazonia.

An early geochemical subdivision of Amazonia (Fittkau, Junk, 
Klinge, & Sioli, 1975) recognized four major regions: central Amazonia 
with poor sedimentary soils, western Amazonia with richer soils de‐
rived from Andean material, and northern and southern peripheral 
regions on the Precambrian formations of the Guyanan and Brazilian 
shields, respectively. A somewhat more detailed classification was 
used by ter Steege et al. (2013), and Sombroek (2000) drafted a clas‐
sification focusing on soil types. In these cases, the authors recog‐
nized the importance of geochemical differences for vegetation or 
species richness but did not elaborate on how floristic composition 
might have varied among the recognized regions.

Floristic studies in the past few decades have shown that spe‐
cies compositional patterns of many plant groups in Amazonia, 
including both trees and understorey plants, are linked to soil 
properties (Baldeck, Tupayachi, Sinca, Jaramillo, & Asner, 2016; 
Duivenvoorden, 1995; Higgins et al., 2012, 2011; Pansonato, 
Costa, de Castilho, Carvalho, & Zuquim, 2013; Phillips et al., 2003; 
Ruokolainen, Tuomisto, Macía, Higgins, & Yli‐Halla, 2007; Tuomisto 
et al., 2016; Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, & Sarmiento, 2003; Tuomisto, Ruokolainen, & Yli‐Halla, 
2003). Soil properties, in turn, depend to a large degree on the soil 
parent material, especially its mineralogy, sedimentation history and 

the time it has been exposed to weathering. Therefore, considering 
the complex geological history of Amazonia is relevant when study‐
ing species distributions and floristic variability. Geological forma‐
tions in Amazonia have had various origins. There are, for example, 
Precambrian cratonic shields, Miocene semimarine to lacustrine de‐
posits, recent deposits of material from Andean volcanic eruptions 
and sediments consisting of material that has been leached to var‐
ious degrees during cycles of fluvial sedimentation and resuspen‐
sion (Fittkau et al., 1975; Hoorn, 1993; Hoorn et al., 2010; Räsänen, 
Linna, Santos, & Negri, 1995; Räsänen, Neller, Salo, & Jungner, 
1992; Sombroek, 2000). As a result, Amazonian soils have become 
highly heterogeneous, and the concentrations of major plant nutri‐
ents in them vary over more than two orders of magnitude (Hengl 
et al., 2014; Sanchez & Buol, 1974; Tuomisto et al., 2016; Tuomisto, 
Ruokolainen, & Yli‐Halla, 2003).

Given the huge spatial extent of Amazonia, any mapping effort is 
faced with practical difficulties, especially data scarcity. Some stud‐
ies on forest structural properties and tree species richness have ap‐
plied simple spatial interpolation techniques to cover areas between 
field sampling points (Stropp, ter Steege, Malhi, ATDN, & RAINFOR, 
2009; ter Steege et al., 2006, 2003). Many others have taken ad‐
vantage of the possibilities offered by remote sensing. For exam‐
ple, data from coarse‐resolution sensors have been used to assess 
biomass, productivity and seasonality in leaf production across all 
of Amazonia (Mitchard et al., 2014; Saatchi, Houghton, Dos Santos 
Alvalá, Soares, & Yu, 2007; Saatchi et al., 2009; Wagner et al., 2017). 
Vegetation mapping has taken advantage of radar images and aerial 
photographs to identify forest types that differ in structural and ter‐
rain characteristics (Duivenvoorden & Lips, 1993; Huber & Alarcón, 
1988; Huber, Gharbarran, & Funk, 1995; IBGE, 2004). Several stud‐
ies have used Landsat data to predict edaphic properties or different 
aspects of plant communities (species composition, turnover or rich‐
ness) over landscape extents (Draper et al., 2019; Higgins et al., 2012, 
2011; Salovaara, Thessler, Malik, & Tuomisto, 2005; Sirén, Tuomisto, 
& Navarrete, 2013; Thessler, Ruokolainen, Tuomisto, & Tomppo, 
2005; Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, et al., 2003). The highest local resolution has been obtained 
by airborne hyperspectral sensors and LiDAR, which have been used 
to map forest properties such as canopy height, above‐ground car‐
bon stocks and canopy chemistry at the regional extent (Asner et 
al., 2015, 2013, 2014). However, floristic patterns at the basin‐wide 
extent remain to be clarified.

Here we have two main objectives. Firstly, we document the 
main floristic gradients across the Amazon basin and their envi‐
ronmental correlates. Secondly, we assess to what degree these 
floristic and environmental patterns can be identified and mapped 
across the basin. We address these questions using a combination 
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of an extensive field dataset (1,572 plots with data on ferns, lyco‐
phytes and soils), climatic data layers and a basin‐wide composite of 
Landsat imagery. Finally, we draw some ecological and biogeograph‐
ical conclusions from the results and derive a floristic subdivision of 
Amazonia to stimulate further research on this topic.

2  | MATERIAL AND METHODS

2.1 | Floristic, environmental and remotely sensed 
data

We combined floristic and soil data collected independently by 
two teams, the Amazon Research Team of the University of Turku 
(UTU) and the Brazilian Program in Biodiversity Research (PPBio). 
When put together, these inventories span across a large part of the 
Amazon basin and cover an elevation range of about 50–600 m.

The field sampling protocols of the two teams were slightly differ‐
ent. The PPBio dataset consists of 309 plots of 2 m by 250 m (500 m2) 
that follow the terrain contours to avoid local topographical variation 
(Magnusson et al. 2005). Of these, 102 originated from four perma‐
nent PPBio grids, where the plots were placed at 1‐km intervals, and 
the rest were more scattered. The UTU dataset consists of 388 line 
transects that were 2 m or 5 m wide and either 500 m, 1,300 m or 9.8–
43 km long (Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, et al., 2003). They followed a predetermined compass bear‐
ing, thus crossing the local topographical variation. For the purposes 
of the present paper, we subdivided the UTU transects into contig‐
uous non‐overlapping subunits that as closely as possible matched 
the plot size in the PPBio dataset, i.e. either 5 m by 100 m (500 m2) 
or 2 m by 200 m (400 m2). We retained those 1,263 transect sub‐
units (plots) in which at least one soil sample had been collected. The 
500‐m‐transects yielded 1–3 plots each (374 transects, 1,015 plots), 
the 1,300‐m‐transects 1–13 plots each (8 transects, 68 plots) and the 
longer transects about 1 plot for each km of transect length (6 tran‐
sects, 180 plots). In total, 1,572 plots from 697 separate transects 
were available for analysis. The vast majority of these represent non‐
inundated terra firme forests, but some were situated in intervening 
swamps or floodplains of small rivers. All plots were georeferenced 
using coordinates obtained in the field with hand‐held GPS devices.

Within each of the 1,572 plots, terrestrial fern and lycophyte 
individuals that had at least one leaf (leafy stem in the case of lyco‐
phytes) longer than 10 cm were recorded. Species that are mostly 
epiphytic or hemiepiphytic were excluded. We focused on ferns and 
lycophytes because these are of moderate size, relatively abundant 
and not too species‐rich, which made it possible to obtain floristi‐
cally representative samples from many sites. At local to landscape 
extents, their species turnover patterns have been found to closely 
mirror both species turnover patterns in other plants (including trees) 
and differences in soils (Duque et al., 2005; Higgins et al., 2011; 
Jones et al., 2013; Pansonato et al., 2013; Ruokolainen et al., 2007; 
Tuomisto et al., 2016; Vormisto, Phillips, Ruokolainen, Tuomisto, 
& Vásquez, 2000). Since ferns and lycophytes have high dispersal 
ability, they may indicate geoecological patterns more reliably but 

suggest less biogeographical differentiation across Amazonia than 
more dispersal‐limited plants would (Tuomisto, Ruokolainen, & Yli‐
Halla, 2003).

Voucher specimens of each species were collected during each 
field campaign for verification of species identifications. Vouchers 
are deposited in one or two herbaria in the country of origin (AMAZ, 
USM and/or CUZ in Peru, QCA and QCNE in Ecuador, COAH in 
Colombia, SP and/or INPA in Brazil, CAY in French Guiana) and for 
the UTU data also in TUR (herbarium acronyms according to Thiers, 
continuously updated). Initial identifications were done for the UTU 
and PPBio datasets separately, but identifications were harmonized 
by H.T. and G.Z. on the basis of either the vouchers themselves or 
photographs of them. Several species pairs or species complexes 
were so similar that they could not always be reliably separated in 
the field. These were lumped to ensure a consistent taxonomy over 
the entire dataset (for simplicity, both true species and species com‐
plexes will be referred to as species).

Composite samples of the surface soil (top 5 or 10 cm after re‐
moving the litter layer, 5–6 subsamples) were collected within each 
plot for chemical and textural analyses. In the PPBio plots, the sub‐
samples were taken at 50-m intervals along the long axis of the plot. 
In the UTU plots, each soil sample was taken within an area of about 
5 m by 5 m, but the samples collectively represented different topo‐
graphical positions within a transect. Further details on the field and 
laboratory methodology are available in earlier studies (Tuomisto, 
Poulsen, et al., 2003; Tuomisto, Ruokolainen, Aguilar, et al., 2003; 
Tuomisto et al., 2017; Zuquim et al., 2014). When two soil samples 
were available for the same UTU plot, we averaged their measure‐
ment values for the analyses. Here, we focus on the sum of the con‐
centrations of exchangeable Ca, Mg and K (measured in cmol(+)/
kg), which we will refer to as base cation concentration. All analyses 
were carried out using logarithmically transformed values (logCat). 
This variable was chosen because earlier studies have found its re‐
lationship with plant species composition and changes therein to be 
consistently strong, even when the relationships with the individual 
cations have varied among regions (Higgins et al., 2011; Ruokolainen 
et al., 2007; Tuomisto et al., 2016; Tuomisto, Poulsen, et al., 2003; 
Zuquim et al., 2014).

Although digital soil maps exist (Hengl et al., 2017), they do not 
provide layers of soil base cation concentration. The digitally avail‐
able variables, such as soil type and cation exchange capacity have 
had only weak relationships with field‐measured base cation con‐
centration (Moulatlet et al., 2017). Therefore, we used Landsat imag‐
ery as a surrogate, since earlier studies at the landscape extent have 
found them useful for identifying spatial heterogeneity in soils and 
soil‐related floristic patterns (Higgins et al., 2012, 2011; Salovaara 
et al., 2005; Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, et al., 2003).

Landsat image analyses across all Amazonia were made possi‐
ble by a recent basin‐wide composite of Landsat TM/ETM+ images. 
The composite is based on more than 16,000 sufficiently cloud‐free 
acquisitions from the 10‐year period 2000–2009, and it has already 
been shown to predict soil base cation concentration relatively 
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well (Van doninck & Tuomisto, 2018). Technical details on how the 
image composite was produced have been described elsewhere 
(Van doninck & Tuomisto, 2017a,2017b,2018). Climatic data (19 
bioclimatic variables) at 30 arcsec resolution (approximately 1 km) 
were obtained from the Climatologies at High Resolution for the 
Earth's Land Surface Areas (CHELSA, Karger et al., 2017) (http://
chelsa-clima​te.org/).

2.2 | Data analyses

To identify floristic gradients, we first calculated compositional dis‐
similarities among the plots using the Sørensen index, which is the 
presence‐absence version of the Bray‐Curtis index. Almost 30% of 
the dissimilarity values were saturated to the maximum value of 
unity, so we used the extended (step across) version of the index 
in order to obtain ecologically realistic dissimilarities between the 
plots that shared no species (De'ath, 1999; Tuomisto, Ruokolainen, 
& Ruokolainen, 2012). Then we performed an ordination based on 
Principal Coordinates Analysis (PCoA) to visualize the main floris‐
tic gradients. We used univariate linear regression analysis to assess 
the degree to which each of the first three PCoA axes (PCoA 1–3) 
were related to the explanatory variables (log‐transformed soil base 
cation concentration, bioclimatic variables and reflectance values in 
the Landsat TM/ETM+ composite).

Landsat bands 1 (blue) and 2 (green) were not used because they 
were very noisy due to residual atmospheric contamination. For the 
remaining visible band 3 (red) and the near to shortwave infrared 
bands 4, 5 and 7, we extracted the reflectance values correspond‐
ing to the coordinates of each plot in three different ways: (a) full‐
resolution data at 1 arcsec (approximately 30 m) resolution, (b) data 
retaining the full resolution but filtered by passing a moving widow 
of 15 by 15 pixels over the image and assigning to each pixel the 
median value from the window centred on it, and (c) low resolution 
data obtained by coarsening the resolution to pixels of 15  arcsec 
(approximately 450 m) by assigning to each new pixel the median 
value from the corresponding 15 by 15 original pixels. Non‐forested 
pixels were masked using an unsupervised k‐means clustering with 
post‐classification interpretation based on visual inspection of spec‐
tral signature and spatial distribution. For (a) and (b), masking was 
based on the original full‐resolution data, for (c) it was based on the 
coarsened pixels.

Many of the CHELSA variables were mutually highly correlated. 
To keep a reduced but representative set of climate variables for 
modelling, we calculated the variance inflation factor (VIF) for all 19 
variables. Then we iteratively excluded the variable with the highest 
VIF and recalculated VIF for the remaining variables until none of the 
VIF values exceeded 50. All analyses were then based on the remain‐
ing eleven CHELSA variables. These represented temperature vari‐
ability (Bio 2–4), mean temperature (Bio 8, 9, 11), mean precipitation 
(Bio 13, 14, 18, 19) and precipitation variability (Bio 15).

To formally model floristic and soil gradients across the Amazon 
basin, we constructed generalized linear models (GLMs) with each 
of the PCoA axes 1–3 and logCat as the response variable in turn. 

GLMs using different combinations of predictor variables were 
tested by randomly dividing the data into ten folds and using each 
fold as an independent test set in turn. Adjacent plots that were part 
of the same field transect were allowed to go to separate folds only 
if the distance between them was at least 1 km. We also evaluated 
elevation from SRTM digital elevation model and textural data lay‐
ers obtained from standard deviations within the window of Landsat 
pixels as predictive variables. GLMs using the Landsat median val‐
ues, CHELSA variables and both together were applied over the en‐
tire Amazon basin in order to produce predictive maps of the main 
floristic gradients (PCoA axes 1–3). The predictive maps were then 
classified using an implementation of k‐medoids clustering for large 
applications (CLARA).

All analyses were carried out in R version 3.4.1 (R Core Team, 
2017) using the packages “raster” for raster image analysis (Hijmans, 
2017), “vegan” for ordinations (Oksanen et al., 2017), “cluster” for 
unsupervised clustering (Maechler, Rousseeuw, Struyf, Hubert, & 
Hornik, 2016), and “stats” for GLM (R Core Team, 2017).

3  | RESULTS

3.1 | Amazonian heterogeneity as seen from space

The Landsat TM/ETM+ colour composite reveals a tapestry of 
broad‐scale variation in canopy reflectance characteristics across 
Amazonia (Figure 1; unannotated version can be found in Appendix 
S1: Figure S1a in Supporting Information). The parallel Landsat 
flight paths remain to some degree visible in the red band 3 (as‐
signed to the blue colour channel in Figure 1 and Figure S1a). This 
is because correction of atmospheric effects in the image compos‐
ite was not perfect, and the shorter visible wavelengths are more 
affected by scattering caused by aerosols than the longer infrared 
ones. The false colour composite based on the infrared bands 4, 
5 and 7 is virtually seamless (Figure S1b). Nevertheless, adding a 
visible wavelength improves the separability of nuances, as the in‐
frared bands are highly correlated with each other (Appendix S1: 
Figure S2).

Several known geo‐ecological entities of floristic relevance 
can be recognized in the raw Landsat composite. Some of the 
most notable ones correspond to traditionally recognized vege‐
tation formations, including the heterogeneous floodplain for‐
ests along major rivers, swamp forests like those in the Pastaza 
fan (“Pas” in Figure 1; Räsänen et al., 1992), bamboo‐dominated 
forests like those in Acre (“Bam”; Carvalho et al., 2013), and 
white‐sand forests like those in the upper Rio Negro basin (“WS”; 
Adeney, Christensen, Vicentini, & Cohn‐Haft, 2016). Other recog‐
nizable features include the floristic turnover zone that has been 
suggested to correspond to the limit between the Solimões and 
Içá formations (“S” and “I”, respectively; Higgins et al., 2011; 
Schobbenhaus et al., 2004; Tuomisto et al., 2016), the Brazilian 
and Guyanan Precambrian shields (“Bra” and “Gui”, respectively) 
and sandy megafan formations in Roraima (“MF”; Rossetti, Cassola 
Molina, & Cremon, 2016).

http://chelsa-climate.org/
http://chelsa-climate.org/
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3.2 | Floristic gradients and their environmental 
relationships

To obtain a general idea of the ecological drivers of floristic variation 
across the Amazon basin (Figure 2a), we first identified the main gra‐
dients in fern and lycophyte species composition using PCoA ordi‐
nation (Figure 2b). The main spatial pattern at the basin‐wide extent 
was that western Amazonia was very heterogeneous in both floristic 
composition and soil base cation concentration with many plots hav‐
ing high values, whereas most plots from central Amazonia had low 
values for both PCoA axis 1 and soil base cation concentration.

Indeed, the strongest floristic gradient was tightly related to 
base cation concentration in the soil: a simple linear regression with 
logCat as the predictor variable explained 75% of the variation in the 
ordination scores along PCoA axis 1 (Figure 2c; Table 1). Adding ei‐
ther filtered Landsat spectral data, CHELSA climatic data or both to 
GLMs that already included soil base cation concentration increased 
mean cross‐validated predictive power only by 4–7% (R2 = 79–82%). 
Without soil cation concentration in the model, mean predictive 
power in cross‐validation was 47% with filtered Landsat spectral 
values, 38% with CHELSA climatic values and 58% with both to‐
gether (Table 1). Soil base cation concentration was almost as well 
predicted as the first floristic gradient by the Landsat data, but the 
contribution of the climatic data was less in the case of soils in both 

absolute and relative terms. This supports the use of Landsat data as 
a surrogate for mostly soil‐related environmental gradients (Table 1 
and Table S1, Figures S3 and S4). Elevation as derived from SRTM 
and textural data from Landsat had little predictive power (Table S1).

The original Landsat resolution (30 m) gives fine detail that al‐
lows visual interpretation of the landscape. For example, Figure 3a 
clearly shows ridge‐swale structures in the river floodplain, creeks 
in non‐inundated terrain and the extents of the Içá Formation (dark 
green–brown), Solimões Formation (pale bluish gray) and their tran‐
sition zone (pink–orange). These patterns get blurred when pixels are 
aggregated by factor 15 (Figure 3c), with the filtered image being 
intermediate (Figure 3b). However, at the 30‐m resolution there is 
so much local variation in pixel values that the predictive power of 
GLMs for PCoA axis 1 was clearly lower when based on Landsat data 
with original 30‐m pixels (R2=21%) than when based on the filtered 
data (R2 = 47%; Table 1 and Table S1). When projected on a map, 
the predictions obtained using the original pixels were clearly noisier 
and provided a poorer contrast among the floristically and edaph‐
ically different kinds of forest than predictions obtained with the 
filtered or coarsened data did (Figure 3d–i).

The second floristic gradient formed a west‐to‐east spatial trend. 
Correspondingly, PCoA axis 2 was related to many bioclimatic vari‐
ables, with the maximum temperature of the warmest month (Bio5) 
providing the best explanatory power (R2 = 42%) in a univariate linear 

F I G U R E  1  Pixel‐based Landsat TM/ETM+ composite over Amazonia, based on all Landsat images acquired in July–September during the 
10‐year period 2000–2009. For this quick view image, the original 30‐m image resolution has been coarsened by gridding to 450 m, with 
each grid cell given the median reflectance value of each band from the 15 by 15 pixels corresponding to the grid cell. Red, green and blue 
have been assigned, respectively, to bands 4, 7 and 3. Areas that were either classified as non‐forest on the basis of the reflectance data 
or are above 600 m elevation have been masked out and appear white. Pas: Pastaza fan; Bam: bamboo forest, S: Solimões Formation; I: Içá 
Formation; WS: white sands; MF: megafans; Gui: Guiana shield; Bra: Brazilian shield. Versions without the elevation limit and free of the 
annotation of both this colour composite and a colour composite based on bands 4, 5 and 7 are available in Figure S1
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regression (Figure 2d; Figure S4). Indeed, GLM models with CHELSA 
climate variables had mean predictive power of 48% in cross‐validation. 
Adding Landsat variables to the model only increased predictive power 
marginally (to 49%). This indicates that PCoA axis 2 is mainly a climatic 

gradient. Landsat variables on their own explained less than 10% of the 
variation along PCoA axis 2, and soil base cation concentration none at 
all (Table 1 and Table S1). The third PCoA axis was mostly predicted by 
the climatic variables, although not very well (R2 = 16%).

F I G U R E  2   (a) Map of 1,572 Amazonian plant inventory plots used in the analyses. (b) Principal Coordinates Analysis (PCoA) ordination 
based on floristic dissimilarities between the 1,572 plots (presence‐absence data of terrestrial ferns and lycophytes, extended Sørensen 
dissimilarity). (c) Relationship between the first floristic PCoA axis and soil base cation concentration as measured from soil samples taken 
in each plot. (d) Relationship between the second PCoA axis and maximum temperature of the warmest month as modelled by the CHELSA 
variable Bio5. (e–h) Same as (a–d), but with all analyses based on a subset of two regions, together containing 398 plots, to show graphs 
with less cluttering. These regions were selected because they are far apart but have analogous geological settings. In all panels, colours 
indicate the different geographical regions and symbol size is proportional to log‐transformed concentration of exchangeable base cations 
(Ca, Mg, K) in the soil. The first three axes in the ordination of the full dataset account for 38%, 13% and 8% of the total variation and in the 
ordination of the two regions for 51%, 11% and 7%
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R2 = 0.25 ***

TA B L E  1  The degree to which floristic ordination axes (PCoA shown in Figure 2b) and soil base cation concentration can be modelled 
with data derived from a Landsat TM/ETM+ image composite, the 11 CHELSA climate variables that were sufficiently uncorrelated with each 
other to have VIF < 50, and logarithmically transformed soil base cation concentration as measured from soil samples taken in each field plot 
(logCat). Adjusted R2 (in %) is given for the linear regression between GLM-predicted and measured values. “All R2” refers to the fit of a GLM 
model that uses all field plots, “Test R2” gives the average of R 2 values obtained using cross‐validation. Here, the plots were randomly divided 
into ten folds, each of which was used as an independent validation dataset in turn. Plots from the same transect were kept in the same fold if 
their distance was less than 1 km. PCoA, Principal Coordinates Analysis; Landsat 30, single pixel values at the field plot locality; Landsat 450, 
median of 15 by 15 pixel windows centred on the field plot; VIF, Variance Inflation Factor; GLM, Generalized Linear Model

Predictors

logCat PCoA axis 1 PCoA axis 2 PCoA axis 3

All R2 Test R2 All R2 Test R2 All R2 Test R2 All R2 Test R2

Landsat 30 15 15 21 21 6 7 3 4

Landsat 450 42 41 48 47 10 11 5 6

CHELSA 30 28 40 38 48 48 17 16

Landsat 450 + CHELSA 49 46 60 58 50 49 18 16

logCat 75 74 0 1 0 2

Landsat 450 + logCat 79 78 10 11 9 9

CHELSA + logCat 80 79 50 50 20 18

Landsat 450 + CHELSA + logCat 83 82 51 50 22 20
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The environmental relationships of the first two floristic gradi‐
ents become even clearer when two subsets of the data are com‐
pared, one from the Tigre river basin in the west and the other from 
the Juruá river basin about 1,000 km further south‐east (Figure 2e). 
Ordination of the plots from the two regions revealed that they span 
about the same range along PCoA axis 1 but are to some degree 
shifted in relation to each other along PCoA axis 2 (Figure 2f). The 
edaphic gradients covered by the plots were rather similar in both 
regions, and the relationship between the main floristic gradient 
(PCoA 1) and soil base cation concentration was even tighter than in 
the full dataset (compare Figure 2g with Figure 2c). The geograph‐
ical distance between the Tigre and Juruá regions is related to dif‐
ferences in several of the CHELSA climatic variables. Compared to 
all of Amazonia, the climatic variation within and between the Tigre 
and Juruá areas is small, and the second PCoA axis was more weakly 
explained by the maximum temperature of the warmest month than 
in the case of the full dataset (compare Figure 2h with Figure 2d).

3.3 | Predicting species composition

The map based on the combined Landsat + CHELSA GLM suggests 
a general compositional difference between central–north‐west‐
ern Amazonia (blue–green in Figure 4a) and the peripheral areas 

(red–orange in Figure 4a). Much of this pattern is due to the strong 
spatial structure in predicted PCoA axis 1, which is assigned to red 
in Figure 4a and is highly correlated with soil base cation concen‐
tration. Indeed, the same pattern is even more clear in Figure 4b, 
which shows predictions for axis 1 using Landsat data only. Many of 
the known geological and vegetation characteristics already men‐
tioned above (Pastaza fan, bamboo forests, Içá‐Solimões boundary) 
were recovered in the PCoA axis 1 scores predicted by Landsat data 
(Figure 4b). Since these formations are not related to climatic dif‐
ferences, they became somewhat blurred when CHELSA data were 
included in the model (Figure 4a) even though the overall predictive 
power increased (Table 1).

A secondary general pattern can be identified as a NW–SE trend 
in core Amazonia. This emerged especially from variation in the pre‐
dicted scores along PCoA axes 2 and 3, which in turn were mostly 
explainable by the climatic CHELSA data.

Zooming in to the regional scale highlights the inherent dif‐
ferences between the Landsat and CHELSA data. Patterns in the 
Landsat predictions can be easily related to local to regional land‐
scape features that are also identifiable in the original Landsat image. 
For example, in the false‐colour Landsat composite (Figure 5a) the 
swamp forests of the Pastaza fan are distinguishable as dark red‐
brown patches, and the limit between the forests growing on the 

F I G U R E  3  Terrain characteristics from a site along the middle Juruá River in Amazonia (midpoint at 68.764°W, 6.400°S). (a–c) False 
colour composite (bands 4, 5 and 7) of the Landsat TM/ETM+ imagery at full resolution (a), full resolution filtered by assigning each 
pixel the median value of the 15‐by‐15‐pixel window centred on it (b) and coarsened to 450‐m resolution (15‐by‐15‐pixel grid) (c). In the 
non‐inundated areas north of the Juruá floodplain, dark green–brown corresponds to the Içá Formation, pale bluish gray to the Solimões 
Formation and pink–orange to their transition zone. (d–f) Values predicted for PCoA axes 1–3 on the basis of GLMs trained with the 
Amazon‐wide fern and lycophyte ordination data shown in Figure 2b. Axis 1 is assigned to red, axis 2 to green and axis 3 to blue. Predictions 
in each panel are based on the reflectance values from the colour composite above it. (g–h) Same as (d–f), but only values predicted for PCoA 
axis 1 are shown with blue corresponding to low values and red to high values. Each black circle represents one field plot with diameter 
proportional to log‐transformed soil base cation concentration. Colour schemes are the same for all panels on the same row. Panel (c) is a 
detail of Figure S1b and panel (i) of Figure 4b. GLM, generalized linear model; PCoA, Principal Coordinates Analysis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Nauta and Pebas Formations (dark green vs. lighter green with pink‐
ish tint) is clearly visible. The same patterns appear as contrasting 
predictions for PCoA axis 1 scores when only Landsat data are used 
(Figure 5c). In contrast, climate varies much more gradually across 
space, so the patterns produced by climatic models have a weaker 
relationship with the local landscape (Figure 5b,d).

On the basis of the GLM‐predicted floristic PCoA axes, we di‐
vided Amazonia into different numbers of geoecological classes 
using k‐medoid clustering (CLARA). The number of classes that is 

chosen for use is of course arbitrary, but since large areas are en‐
tirely devoid of field data, we chose to focus on the broad‐scale pat‐
terns and a relatively small number of classes. We found the solution 
with eight classes to provide a decent compromise between recog‐
nizing the most distinctive known macrounits and avoiding the cre‐
ation of classes that cannot be substantiated with the data available 
to us (Figure 6). Further subdivision not only resulted in spatially very 
fragmented classes, but also produced boundaries that looked arti‐
factual (e.g., by exactly following a line separating two temperature 
values in CHELSA). The resulting map is here presented as a hypoth‐
esis of a geoecological subdivision of Amazonia that can be further 
tested and refined with additional field and remote sensing data.

4  | DISCUSSION

4.1 | Determinants of plant species composition in 
Amazonia

In general, it is assumed that climate determines species distribu‐
tion patterns at broad scales, and the effect of soils becomes no‐
ticeable at regional to local scales. However, we found that across 
entire Amazonia, the strongest floristic gradient in our field data 
corresponds to an edaphic gradient: a single soil variable (concen‐
tration of exchangeable base cations) explained as much as 75% 
of the variation in PCoA axis 1 values of ferns and lycophytes. It 
is likely that if other important soil properties could be included, 
such as phosphorus and nitrogen concentration or hydrology, the 
percentage of variation explained by soils would be even higher. 
This considerably expands the conclusions from earlier studies that 
have documented soils to be important for plant species turnover at 
regional extents in Amazonia (Baldeck et al., 2016; Cámara‐Leret, 
Tuomisto, Ruokolainen, Balslev, & Munch Kristiansen, 2017; Higgins 
et al., 2011; Pansonato et al., 2013; Phillips et al., 2003; Ruokolainen 
et al., 2007; Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, et al., 2003; Tuomisto, Ruokolainen, & Yli‐Halla, 2003; 
Zuquim et al., 2012, 2014).

Although soils explained the strongest floristic gradient in our 
data, climatic variables were also important. Their unique contribu‐
tion was mostly in explaining the secondary floristic gradients (PCoA 
axes 2 and 3), for which soil base cation concentration provided no 
explanatory power at all. The relative importance of explanatory 
variables partly reflect the degree to which each of them varies in 
relation to the tolerances of the species of interest. Our entire study 
area is within the climatic space of moist tropical lowland forests and 
this may be a shorter gradient for plants than the observed edaphic 
one. In addition, soil base cation concentrations were measured from 
soil samples collected in the same plots as the floristic data. This may 
give a more accurate estimate of the conditions experienced by the 
plants than is the case with the CHELSA climatic variables, which 
have been derived from global climate models.

Because earlier studies have found strong edaphic relationships 
in many plant groups (ranging from canopy trees to understorey 
herbs), we suggest that soil variation needs to be taken into account 

F I G U R E  4  Colour composites over Amazonia showing 
GLM‐predicted values for the PCoA axis scores of the fern and 
lycophyte ordination shown in Figure 2b. (a) Predictions based on 
both Landsat TM/ETM+ surface reflectance and CHELSA climate 
variables for the scores of PCoA axes 1, 2 and 3 (assigned to red, 
green and blue, respectively). (b) Predictions based on Landsat 
reflectance data only for the scores of PCoA axis 1 (shown in a 
colour gradient ranging from blue for low axis scores through 
yellow to red for high axis scores). The 1,572 field study plots 
used to parameterize the GLM models are shown as circles in 
(b), with diameter proportional to log‐transformed base cation 
concentration in the soil. Pixels predicted to have extreme PCoA 
axis values (below −1.2 or above 1.2) were masked and appear in 
white (in addition to the areas masked already in Figure 1). GLM, 
generalized linear model; PCoA, Principal Coordinates Analysis
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as a potentially important factor in all discussions about the distri‐
butional patterns of Amazonian plants. In particular, it can be ex‐
pected that areas with contrasting soil properties have contrasting 
floristic compositions, and that the effects of dispersal limitation will 
accentuate if two areas with similar soils are separated by large ex‐
panses of different soils. These issues are especially important when 
considering how species distributions may be affected by deforesta‐
tion or climate change: natural heterogeneity in soils may reduce the 
availability of suitable habitats even more than would be expected 
from deforestation or climate change scenarios alone (Figueiredo et 
al., 2018; Zuquim, Costa, Tuomisto, Moulatlet, & Figueiredo, 2019).

4.2 | Modelling species composition

The Landsat composite revealed clear geographical patterns, many 
of which obviously correspond to major geological formations. At 
the same time, the reflectance values provided reasonable predic‐
tions of both soil base cation concentration and the most important 
floristic gradient (PCoA axis 1) of understorey ferns and lycophytes. 
This is noteworthy, because surface reflectance over dense forests 

is mainly determined by the tree canopy, not by soils or understorey 
plants. Therefore, such a strong relationship is only possible if the 
floristic patterns in the understorey are causally linked with those 
vegetation properties that determine reflectance (including floris‐
tic composition, structure and chemical properties of the canopy). 
It seems clear that in our study area the link is mediated mostly by 
soils. Of course, without further studies we cannot establish to what 
degree the reflectance patterns mirror species‐level differences in 
tree composition and to what degree similar structural or functional 
canopy properties on similar soils irrespective of species identity. 
Nevertheless, the causal chain from soils through vegetation to re‐
flectance seems robust enough to make it possible to use Landsat 
data to identify ecologically relevant geological limits in densely veg‐
etated areas.

The GLMs that used Landsat reflectance data predicted the main 
floristic gradient (fern and lycophyte PCoA Axis 1) better than they 
predicted soil base cation concentration. Landsat data also had some 
predictive power for PCoA axis 2, in contrast with soil base cation 
concentration, which had none. Both of these results are consistent 
with the idea that all plant groups react to both soils and climate in 

F I G U R E  5  Landscape patterns in 
north‐western Amazonia as modelled 
with either reflectance values from a 
Landsat TM/ETM+ image composite 
or bioclimatic variables from CHELSA. 
(a) Landsat colour composite based on 
bands 4, 5 and 7 assigned to red, green 
and blue, respectively. (b) CHELSA colour 
composite of three bioclimatic variables 
used to model PCoA axis 1 of the fern 
and lycophyte ordination shown in Figure 
2b (Bio8, Bio11 and Bio2 assigned to red, 
green and blue, respectively). (c, d) Results 
of modelling the main floristic gradient of 
the area (PCoA axis 1 of Figure 2b) with 
Landsat data only (c) or CHELSA data only 
(d). The modelled values are shown in a 
colour gradient ranging from blue (for low 
scores along PCoA axis 1) through yellow 
to red (for high values). Each black circle 
represents one field plot with diameter 
proportional to log‐transformed base 
cation concentration in the soil. Panel (a) 
is a detail of Figure S1b and panel (c) of 
Figure 4b. PCoA, Principal Coordinates 
Analysis

(a) (b)

(c) (d)
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ways that affect their floristic composition, structure and/or chem‐
ical properties, and that Landsat reflectance provides an integrated 
view of such environmental effects. Within Amazonia, Landsat re‐
flectance mostly mirrors soil variation because the soil gradients are 
longer than the climatic gradients when compared to the physiolog‐
ical tolerances of Amazonian plants.

In two areas, there is an apparent discrepancy between the 
predictions of the GLMs and the actual position of the sites along 
PCoA axis 1 and the soil base cation concentration gradient. One 
is the Pastaza fan area, which is fed by rivers that originate in the 
Ecuadorian volcanoes and carry a high load of cation‐rich sediments. 
All our soil samples from the fan have high base cation concentration 
(Figure 4b), but the area stands out as having low predicted PCoA axis 
1 values, corresponding to forests on cation‐poor soils. The Pastaza 
fan is very heterogeneous (Figure 5a,c), and our soil samples come 
from the narrow strips along the rivers that were, in fact, predicted 
to have high values. Soils further away from the rivers are probably 
both more cation‐poor and more waterlogged, as the Pastaza fan 
is dominated by swamp forests. These may have lower reflectance 
both because infrared wavelengths are absorbed by water and be‐
cause waterlogging makes swamps stressful environments, which 
can give them structural and chemical characteristics resembling 
those of forests on cation‐poor soils. Some of the swamps have even 
evolved into ombrotrophic peat bogs, which are nutrient‐limited in 
the same way as forests on white sand soils are, and have also been 
found to share structural characteristics and plant species (Draper et 
al., 2018; Lähteenoja & Page, 2011).

The second example is the opposite: the bamboo‐dominated 
forests in the border zone between southern Peru and adjacent 
Brazil have high infrared reflectance, which is generally indicative 

of relatively rapid growth and forests on high‐cation soils. Here, the 
estimates are probably exaggerated because of the bamboo in the 
canopy. Bamboo is a rapidly growing grass, and therefore can be ex‐
pected to have less sclerophyllous leaves and higher infrared reflec‐
tance than canopy trees do. Although the fern and lycophyte plots 
we have from this area have cation‐rich soils and a corresponding 
flora, the PCoA axis 1 predictions are more extreme than the floristic 
composition of the understorey would suggest.

4.3 | Basin‐wide floristic mapping and the role of 
medium resolution multispectral imagery

Biodiversity studies covering all Amazonia have not used me‐
dium‐resolution multispectral imagery, which is likely due to two 
main problems. Firstly, atmospheric contamination and persistent 
cloud cover hamper combining scenes acquired at different times. 
Secondly, directional scattering of sunlight by the canopy surface 
causes an artifactual along‐scan (east‐west) gradient in pixel val‐
ues, which can cause spectral differences as large as those between 
compositionally different forest types (Muro et al., 2016; Toivonen, 
Kalliola, Ruokolainen, & Naseem Malik, 2006). However, recent 
advances in open data access policies (Woodcock et al., 2008), 
cloud screening and atmospheric correction algorithms (Masek et 
al., 2006), and directional normalization (Van doninck & Tuomisto, 
2017a) now make it possible to construct seamless medium resolu‐
tion image composites with a reasonably high signal‐to‐noise ratio 
over large areas (Van doninck & Tuomisto, 2018).

In the Landsat composite (Figure 1), reflectance variation mostly 
corresponds to identifiable surface features. Our modelling results 
(Table 1) confirmed that multispectral surface reflectance data 

F I G U R E  6  Classification of Amazonia 
into eight geoecological classes based 
on pixel‐wise predictions of floristic 
ordination scores (PCoA axes 1–3 
obtained with ferns and lycophytes; 
Figure 2b). Predictions were based on the 
same GLM as Figure 4a, which includes 
both Landsat reflectances and CHELSA 
bioclimatic variables as predictors. Black 
dots indicate the locations of the field 
plots that were used in the ordination. 
GLM, generalized linear model; PCoA, 
Principal Coordinates Analysis
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layers make a useful contribution to modelling understorey fern 
and lycophyte species composition at the basin‐wide extent, com‐
plementing information that can be obtained from climate variables. 
This is in accordance with results of several studies carried out at rel‐
atively small extents (Buermann et al., 2008; Chaves, Ruokolainen, 
& Tuomisto, 2018; Figueiredo, Venticinque, Figueiredo, & Ferreira, 
2015; Higgins et al., 2012, 2011; Salovaara et al., 2005; Thessler et 
al., 2005; Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, 
Aguilar, et al., 2003). New generation medium‐resolution multi‐
spectral instruments with improved spectral and radiometric reso‐
lution (Landsat 8 OLI, Sentinel‐2) can be expected to be even more 
valuable for these applications. Consequently, we disagree with the 
suggestion that the spatial and spectral resolution of this type of 
sensors would be inappropriate for studies on spatial distribution 
of biodiversity or trait variations (Lausch et al., 2016; Nagendra & 
Rocchini, 2008).

The choice of spatial resolution in remote sensing studies deter‐
mines what information on biodiversity can be gained (Anderson, 
2018; Rocchini et al., 2016). Our results show that when the aim is 
to map broad‐scale patterns in floristic composition, valuable infor‐
mation can be extracted without high‐resolution imagery. Even at 
medium resolution, a single image pixel is about the size of a large 
tree crown or a treefall gap in a tropical forest. This causes a high 
degree of local variability, because adjacent pixels can represent 
different phases of gap dynamics in different proportions, which 
makes the identification of general patterns more difficult. Filtering 
is the classical method for eliminating local noise and it has been 
used in earlier studies in Amazonia (Chaves et al., 2018; Salovaara 
et al., 2005). We indeed found that applying a 15‐pixel median filter 
considerably improved model performance, indicating that when the 
aim is broad‐scale floristic mapping, the high heterogeneity between 
adjacent 30‐m pixels is mostly noise.

Nevertheless, it is an advantage to have access to the medium‐
resolution data and not only coarse‐resolution data. Firstly, this al‐
lows spectral values to be extracted such that they are centred on 
the exact locality of field sampling points, rather than the field data 
being potentially marginally placed in relation to a large pre‐defined 
pixel. Secondly, there may be non‐forest land cover types such as 
roads, rivers or cultivated fields close to the field sampling locations. 
With coarse‐resolution imagery, these would lead to mixed pixels, 
but with medium resolution imagery, one can mask out the irrelevant 
pixels before extracting the reflectance values. Finally, medium res‐
olution data allows generating entropy or variability metrics, which 
may be indicative of local taxonomic diversity (Rocchini et al., 2018), 
even though here we found the simple standard deviation metric to 
be uninformative.

4.4 | Biogeographical inferences and practical 
applications

Our results show that Landsat reflectance can be used to gener‐
alize field data and to predict soil‐related floristic variation at the 
basin‐wide extent. Thereby, Landsat provides information that goes 

beyond and complements climatic data. Although our maps are 
based on modelling fern and lycophyte species compositional gradi‐
ents, patterns identified by Landsat are hardly specific to these un‐
derstorey plants. Therefore, we expect the information in our maps 
to be relevant for Amazonian biota more generally, including other 
plant groups and those animal groups that react to spatial variation 
in soil‐related forest properties. Further work is needed to test to 
what degree the patterns identified here apply for other taxa and 
in areas for which we had no field data. Nevertheless, this mapping 
approach is based on solid ecological principles and opens exciting 
possibilities for future ecological and biogeographical research with 
implications for how we view Amazonia and the threats it is facing.

In general terms, the classical division of Amazonia into four 
geochemically defined regions as proposed by Fittkau et al. (1975) 
is discernible in our results. In the geoecological classification of 
Figure 6, the red, pink and pale blue classes roughly correspond 
to western Amazonia, dark blue and green classes to central 
Amazonia, and orange and yellow classes to southern Amazonia 
and the Guiana Shield. However, the southern part of the western 
periphery appears both in the Landsat composite (Figure 1) and in 
the geoecological classification (Figure 6) as more related to south‐
ern Amazonia than to the northern parts of western Amazonia, 
thus supporting the subdivision of the latter as proposed by ter 
Steege et al. (2013).

The western limit of central Amazonia in our results coin‐
cides with a previously identified geological and floristic bound‐
ary (Higgins et al., 2011; IBGE, 2004; Schobbenhaus et al., 2004; 
Tuomisto et al., 2016). Central Amazonia as defined by ter Steege 
et al. (2013) extends further west than this, whereas in the north 
their boundary is south of the extensive white sand areas (Adeney et 
al., 2016; Quesada et al., 2011) that in both the Landsat composite 
and the geoecological classification associate with central Amazonia. 
The eastern Amazonian region recognized by ter Steege et al. (2013) 
around the mouth of the Amazon river stands out also in our Landsat 
composite (Figure 1), and was allocated to a different class than most 
of southern Amazonia (Figure 6). It must be noted, however, that 
lack of field data renders our results for this area (and for southern 
Amazonia in general) rather speculative.

The limits between geoecological subregions mostly did not fol‐
low major rivers, with the exception of the upper Rio Negro and, to 
some degree, the lower Amazon itself (Figures 1 and 6). Traditionally, 
the Amazon River and its main tributaries have been recognized as 
distributional limits for many animal species, and it has been sug‐
gested that the rivers function as dispersal barriers (Aleixo, 2006; 
Godinho & da Silva, 2018; Haffer, 1974; Nazareno, Dick, & Lohmann, 
2017; Pomara, Ruokolainen, & Young, 2014; Ribas et al., 2012; 
Wallace, 1852). Where a river coincides with habitat differences, it 
is difficult to disentangle the possible effects of a river barrier from 
those of habitat selection, but in areas where rivers and habitat lim‐
its do not coincide, the two hypotheses make different predictions 
depending on species vagility and degree of habitat specificity. This 
has an important practical consequence: any regional maps where 
category limits are drawn using rivers as boundaries (such as the 
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WWF ecoregion map; Olson et al., 2001) may only be relevant for 
river‐limited organisms.

A few recent studies have used Landsat data as environmental lay‐
ers in species distribution models (SDMs) over relatively small extents 
(Chaves et al., 2018; Figueiredo et al., 2015). Our results suggest that 
the same approach is feasible even at the basin‐wide extent (see also 
Van doninck & Tuomisto, 2018). For example, the modelled floristic 
gradient shown in Figure 4a allows making rather specific predic‐
tions about the potential distributions of plant species: only species 
tolerant of cation‐poor soils are expected to grow in the blue‐green 
areas in central Amazonia, while increasing redness in the map indi‐
cates increasing probability of occurrence for species requiring high 
cation availability. Until now, SDM has often been done using climatic 
variables only, and the few studies that have used digital soil maps 
(Figueiredo et al., 2018; Levis et al., 2017) may have underestimated 
the importance of soils due to the problems with thematic and spatial 
accuracy in the available soil maps (Moulatlet et al., 2017).

Because our models focus on the dominant floristic gradients 
only, and are based on plants with relatively good dispersal ability, 
they have been trained to emphasize environmental site conditions. 
The degree of floristic regionalization that emerges through isola‐
tion by distance is probably underestimated even for ferns and lyco‐
phytes, and more so for plant groups that are more dispersal‐limited. 
This will need to be taken into account when assessing the ecologi‐
cal and biogeographical significance of the subdivisions of Amazonia 
that emerge from our results (especially Figure 6). Our results pro‐
vide one geoecological view over Amazonia, and comparable studies 
using other plant groups are now needed to test this view.
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