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Abstract
Aim: To	map	and	interpret	floristic	and	geoecological	patterns	across	the	Amazon	basin	
by	combining	extensive	field	data	with	basin‐wide	Landsat	imagery	and	climatic	data.
Location: Amazonia.
Taxon: Ground	 truth	data	on	 ferns	 and	 lycophytes;	 remote	 sensing	 results	 reflect	
forest	canopy	properties.
Methods: We	used	field	plot	data	to	assess	main	ecological	gradients	across	Amazonia	
and	to	relate	floristic	ordination	axes	to	soil	base	cation	concentration,	Climatologies	
at	High	Resolution	 for	 the	Earth's	Land	Surface	Areas	 (CHELSA)	climatic	variables	
and	reflectance	values	from	a	basin‐wide	Landsat	image	composite	with	generalized	
linear	models.	Ordination	axes	were	then	predicted	across	all	Amazonia	using	Landsat	
and	CHELSA,	and	a	regional	subdivision	was	obtained	using	k‐medoid	classification.
Results: The	primary	floristic	gradient	was	strongly	related	to	base	cation	concen‐
tration	 in	 the	 soil,	 and	 the	 secondary	 gradient	 to	 climatic	 variables.	 The	 Landsat	
image	composite	revealed	a	tapestry	of	broad‐scale	variation	in	canopy	reflectance	
characteristics	across	Amazonia.	Ordination	axis	scores	predicted	using	Landsat	and	
CHELSA	variables	produced	spatial	patterns	consistent	with	existing	knowledge	on	
soils,	geology	and	vegetation,	but	also	suggested	new	floristic	patterns.	The	clearest	
dichotomy	was	between	central	Amazonia	and	the	peripheral	areas,	and	the	available	
data	supported	a	classification	into	at	least	eight	subregions.
Main conclusions: Landsat	data	are	capable	of	predicting	soil‐related	species	com‐
positional	 patterns	 of	 understorey	 ferns	 and	 lycophytes	 across	 the	Amazon	 basin	
with	surprisingly	high	accuracy.	Although	the	exact	floristic	relationships	may	differ	
among	plant	groups,	 the	observed	ecological	gradients	must	be	relevant	 for	other	
plants	as	well,	since	surface	reflectance	recorded	by	satellites	 is	mostly	 influenced	
by	the	tree	canopy.	This	opens	exciting	prospects	for	species	distribution	modelling,	
conservation	 planning,	 and	 biogeographical	 and	 ecological	 studies	 on	 Amazonian	
biota.	Our	maps	provide	a	preliminary	geoecological	 subdivision	of	Amazonia	 that	
can	now	be	tested	and	refined	using	field	data	of	other	plant	groups	and	from	hith‐
erto	unsampled	areas.
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1  | INTRODUC TION

Amazonian	rainforests	have	long	fascinated	biologists,	but	their	in‐
ternal	heterogeneity	 remains	poorly	understood.	One	of	 the	open	
questions	is	how	to	best	subdivide	them	into	floristically	and	biogeo‐
graphically	meaningful	units.	Such	subdivision	would	be	useful	 for	
biogeographical	 inferences,	conservation	planning,	and	forecasting	
potential	effects	of	climate	change	or	deforestation	on	species	dis‐
tributions	and	their	viability.

Amazonia	has	been	subdivided	into	areas	of	endemism	using	in‐
formation	about	species	and	subspecies	distributions	especially	for	
birds	(Cracraft,	1985;	Haffer,	1974;	Ribas,	Aleixo,	Nogueira,	Miyaki,	
&	Cracraft,	2012),	but	 the	 low	collecting	density	within	Amazonia	
necessarily	 renders	 maps	 based	 on	 species	 occurrence	 records	
speculative.	The	most	detailed	subdivision	of	Amazonia	is	probably	
the	WWF	ecoregion	map,	which	takes	into	account	both	landscape	
features	and	information	about	rivers	as	dispersal	barriers	(Olson	et	
al.,	2001).	Animal	distributions	and	abundances	have	been	found	to	
vary	 between	 seasonally	 inundated	 versus	 non‐inundated	 forests	
and	 even	 in	 response	 to	more	 subtle	 changes	 in	 soil	 productivity	
and	 floristic	 composition	 (Halme	 &	 Bodmer,	 2007;	 Peres,	 1999;	
Stevenson,	2014).	Therefore,	knowledge	on	floristic	variability	and	
related	environmental	heterogeneity	can	provide	the	kind	of	base‐
line	information	needed	to	understand	general	biogeographical	rela‐
tionships	and	ecological	patterns	across	Amazonia.

An	 early	 geochemical	 subdivision	 of	 Amazonia	 (Fittkau,	 Junk,	
Klinge,	&	Sioli,	1975)	recognized	four	major	regions:	central	Amazonia	
with	poor	sedimentary	soils,	western	Amazonia	with	richer	soils	de‐
rived	from	Andean	material,	and	northern	and	southern	peripheral	
regions	on	the	Precambrian	formations	of	the	Guyanan	and	Brazilian	
shields,	 respectively.	A	somewhat	more	detailed	classification	was	
used	by	ter	Steege	et	al.	(2013),	and	Sombroek	(2000)	drafted	a	clas‐
sification	focusing	on	soil	types.	In	these	cases,	the	authors	recog‐
nized	the	importance	of	geochemical	differences	for	vegetation	or	
species	richness	but	did	not	elaborate	on	how	floristic	composition	
might	have	varied	among	the	recognized	regions.

Floristic	studies	 in	the	past	few	decades	have	shown	that	spe‐
cies	 compositional	 patterns	 of	 many	 plant	 groups	 in	 Amazonia,	
including	 both	 trees	 and	 understorey	 plants,	 are	 linked	 to	 soil	
properties	 (Baldeck,	 Tupayachi,	 Sinca,	 Jaramillo,	 &	 Asner,	 2016;	
Duivenvoorden,	 1995;	 Higgins	 et	 al.,	 2012,	 2011;	 Pansonato,	
Costa,	de	Castilho,	Carvalho,	&	Zuquim,	2013;	Phillips	et	al.,	2003;	
Ruokolainen,	Tuomisto,	Macía,	Higgins,	&	Yli‐Halla,	2007;	Tuomisto	
et	al.,	2016;	Tuomisto,	Poulsen,	et	al.,	2003;	Tuomisto,	Ruokolainen,	
Aguilar,	 &	 Sarmiento,	 2003;	 Tuomisto,	 Ruokolainen,	 &	 Yli‐Halla,	
2003).	Soil	properties,	in	turn,	depend	to	a	large	degree	on	the	soil	
parent	material,	especially	its	mineralogy,	sedimentation	history	and	

the	time	it	has	been	exposed	to	weathering.	Therefore,	considering	
the	complex	geological	history	of	Amazonia	is	relevant	when	study‐
ing	 species	distributions	and	 floristic	variability.	Geological	 forma‐
tions	in	Amazonia	have	had	various	origins.	There	are,	for	example,	
Precambrian	cratonic	shields,	Miocene	semimarine	to	lacustrine	de‐
posits,	recent	deposits	of	material	from	Andean	volcanic	eruptions	
and	sediments	consisting	of	material	that	has	been	leached	to	var‐
ious	 degrees	 during	 cycles	 of	 fluvial	 sedimentation	 and	 resuspen‐
sion	(Fittkau	et	al.,	1975;	Hoorn,	1993;	Hoorn	et	al.,	2010;	Räsänen,	
Linna,	 Santos,	 &	 Negri,	 1995;	 Räsänen,	 Neller,	 Salo,	 &	 Jungner,	
1992;	Sombroek,	2000).	As	a	result,	Amazonian	soils	have	become	
highly	heterogeneous,	and	the	concentrations	of	major	plant	nutri‐
ents	in	them	vary	over	more	than	two	orders	of	magnitude	(Hengl	
et	al.,	2014;	Sanchez	&	Buol,	1974;	Tuomisto	et	al.,	2016;	Tuomisto,	
Ruokolainen,	&	Yli‐Halla,	2003).

Given	the	huge	spatial	extent	of	Amazonia,	any	mapping	effort	is	
faced	with	practical	difficulties,	especially	data	scarcity.	Some	stud‐
ies	on	forest	structural	properties	and	tree	species	richness	have	ap‐
plied	simple	spatial	interpolation	techniques	to	cover	areas	between	
field	sampling	points	(Stropp,	ter	Steege,	Malhi,	ATDN,	&	RAINFOR,	
2009;	 ter	Steege	et	 al.,	 2006,	2003).	Many	others	have	 taken	ad‐
vantage	 of	 the	 possibilities	 offered	 by	 remote	 sensing.	 For	 exam‐
ple,	data	from	coarse‐resolution	sensors	have	been	used	to	assess	
biomass,	productivity	and	 seasonality	 in	 leaf	production	across	all	
of	Amazonia	(Mitchard	et	al.,	2014;	Saatchi,	Houghton,	Dos	Santos	
Alvalá,	Soares,	&	Yu,	2007;	Saatchi	et	al.,	2009;	Wagner	et	al.,	2017).	
Vegetation	mapping	has	taken	advantage	of	radar	images	and	aerial	
photographs	to	identify	forest	types	that	differ	in	structural	and	ter‐
rain	characteristics	(Duivenvoorden	&	Lips,	1993;	Huber	&	Alarcón,	
1988;	Huber,	Gharbarran,	&	Funk,	1995;	IBGE,	2004).	Several	stud‐
ies	have	used	Landsat	data	to	predict	edaphic	properties	or	different	
aspects	of	plant	communities	(species	composition,	turnover	or	rich‐
ness)	over	landscape	extents	(Draper	et	al.,	2019;	Higgins	et	al.,	2012,	
2011;	Salovaara,	Thessler,	Malik,	&	Tuomisto,	2005;	Sirén,	Tuomisto,	
&	 Navarrete,	 2013;	 Thessler,	 Ruokolainen,	 Tuomisto,	 &	 Tomppo,	
2005;	 Tuomisto,	 Poulsen,	 et	 al.,	 2003;	 Tuomisto,	 Ruokolainen,	
Aguilar,	et	al.,	2003).	The	highest	local	resolution	has	been	obtained	
by	airborne	hyperspectral	sensors	and	LiDAR,	which	have	been	used	
to	map	forest	properties	such	as	canopy	height,	above‐ground	car‐
bon	stocks	and	canopy	chemistry	at	 the	 regional	extent	 (Asner	et	
al.,	2015,	2013,	2014).	However,	floristic	patterns	at	the	basin‐wide	
extent	remain	to	be	clarified.

Here	 we	 have	 two	 main	 objectives.	 Firstly,	 we	 document	 the	
main	 floristic	 gradients	 across	 the	 Amazon	 basin	 and	 their	 envi‐
ronmental	 correlates.	 Secondly,	 we	 assess	 to	 what	 degree	 these	
floristic	and	environmental	patterns	can	be	 identified	and	mapped	
across	the	basin.	We	address	these	questions	using	a	combination	
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of	an	extensive	field	dataset	 (1,572	plots	with	data	on	ferns,	 lyco‐
phytes	and	soils),	climatic	data	layers	and	a	basin‐wide	composite	of	
Landsat	imagery.	Finally,	we	draw	some	ecological	and	biogeograph‐
ical	conclusions	from	the	results	and	derive	a	floristic	subdivision	of	
Amazonia	to	stimulate	further	research	on	this	topic.

2  | MATERIAL AND METHODS

2.1 | Floristic, environmental and remotely sensed 
data

We	 combined	 floristic	 and	 soil	 data	 collected	 independently	 by	
two	teams,	the	Amazon	Research	Team	of	the	University	of	Turku	
(UTU)	 and	 the	Brazilian	Program	 in	Biodiversity	Research	 (PPBio).	
When	put	together,	these	inventories	span	across	a	large	part	of	the	
Amazon	basin	and	cover	an	elevation	range	of	about	50–600	m.

The	field	sampling	protocols	of	the	two	teams	were	slightly	differ‐
ent.	The	PPBio	dataset	consists	of	309	plots	of	2	m	by	250	m	(500	m2)	
that	follow	the	terrain	contours	to	avoid	local	topographical	variation	
(Magnusson	et	al.	2005).	Of	these,	102	originated	from	four	perma‐
nent	PPBio	grids,	where	the	plots	were	placed	at	1‐km	intervals,	and	
the	rest	were	more	scattered.	The	UTU	dataset	consists	of	388	line	
transects	that	were	2	m	or	5	m	wide	and	either	500	m,	1,300	m	or	9.8–
43	km	long	(Tuomisto,	Poulsen,	et	al.,	2003;	Tuomisto,	Ruokolainen,	
Aguilar,	et	al.,	2003).	They	followed	a	predetermined	compass	bear‐
ing,	thus	crossing	the	local	topographical	variation.	For	the	purposes	
of	the	present	paper,	we	subdivided	the	UTU	transects	into	contig‐
uous	non‐overlapping	 subunits	 that	 as	 closely	 as	possible	matched	
the	plot	size	in	the	PPBio	dataset,	i.e.	either	5	m	by	100	m	(500	m2)	
or	2	m	by	200	m	 (400	m2).	We	retained	those	1,263	transect	sub‐
units	(plots)	in	which	at	least	one	soil	sample	had	been	collected.	The	
500‐m‐transects	yielded	1–3	plots	each	(374	transects,	1,015	plots),	
the	1,300‐m‐transects	1–13	plots	each	(8	transects,	68	plots)	and	the	
longer	transects	about	1	plot	for	each	km	of	transect	length	(6	tran‐
sects,	180	plots).	 In	 total,	1,572	plots	 from	697	separate	 transects	
were	available	for	analysis.	The	vast	majority	of	these	represent	non‐
inundated	terra	firme	forests,	but	some	were	situated	in	intervening	
swamps	or	floodplains	of	small	rivers.	All	plots	were	georeferenced	
using	coordinates	obtained	in	the	field	with	hand‐held	GPS	devices.

Within	 each	 of	 the	 1,572	 plots,	 terrestrial	 fern	 and	 lycophyte	
individuals	that	had	at	least	one	leaf	(leafy	stem	in	the	case	of	lyco‐
phytes)	 longer	than	10	cm	were	recorded.	Species	that	are	mostly	
epiphytic	or	hemiepiphytic	were	excluded.	We	focused	on	ferns	and	
lycophytes	because	these	are	of	moderate	size,	relatively	abundant	
and	not	 too	species‐rich,	which	made	 it	possible	 to	obtain	 floristi‐
cally	representative	samples	from	many	sites.	At	local	to	landscape	
extents,	their	species	turnover	patterns	have	been	found	to	closely	
mirror	both	species	turnover	patterns	in	other	plants	(including	trees)	
and	 differences	 in	 soils	 (Duque	 et	 al.,	 2005;	 Higgins	 et	 al.,	 2011;	
Jones	et	al.,	2013;	Pansonato	et	al.,	2013;	Ruokolainen	et	al.,	2007;	
Tuomisto	 et	 al.,	 2016;	 Vormisto,	 Phillips,	 Ruokolainen,	 Tuomisto,	
&	Vásquez,	 2000).	 Since	 ferns	 and	 lycophytes	have	high	dispersal	
ability,	 they	may	 indicate	geoecological	patterns	more	 reliably	but	

suggest	 less	 biogeographical	 differentiation	 across	Amazonia	 than	
more	dispersal‐limited	plants	would	(Tuomisto,	Ruokolainen,	&	Yli‐
Halla,	2003).

Voucher	specimens	of	each	species	were	collected	during	each	
field	campaign	 for	verification	of	 species	 identifications.	Vouchers	
are	deposited	in	one	or	two	herbaria	in	the	country	of	origin	(AMAZ,	
USM	 and/or	 CUZ	 in	 Peru,	 QCA	 and	 QCNE	 in	 Ecuador,	 COAH	 in	
Colombia,	SP	and/or	INPA	in	Brazil,	CAY	in	French	Guiana)	and	for	
the	UTU	data	also	in	TUR	(herbarium	acronyms	according	to	Thiers,	
continuously	updated).	Initial	identifications	were	done	for	the	UTU	
and	PPBio	datasets	separately,	but	identifications	were	harmonized	
by	H.T.	and	G.Z.	on	the	basis	of	either	the	vouchers	themselves	or	
photographs	 of	 them.	 Several	 species	 pairs	 or	 species	 complexes	
were	so	similar	that	they	could	not	always	be	reliably	separated	in	
the	field.	These	were	lumped	to	ensure	a	consistent	taxonomy	over	
the	entire	dataset	(for	simplicity,	both	true	species	and	species	com‐
plexes	will	be	referred	to	as	species).

Composite	samples	of	the	surface	soil	(top	5	or	10	cm	after	re‐
moving	the	litter	layer,	5–6	subsamples)	were	collected	within	each	
plot	for	chemical	and	textural	analyses.	In	the	PPBio	plots,	the	sub‐
samples	were	taken	at	50‐m	intervals	along	the	long	axis	of	the	plot.	
In	the	UTU	plots,	each	soil	sample	was	taken	within	an	area	of	about	
5	m	by	5	m,	but	the	samples	collectively	represented	different	topo‐
graphical	positions	within	a	transect.	Further	details	on	the	field	and	
laboratory	methodology	 are	 available	 in	 earlier	 studies	 (Tuomisto,	
Poulsen,	et	 al.,	2003;	Tuomisto,	Ruokolainen,	Aguilar,	 et	 al.,	2003;	
Tuomisto	et	al.,	2017;	Zuquim	et	al.,	2014).	When	two	soil	samples	
were	available	for	the	same	UTU	plot,	we	averaged	their	measure‐
ment	values	for	the	analyses.	Here,	we	focus	on	the	sum	of	the	con‐
centrations	 of	 exchangeable	 Ca,	Mg	 and	 K	 (measured	 in	 cmol(+)/
kg),	which	we	will	refer	to	as	base	cation	concentration.	All	analyses	
were	carried	out	using	logarithmically	transformed	values	(logCat).	
This	variable	was	chosen	because	earlier	studies	have	found	its	re‐
lationship	with	plant	species	composition	and	changes	therein	to	be	
consistently	strong,	even	when	the	relationships	with	the	individual	
cations	have	varied	among	regions	(Higgins	et	al.,	2011;	Ruokolainen	
et	al.,	2007;	Tuomisto	et	al.,	2016;	Tuomisto,	Poulsen,	et	al.,	2003;	
Zuquim	et	al.,	2014).

Although	digital	soil	maps	exist	(Hengl	et	al.,	2017),	they	do	not	
provide	layers	of	soil	base	cation	concentration.	The	digitally	avail‐
able	variables,	such	as	soil	type	and	cation	exchange	capacity	have	
had	only	weak	 relationships	with	 field‐measured	base	 cation	 con‐
centration	(Moulatlet	et	al.,	2017).	Therefore,	we	used	Landsat	imag‐
ery	as	a	surrogate,	since	earlier	studies	at	the	landscape	extent	have	
found	them	useful	for	identifying	spatial	heterogeneity	in	soils	and	
soil‐related	 floristic	patterns	 (Higgins	et	al.,	2012,	2011;	Salovaara	
et	al.,	2005;	Tuomisto,	Poulsen,	et	al.,	2003;	Tuomisto,	Ruokolainen,	
Aguilar,	et	al.,	2003).

Landsat	 image	 analyses	 across	 all	 Amazonia	were	made	 possi‐
ble	by	a	recent	basin‐wide	composite	of	Landsat	TM/ETM+	images.	
The	composite	is	based	on	more	than	16,000	sufficiently	cloud‐free	
acquisitions	from	the	10‐year	period	2000–2009,	and	it	has	already	
been	 shown	 to	 predict	 soil	 base	 cation	 concentration	 relatively	
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well	(Van	doninck	&	Tuomisto,	2018).	Technical	details	on	how	the	
image	 composite	 was	 produced	 have	 been	 described	 elsewhere	
(Van	 doninck	 &	 Tuomisto,	 2017a,2017b,2018).	 Climatic	 data	 (19	
bioclimatic	variables)	at	30	arcsec	 resolution	 (approximately	1	km)	
were	 obtained	 from	 the	 Climatologies	 at	 High	 Resolution	 for	 the	
Earth's	 Land	 Surface	 Areas	 (CHELSA,	 Karger	 et	 al.,	 2017)	 (http://
chelsa‐clima	te.org/).

2.2 | Data analyses

To	identify	floristic	gradients,	we	first	calculated	compositional	dis‐
similarities	among	the	plots	using	the	Sørensen	index,	which	is	the	
presence‐absence	version	of	the	Bray‐Curtis	index.	Almost	30%	of	
the	 dissimilarity	 values	 were	 saturated	 to	 the	 maximum	 value	 of	
unity,	 so	we	used	 the	extended	 (step	 across)	 version	of	 the	 index	
in	order	 to	obtain	 ecologically	 realistic	 dissimilarities	between	 the	
plots	that	shared	no	species	(De'ath,	1999;	Tuomisto,	Ruokolainen,	
&	Ruokolainen,	2012).	Then	we	performed	an	ordination	based	on	
Principal	 Coordinates	Analysis	 (PCoA)	 to	 visualize	 the	main	 floris‐
tic	gradients.	We	used	univariate	linear	regression	analysis	to	assess	
the	degree	to	which	each	of	the	first	three	PCoA	axes	(PCoA	1–3)	
were	related	to	the	explanatory	variables	(log‐transformed	soil	base	
cation	concentration,	bioclimatic	variables	and	reflectance	values	in	
the	Landsat	TM/ETM+	composite).

Landsat	bands	1	(blue)	and	2	(green)	were	not	used	because	they	
were	very	noisy	due	to	residual	atmospheric	contamination.	For	the	
remaining	 visible	 band	3	 (red)	 and	 the	near	 to	 shortwave	 infrared	
bands	4,	5	and	7,	we	extracted	the	reflectance	values	correspond‐
ing	to	the	coordinates	of	each	plot	in	three	different	ways:	(a)	full‐
resolution	data	at	1	arcsec	(approximately	30	m)	resolution,	(b)	data	
retaining	the	full	resolution	but	filtered	by	passing	a	moving	widow	
of	15	by	15	pixels	over	 the	 image	and	assigning	 to	each	pixel	 the	
median	value	from	the	window	centred	on	it,	and	(c)	low	resolution	
data	 obtained	 by	 coarsening	 the	 resolution	 to	 pixels	 of	 15	 arcsec	
(approximately	450	m)	 by	 assigning	 to	 each	new	pixel	 the	median	
value	from	the	corresponding	15	by	15	original	pixels.	Non‐forested	
pixels	were	masked	using	an	unsupervised	k‐means	clustering	with	
post‐classification	interpretation	based	on	visual	inspection	of	spec‐
tral	 signature	and	 spatial	distribution.	For	 (a)	 and	 (b),	masking	was	
based	on	the	original	full‐resolution	data,	for	(c)	it	was	based	on	the	
coarsened	pixels.

Many	of	the	CHELSA	variables	were	mutually	highly	correlated.	
To	 keep	 a	 reduced	 but	 representative	 set	 of	 climate	 variables	 for	
modelling,	we	calculated	the	variance	inflation	factor	(VIF)	for	all	19	
variables.	Then	we	iteratively	excluded	the	variable	with	the	highest	
VIF	and	recalculated	VIF	for	the	remaining	variables	until	none	of	the	
VIF	values	exceeded	50.	All	analyses	were	then	based	on	the	remain‐
ing	eleven	CHELSA	variables.	These	represented	temperature	vari‐
ability	(Bio	2–4),	mean	temperature	(Bio	8,	9,	11),	mean	precipitation	
(Bio	13,	14,	18,	19)	and	precipitation	variability	(Bio	15).

To	formally	model	floristic	and	soil	gradients	across	the	Amazon	
basin,	we	constructed	generalized	 linear	models	 (GLMs)	with	each	
of	the	PCoA	axes	1–3	and	logCat	as	the	response	variable	 in	turn.	

GLMs	 using	 different	 combinations	 of	 predictor	 variables	 were	
tested	by	randomly	dividing	the	data	into	ten	folds	and	using	each	
fold	as	an	independent	test	set	in	turn.	Adjacent	plots	that	were	part	
of	the	same	field	transect	were	allowed	to	go	to	separate	folds	only	
if	the	distance	between	them	was	at	least	1	km.	We	also	evaluated	
elevation	from	SRTM	digital	elevation	model	and	textural	data	lay‐
ers	obtained	from	standard	deviations	within	the	window	of	Landsat	
pixels	as	predictive	variables.	GLMs	using	the	Landsat	median	val‐
ues,	CHELSA	variables	and	both	together	were	applied	over	the	en‐
tire	Amazon	basin	in	order	to	produce	predictive	maps	of	the	main	
floristic	gradients	(PCoA	axes	1–3).	The	predictive	maps	were	then	
classified	using	an	implementation	of	k‐medoids	clustering	for	large	
applications	(CLARA).

All	analyses	were	carried	out	in	R	version	3.4.1	(R	Core	Team,	
2017)	using	the	packages	“raster”	for	raster	image	analysis	(Hijmans,	
2017),	“vegan”	for	ordinations	(Oksanen	et	al.,	2017),	“cluster”	for	
unsupervised	clustering	(Maechler,	Rousseeuw,	Struyf,	Hubert,	&	
Hornik,	2016),	and	“stats”	for	GLM	(R	Core	Team,	2017).

3  | RESULTS

3.1 | Amazonian heterogeneity as seen from space

The	 Landsat	 TM/ETM+	 colour	 composite	 reveals	 a	 tapestry	 of	
broad‐scale	variation	in	canopy	reflectance	characteristics	across	
Amazonia	(Figure	1;	unannotated	version	can	be	found	in	Appendix	
S1:	 Figure	 S1a	 in	 Supporting	 Information).	 The	 parallel	 Landsat	
flight	paths	 remain	 to	some	degree	visible	 in	 the	 red	band	3	 (as‐
signed	to	the	blue	colour	channel	in	Figure	1	and	Figure	S1a).	This	
is	because	correction	of	atmospheric	effects	in	the	image	compos‐
ite	was	not	perfect,	and	the	shorter	visible	wavelengths	are	more	
affected	by	scattering	caused	by	aerosols	than	the	longer	infrared	
ones.	The	 false	colour	composite	based	on	 the	 infrared	bands	4,	
5	and	7	 is	virtually	seamless	 (Figure	S1b).	Nevertheless,	adding	a	
visible	wavelength	improves	the	separability	of	nuances,	as	the	in‐
frared	bands	are	highly	correlated	with	each	other	 (Appendix	S1:	
Figure	S2).

Several	 known	 geo‐ecological	 entities	 of	 floristic	 relevance	
can	 be	 recognized	 in	 the	 raw	 Landsat	 composite.	 Some	 of	 the	
most	 notable	 ones	 correspond	 to	 traditionally	 recognized	 vege‐
tation	 formations,	 including	 the	 heterogeneous	 floodplain	 for‐
ests	 along	major	 rivers,	 swamp	 forests	 like	 those	 in	 the	Pastaza	
fan	 (“Pas”	 in	Figure	1;	Räsänen	et	 al.,	 1992),	 bamboo‐dominated	
forests	 like	 those	 in	 Acre	 (“Bam”;	 Carvalho	 et	 al.,	 2013),	 and	
white‐sand	forests	like	those	in	the	upper	Rio	Negro	basin	(“WS”;	
Adeney,	Christensen,	Vicentini,	&	Cohn‐Haft,	2016).	Other	recog‐
nizable	features	include	the	floristic	turnover	zone	that	has	been	
suggested	 to	 correspond	 to	 the	 limit	 between	 the	Solimões	 and	
Içá	 formations	 (“S”	 and	 “I”,	 respectively;	 Higgins	 et	 al.,	 2011;	
Schobbenhaus	 et	 al.,	 2004;	 Tuomisto	 et	 al.,	 2016),	 the	 Brazilian	
and	Guyanan	Precambrian	 shields	 (“Bra”	 and	 “Gui”,	 respectively)	
and	sandy	megafan	formations	in	Roraima	(“MF”;	Rossetti,	Cassola	
Molina,	&	Cremon,	2016).

http://chelsa-climate.org/
http://chelsa-climate.org/
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3.2 | Floristic gradients and their environmental 
relationships

To	obtain	a	general	idea	of	the	ecological	drivers	of	floristic	variation	
across	the	Amazon	basin	(Figure	2a),	we	first	identified	the	main	gra‐
dients	in	fern	and	lycophyte	species	composition	using	PCoA	ordi‐
nation	(Figure	2b).	The	main	spatial	pattern	at	the	basin‐wide	extent	
was	that	western	Amazonia	was	very	heterogeneous	in	both	floristic	
composition	and	soil	base	cation	concentration	with	many	plots	hav‐
ing	high	values,	whereas	most	plots	from	central	Amazonia	had	low	
values	for	both	PCoA	axis	1	and	soil	base	cation	concentration.

Indeed,	 the	 strongest	 floristic	 gradient	 was	 tightly	 related	 to	
base	cation	concentration	in	the	soil:	a	simple	linear	regression	with	
logCat	as	the	predictor	variable	explained	75%	of	the	variation	in	the	
ordination	scores	along	PCoA	axis	1	(Figure	2c;	Table	1).	Adding	ei‐
ther	filtered	Landsat	spectral	data,	CHELSA	climatic	data	or	both	to	
GLMs	that	already	included	soil	base	cation	concentration	increased	
mean	cross‐validated	predictive	power	only	by	4–7%	(R2	=	79–82%).	
Without	 soil	 cation	 concentration	 in	 the	 model,	 mean	 predictive	
power	 in	 cross‐validation	 was	 47%	 with	 filtered	 Landsat	 spectral	
values,	 38%	with	 CHELSA	 climatic	 values	 and	 58%	with	 both	 to‐
gether	(Table	1).	Soil	base	cation	concentration	was	almost	as	well	
predicted	as	the	first	floristic	gradient	by	the	Landsat	data,	but	the	
contribution	of	the	climatic	data	was	less	in	the	case	of	soils	in	both	

absolute	and	relative	terms.	This	supports	the	use	of	Landsat	data	as	
a	surrogate	for	mostly	soil‐related	environmental	gradients	(Table	1	
and	Table	S1,	Figures	S3	and	S4).	Elevation	as	derived	from	SRTM	
and	textural	data	from	Landsat	had	little	predictive	power	(Table	S1).

The	original	Landsat	 resolution	 (30	m)	gives	 fine	detail	 that	al‐
lows	visual	interpretation	of	the	landscape.	For	example,	Figure	3a	
clearly	shows	ridge‐swale	structures	 in	the	river	floodplain,	creeks	
in	non‐inundated	terrain	and	the	extents	of	the	Içá	Formation	(dark	
green–brown),	Solimões	Formation	(pale	bluish	gray)	and	their	tran‐
sition	zone	(pink–orange).	These	patterns	get	blurred	when	pixels	are	
aggregated	by	 factor	15	 (Figure	3c),	with	 the	 filtered	 image	being	
intermediate	 (Figure	3b).	However,	at	 the	30‐m	resolution	there	 is	
so	much	local	variation	in	pixel	values	that	the	predictive	power	of	
GLMs	for	PCoA	axis	1	was	clearly	lower	when	based	on	Landsat	data	
with	original	30‐m	pixels	(R2=21%)	than	when	based	on	the	filtered	
data	 (R2	=	47%;	Table	1	and	Table	S1).	When	projected	on	a	map,	
the	predictions	obtained	using	the	original	pixels	were	clearly	noisier	
and	provided	a	poorer	contrast	among	the	floristically	and	edaph‐
ically	 different	 kinds	 of	 forest	 than	 predictions	 obtained	with	 the	
filtered	or	coarsened	data	did	(Figure	3d–i).

The	second	floristic	gradient	formed	a	west‐to‐east	spatial	trend.	
Correspondingly,	 PCoA	 axis	 2	was	 related	 to	many	 bioclimatic	 vari‐
ables,	with	 the	maximum	 temperature	of	 the	warmest	month	 (Bio5)	
providing	the	best	explanatory	power	(R2	=	42%)	in	a	univariate	linear	

F I G U R E  1  Pixel‐based	Landsat	TM/ETM+	composite	over	Amazonia,	based	on	all	Landsat	images	acquired	in	July–September	during	the	
10‐year	period	2000–2009.	For	this	quick	view	image,	the	original	30‐m	image	resolution	has	been	coarsened	by	gridding	to	450	m,	with	
each	grid	cell	given	the	median	reflectance	value	of	each	band	from	the	15	by	15	pixels	corresponding	to	the	grid	cell.	Red,	green	and	blue	
have	been	assigned,	respectively,	to	bands	4,	7	and	3.	Areas	that	were	either	classified	as	non‐forest	on	the	basis	of	the	reflectance	data	
or	are	above	600	m	elevation	have	been	masked	out	and	appear	white.	Pas:	Pastaza	fan;	Bam:	bamboo	forest,	S:	Solimões	Formation;	I:	Içá	
Formation;	WS:	white	sands;	MF:	megafans;	Gui:	Guiana	shield;	Bra:	Brazilian	shield.	Versions	without	the	elevation	limit	and	free	of	the	
annotation	of	both	this	colour	composite	and	a	colour	composite	based	on	bands	4,	5	and	7	are	available	in	Figure	S1



6  |     TUOMISTO eT al.

regression	(Figure	2d;	Figure	S4).	 Indeed,	GLM	models	with	CHELSA	
climate	variables	had	mean	predictive	power	of	48%	in	cross‐validation.	
Adding	Landsat	variables	to	the	model	only	increased	predictive	power	
marginally	(to	49%).	This	indicates	that	PCoA	axis	2	is	mainly	a	climatic	

gradient.	Landsat	variables	on	their	own	explained	less	than	10%	of	the	
variation	along	PCoA	axis	2,	and	soil	base	cation	concentration	none	at	
all	(Table	1	and	Table	S1).	The	third	PCoA	axis	was	mostly	predicted	by	
the	climatic	variables,	although	not	very	well	(R2	=	16%).

F I G U R E  2   (a)	Map	of	1,572	Amazonian	plant	inventory	plots	used	in	the	analyses.	(b)	Principal	Coordinates	Analysis	(PCoA)	ordination	
based	on	floristic	dissimilarities	between	the	1,572	plots	(presence‐absence	data	of	terrestrial	ferns	and	lycophytes,	extended	Sørensen	
dissimilarity).	(c)	Relationship	between	the	first	floristic	PCoA	axis	and	soil	base	cation	concentration	as	measured	from	soil	samples	taken	
in	each	plot.	(d)	Relationship	between	the	second	PCoA	axis	and	maximum	temperature	of	the	warmest	month	as	modelled	by	the	CHELSA	
variable	Bio5.	(e–h)	Same	as	(a–d),	but	with	all	analyses	based	on	a	subset	of	two	regions,	together	containing	398	plots,	to	show	graphs	
with	less	cluttering.	These	regions	were	selected	because	they	are	far	apart	but	have	analogous	geological	settings.	In	all	panels,	colours	
indicate	the	different	geographical	regions	and	symbol	size	is	proportional	to	log‐transformed	concentration	of	exchangeable	base	cations	
(Ca,	Mg,	K)	in	the	soil.	The	first	three	axes	in	the	ordination	of	the	full	dataset	account	for	38%,	13%	and	8%	of	the	total	variation	and	in	the	
ordination	of	the	two	regions	for	51%,	11%	and	7%
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TA B L E  1  The	degree	to	which	floristic	ordination	axes	(PCoA	shown	in	Figure	2b)	and	soil	base	cation	concentration	can	be	modelled	
with	data	derived	from	a	Landsat	TM/ETM+	image	composite,	the	11	CHELSA	climate	variables	that	were	sufficiently	uncorrelated	with	each	
other	to	have	VIF	<	50,	and	logarithmically	transformed	soil	base	cation	concentration	as	measured	from	soil	samples	taken	in	each	field	plot	
(logCat).	Adjusted	R2	(in	%)	is	given	for	the	linear	regression	between	GLM‐predicted	and	measured	values.	“All	R2”	refers	to	the	fit	of	a	GLM	
model	that	uses	all	field	plots,	“Test	R2”	gives	the	average	of	R 2	values	obtained	using	cross‐validation.	Here,	the	plots	were	randomly	divided	
into	ten	folds,	each	of	which	was	used	as	an	independent	validation	dataset	in	turn.	Plots	from	the	same	transect	were	kept	in	the	same	fold	if	
their	distance	was	less	than	1	km.	PCoA,	Principal	Coordinates	Analysis;	Landsat	30,	single	pixel	values	at	the	field	plot	locality;	Landsat	450,	
median	of	15	by	15	pixel	windows	centred	on	the	field	plot;	VIF,	Variance	Inflation	Factor;	GLM,	Generalized	Linear	Model

Predictors

logCat PCoA axis 1 PCoA axis 2 PCoA axis 3

All R2 Test R2 All R2 Test R2 All R2 Test R2 All R2 Test R2

Landsat	30 15 15 21 21 6 7 3 4

Landsat	450 42 41 48 47 10 11 5 6

CHELSA 30 28 40 38 48 48 17 16

Landsat	450	+	CHELSA 49 46 60 58 50 49 18 16

logCat 75 74 0 1 0 2

Landsat	450	+	logCat 79 78 10 11 9 9

CHELSA	+	logCat 80 79 50 50 20 18

Landsat	450	+	CHELSA	+	logCat 83 82 51 50 22 20
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The	environmental	relationships	of	the	first	two	floristic	gradi‐
ents	become	even	clearer	when	two	subsets	of	the	data	are	com‐
pared,	one	from	the	Tigre	river	basin	in	the	west	and	the	other	from	
the	Juruá	river	basin	about	1,000	km	further	south‐east	(Figure	2e).	
Ordination	of	the	plots	from	the	two	regions	revealed	that	they	span	
about	 the	 same	 range	along	PCoA	axis	1	but	 are	 to	 some	degree	
shifted	in	relation	to	each	other	along	PCoA	axis	2	(Figure	2f).	The	
edaphic	gradients	covered	by	the	plots	were	rather	similar	in	both	
regions,	 and	 the	 relationship	 between	 the	 main	 floristic	 gradient	
(PCoA	1)	and	soil	base	cation	concentration	was	even	tighter	than	in	
the	full	dataset	(compare	Figure	2g	with	Figure	2c).	The	geograph‐
ical	distance	between	the	Tigre	and	Juruá	regions	is	related	to	dif‐
ferences	in	several	of	the	CHELSA	climatic	variables.	Compared	to	
all	of	Amazonia,	the	climatic	variation	within	and	between	the	Tigre	
and	Juruá	areas	is	small,	and	the	second	PCoA	axis	was	more	weakly	
explained	by	the	maximum	temperature	of	the	warmest	month	than	
in	the	case	of	the	full	dataset	(compare	Figure	2h	with	Figure	2d).

3.3 | Predicting species composition

The	map	based	on	the	combined	Landsat	+	CHELSA	GLM	suggests	
a	 general	 compositional	 difference	 between	 central–north‐west‐
ern	 Amazonia	 (blue–green	 in	 Figure	 4a)	 and	 the	 peripheral	 areas	

(red–orange	in	Figure	4a).	Much	of	this	pattern	is	due	to	the	strong	
spatial	structure	in	predicted	PCoA	axis	1,	which	is	assigned	to	red	
in	Figure	4a	and	 is	highly	correlated	with	soil	base	cation	concen‐
tration.	 Indeed,	 the	 same	pattern	 is	 even	more	 clear	 in	Figure	4b,	
which	shows	predictions	for	axis	1	using	Landsat	data	only.	Many	of	
the	 known	geological	 and	 vegetation	 characteristics	 already	men‐
tioned	above	(Pastaza	fan,	bamboo	forests,	Içá‐Solimões	boundary)	
were	recovered	in	the	PCoA	axis	1	scores	predicted	by	Landsat	data	
(Figure	4b).	 Since	 these	 formations	 are	 not	 related	 to	 climatic	 dif‐
ferences,	they	became	somewhat	blurred	when	CHELSA	data	were	
included	in	the	model	(Figure	4a)	even	though	the	overall	predictive	
power	increased	(Table	1).

A	secondary	general	pattern	can	be	identified	as	a	NW–SE	trend	
in	core	Amazonia.	This	emerged	especially	from	variation	in	the	pre‐
dicted	scores	along	PCoA	axes	2	and	3,	which	in	turn	were	mostly	
explainable	by	the	climatic	CHELSA	data.

Zooming	 in	 to	 the	 regional	 scale	 highlights	 the	 inherent	 dif‐
ferences	 between	 the	 Landsat	 and	 CHELSA	 data.	 Patterns	 in	 the	
Landsat	predictions	can	be	easily	 related	to	 local	 to	 regional	 land‐
scape	features	that	are	also	identifiable	in	the	original	Landsat	image.	
For	example,	 in	the	false‐colour	Landsat	composite	(Figure	5a)	the	
swamp	 forests	of	 the	Pastaza	 fan	are	distinguishable	 as	dark	 red‐
brown	patches,	 and	 the	 limit	between	 the	 forests	 growing	on	 the	

F I G U R E  3  Terrain	characteristics	from	a	site	along	the	middle	Juruá	River	in	Amazonia	(midpoint	at	68.764°W,	6.400°S).	(a–c)	False	
colour	composite	(bands	4,	5	and	7)	of	the	Landsat	TM/ETM+	imagery	at	full	resolution	(a),	full	resolution	filtered	by	assigning	each	
pixel	the	median	value	of	the	15‐by‐15‐pixel	window	centred	on	it	(b)	and	coarsened	to	450‐m	resolution	(15‐by‐15‐pixel	grid)	(c).	In	the	
non‐inundated	areas	north	of	the	Juruá	floodplain,	dark	green–brown	corresponds	to	the	Içá	Formation,	pale	bluish	gray	to	the	Solimões	
Formation	and	pink–orange	to	their	transition	zone.	(d–f)	Values	predicted	for	PCoA	axes	1–3	on	the	basis	of	GLMs	trained	with	the	
Amazon‐wide	fern	and	lycophyte	ordination	data	shown	in	Figure	2b.	Axis	1	is	assigned	to	red,	axis	2	to	green	and	axis	3	to	blue.	Predictions	
in	each	panel	are	based	on	the	reflectance	values	from	the	colour	composite	above	it.	(g–h)	Same	as	(d–f),	but	only	values	predicted	for	PCoA	
axis	1	are	shown	with	blue	corresponding	to	low	values	and	red	to	high	values.	Each	black	circle	represents	one	field	plot	with	diameter	
proportional	to	log‐transformed	soil	base	cation	concentration.	Colour	schemes	are	the	same	for	all	panels	on	the	same	row.	Panel	(c)	is	a	
detail	of	Figure	S1b	and	panel	(i)	of	Figure	4b.	GLM,	generalized	linear	model;	PCoA,	Principal	Coordinates	Analysis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Nauta	and	Pebas	Formations	(dark	green	vs.	lighter	green	with	pink‐
ish	 tint)	 is	clearly	visible.	The	same	patterns	appear	as	contrasting	
predictions	for	PCoA	axis	1	scores	when	only	Landsat	data	are	used	
(Figure	5c).	 In	contrast,	climate	varies	much	more	gradually	across	
space,	so	the	patterns	produced	by	climatic	models	have	a	weaker	
relationship	with	the	local	landscape	(Figure	5b,d).

On	the	basis	of	 the	GLM‐predicted	 floristic	PCoA	axes,	we	di‐
vided	 Amazonia	 into	 different	 numbers	 of	 geoecological	 classes	
using	 k‐medoid	 clustering	 (CLARA).	 The	 number	 of	 classes	 that	 is	

chosen	for	use	 is	of	course	arbitrary,	but	since	 large	areas	are	en‐
tirely	devoid	of	field	data,	we	chose	to	focus	on	the	broad‐scale	pat‐
terns	and	a	relatively	small	number	of	classes.	We	found	the	solution	
with	eight	classes	to	provide	a	decent	compromise	between	recog‐
nizing	the	most	distinctive	known	macrounits	and	avoiding	the	cre‐
ation	of	classes	that	cannot	be	substantiated	with	the	data	available	
to	us	(Figure	6).	Further	subdivision	not	only	resulted	in	spatially	very	
fragmented	classes,	but	also	produced	boundaries	that	looked	arti‐
factual	(e.g.,	by	exactly	following	a	line	separating	two	temperature	
values	in	CHELSA).	The	resulting	map	is	here	presented	as	a	hypoth‐
esis	of	a	geoecological	subdivision	of	Amazonia	that	can	be	further	
tested	and	refined	with	additional	field	and	remote	sensing	data.

4  | DISCUSSION

4.1 | Determinants of plant species composition in 
Amazonia

In	 general,	 it	 is	 assumed	 that	 climate	 determines	 species	 distribu‐
tion	patterns	at	broad	 scales,	 and	 the	effect	of	 soils	becomes	no‐
ticeable	at	regional	to	 local	scales.	However,	we	found	that	across	
entire	 Amazonia,	 the	 strongest	 floristic	 gradient	 in	 our	 field	 data	
corresponds	 to	an	edaphic	gradient:	a	single	soil	variable	 (concen‐
tration	 of	 exchangeable	 base	 cations)	 explained	 as	 much	 as	 75%	
of	 the	 variation	 in	 PCoA	 axis	 1	 values	 of	 ferns	 and	 lycophytes.	 It	
is	 likely	 that	 if	 other	 important	 soil	 properties	 could	 be	 included,	
such	 as	 phosphorus	 and	 nitrogen	 concentration	 or	 hydrology,	 the	
percentage	 of	 variation	 explained	 by	 soils	 would	 be	 even	 higher.	
This	considerably	expands	the	conclusions	from	earlier	studies	that	
have	documented	soils	to	be	important	for	plant	species	turnover	at	
regional	 extents	 in	Amazonia	 (Baldeck	 et	 al.,	 2016;	Cámara‐Leret,	
Tuomisto,	Ruokolainen,	Balslev,	&	Munch	Kristiansen,	2017;	Higgins	
et	al.,	2011;	Pansonato	et	al.,	2013;	Phillips	et	al.,	2003;	Ruokolainen	
et	al.,	2007;	Tuomisto,	Poulsen,	et	al.,	2003;	Tuomisto,	Ruokolainen,	
Aguilar,	 et	 al.,	 2003;	 Tuomisto,	 Ruokolainen,	 &	 Yli‐Halla,	 2003;	
Zuquim	et	al.,	2012,	2014).

Although	 soils	 explained	 the	 strongest	 floristic	 gradient	 in	 our	
data,	climatic	variables	were	also	important.	Their	unique	contribu‐
tion	was	mostly	in	explaining	the	secondary	floristic	gradients	(PCoA	
axes	2	and	3),	for	which	soil	base	cation	concentration	provided	no	
explanatory	 power	 at	 all.	 The	 relative	 importance	 of	 explanatory	
variables	partly	reflect	the	degree	to	which	each	of	them	varies	 in	
relation	to	the	tolerances	of	the	species	of	interest.	Our	entire	study	
area	is	within	the	climatic	space	of	moist	tropical	lowland	forests	and	
this	may	be	a	shorter	gradient	for	plants	than	the	observed	edaphic	
one.	In	addition,	soil	base	cation	concentrations	were	measured	from	
soil	samples	collected	in	the	same	plots	as	the	floristic	data.	This	may	
give	a	more	accurate	estimate	of	the	conditions	experienced	by	the	
plants	 than	 is	 the	 case	with	 the	CHELSA	climatic	 variables,	which	
have	been	derived	from	global	climate	models.

Because	earlier	studies	have	found	strong	edaphic	relationships	
in	 many	 plant	 groups	 (ranging	 from	 canopy	 trees	 to	 understorey	
herbs),	we	suggest	that	soil	variation	needs	to	be	taken	into	account	

F I G U R E  4  Colour	composites	over	Amazonia	showing	
GLM‐predicted	values	for	the	PCoA	axis	scores	of	the	fern	and	
lycophyte	ordination	shown	in	Figure	2b.	(a)	Predictions	based	on	
both	Landsat	TM/ETM+	surface	reflectance	and	CHELSA	climate	
variables	for	the	scores	of	PCoA	axes	1,	2	and	3	(assigned	to	red,	
green	and	blue,	respectively).	(b)	Predictions	based	on	Landsat	
reflectance	data	only	for	the	scores	of	PCoA	axis	1	(shown	in	a	
colour	gradient	ranging	from	blue	for	low	axis	scores	through	
yellow	to	red	for	high	axis	scores).	The	1,572	field	study	plots	
used	to	parameterize	the	GLM	models	are	shown	as	circles	in	
(b),	with	diameter	proportional	to	log‐transformed	base	cation	
concentration	in	the	soil.	Pixels	predicted	to	have	extreme	PCoA	
axis	values	(below	−1.2	or	above	1.2)	were	masked	and	appear	in	
white	(in	addition	to	the	areas	masked	already	in	Figure	1).	GLM,	
generalized	linear	model;	PCoA,	Principal	Coordinates	Analysis
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as	a	potentially	important	factor	in	all	discussions	about	the	distri‐
butional	 patterns	 of	Amazonian	 plants.	 In	 particular,	 it	 can	 be	 ex‐
pected	that	areas	with	contrasting	soil	properties	have	contrasting	
floristic	compositions,	and	that	the	effects	of	dispersal	limitation	will	
accentuate	if	two	areas	with	similar	soils	are	separated	by	large	ex‐
panses	of	different	soils.	These	issues	are	especially	important	when	
considering	how	species	distributions	may	be	affected	by	deforesta‐
tion	or	climate	change:	natural	heterogeneity	in	soils	may	reduce	the	
availability	of	suitable	habitats	even	more	than	would	be	expected	
from	deforestation	or	climate	change	scenarios	alone	(Figueiredo	et	
al.,	2018;	Zuquim,	Costa,	Tuomisto,	Moulatlet,	&	Figueiredo,	2019).

4.2 | Modelling species composition

The	Landsat	composite	revealed	clear	geographical	patterns,	many	
of	which	 obviously	 correspond	 to	major	 geological	 formations.	At	
the	same	time,	 the	reflectance	values	provided	reasonable	predic‐
tions	of	both	soil	base	cation	concentration	and	the	most	important	
floristic	gradient	(PCoA	axis	1)	of	understorey	ferns	and	lycophytes.	
This	is	noteworthy,	because	surface	reflectance	over	dense	forests	

is	mainly	determined	by	the	tree	canopy,	not	by	soils	or	understorey	
plants.	Therefore,	such	a	strong	relationship	 is	only	possible	 if	 the	
floristic	patterns	 in	 the	understorey	are	causally	 linked	with	 those	
vegetation	 properties	 that	 determine	 reflectance	 (including	 floris‐
tic	composition,	structure	and	chemical	properties	of	 the	canopy).	
It	seems	clear	that	in	our	study	area	the	link	is	mediated	mostly	by	
soils.	Of	course,	without	further	studies	we	cannot	establish	to	what	
degree	the	reflectance	patterns	mirror	species‐level	differences	 in	
tree	composition	and	to	what	degree	similar	structural	or	functional	
canopy	 properties	 on	 similar	 soils	 irrespective	 of	 species	 identity.	
Nevertheless,	the	causal	chain	from	soils	through	vegetation	to	re‐
flectance	seems	robust	enough	to	make	 it	possible	to	use	Landsat	
data	to	identify	ecologically	relevant	geological	limits	in	densely	veg‐
etated	areas.

The	GLMs	that	used	Landsat	reflectance	data	predicted	the	main	
floristic	gradient	(fern	and	lycophyte	PCoA	Axis	1)	better	than	they	
predicted	soil	base	cation	concentration.	Landsat	data	also	had	some	
predictive	power	for	PCoA	axis	2,	 in	contrast	with	soil	base	cation	
concentration,	which	had	none.	Both	of	these	results	are	consistent	
with	the	idea	that	all	plant	groups	react	to	both	soils	and	climate	in	

F I G U R E  5  Landscape	patterns	in	
north‐western	Amazonia	as	modelled	
with	either	reflectance	values	from	a	
Landsat	TM/ETM+	image	composite	
or	bioclimatic	variables	from	CHELSA.	
(a)	Landsat	colour	composite	based	on	
bands	4,	5	and	7	assigned	to	red,	green	
and	blue,	respectively.	(b)	CHELSA	colour	
composite	of	three	bioclimatic	variables	
used	to	model	PCoA	axis	1	of	the	fern	
and	lycophyte	ordination	shown	in	Figure	
2b	(Bio8,	Bio11	and	Bio2	assigned	to	red,	
green	and	blue,	respectively).	(c,	d)	Results	
of	modelling	the	main	floristic	gradient	of	
the	area	(PCoA	axis	1	of	Figure	2b)	with	
Landsat	data	only	(c)	or	CHELSA	data	only	
(d).	The	modelled	values	are	shown	in	a	
colour	gradient	ranging	from	blue	(for	low	
scores	along	PCoA	axis	1)	through	yellow	
to	red	(for	high	values).	Each	black	circle	
represents	one	field	plot	with	diameter	
proportional	to	log‐transformed	base	
cation	concentration	in	the	soil.	Panel	(a)	
is	a	detail	of	Figure	S1b	and	panel	(c)	of	
Figure	4b.	PCoA,	Principal	Coordinates	
Analysis

(a) (b)

(c) (d)
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ways	that	affect	their	floristic	composition,	structure	and/or	chem‐
ical	properties,	and	that	Landsat	reflectance	provides	an	integrated	
view	of	such	environmental	effects.	Within	Amazonia,	Landsat	re‐
flectance	mostly	mirrors	soil	variation	because	the	soil	gradients	are	
longer	than	the	climatic	gradients	when	compared	to	the	physiolog‐
ical	tolerances	of	Amazonian	plants.

In	 two	 areas,	 there	 is	 an	 apparent	 discrepancy	 between	 the	
predictions	of	 the	GLMs	and	the	actual	position	of	 the	sites	along	
PCoA	axis	1	 and	 the	 soil	 base	 cation	 concentration	gradient.	One	
is	 the	Pastaza	fan	area,	which	 is	 fed	by	rivers	that	originate	 in	the	
Ecuadorian	volcanoes	and	carry	a	high	load	of	cation‐rich	sediments.	
All	our	soil	samples	from	the	fan	have	high	base	cation	concentration	
(Figure	4b),	but	the	area	stands	out	as	having	low	predicted	PCoA	axis	
1	values,	corresponding	to	forests	on	cation‐poor	soils.	The	Pastaza	
fan	is	very	heterogeneous	(Figure	5a,c),	and	our	soil	samples	come	
from	the	narrow	strips	along	the	rivers	that	were,	in	fact,	predicted	
to	have	high	values.	Soils	further	away	from	the	rivers	are	probably	
both	more	 cation‐poor	 and	more	waterlogged,	 as	 the	Pastaza	 fan	
is	dominated	by	swamp	forests.	These	may	have	lower	reflectance	
both	because	infrared	wavelengths	are	absorbed	by	water	and	be‐
cause	waterlogging	makes	 swamps	 stressful	 environments,	 which	
can	 give	 them	 structural	 and	 chemical	 characteristics	 resembling	
those	of	forests	on	cation‐poor	soils.	Some	of	the	swamps	have	even	
evolved	into	ombrotrophic	peat	bogs,	which	are	nutrient‐limited	in	
the	same	way	as	forests	on	white	sand	soils	are,	and	have	also	been	
found	to	share	structural	characteristics	and	plant	species	(Draper	et	
al.,	2018;	Lähteenoja	&	Page,	2011).

The	 second	 example	 is	 the	 opposite:	 the	 bamboo‐dominated	
forests	 in	 the	 border	 zone	 between	 southern	 Peru	 and	 adjacent	
Brazil	 have	 high	 infrared	 reflectance,	which	 is	 generally	 indicative	

of	relatively	rapid	growth	and	forests	on	high‐cation	soils.	Here,	the	
estimates	are	probably	exaggerated	because	of	the	bamboo	in	the	
canopy.	Bamboo	is	a	rapidly	growing	grass,	and	therefore	can	be	ex‐
pected	to	have	less	sclerophyllous	leaves	and	higher	infrared	reflec‐
tance	than	canopy	trees	do.	Although	the	fern	and	lycophyte	plots	
we	have	 from	this	area	have	cation‐rich	soils	and	a	corresponding	
flora,	the	PCoA	axis	1	predictions	are	more	extreme	than	the	floristic	
composition	of	the	understorey	would	suggest.

4.3 | Basin‐wide floristic mapping and the role of 
medium resolution multispectral imagery

Biodiversity	 studies	 covering	 all	 Amazonia	 have	 not	 used	 me‐
dium‐resolution	 multispectral	 imagery,	 which	 is	 likely	 due	 to	 two	
main	 problems.	 Firstly,	 atmospheric	 contamination	 and	 persistent	
cloud	cover	hamper	combining	scenes	acquired	at	different	 times.	
Secondly,	 directional	 scattering	 of	 sunlight	 by	 the	 canopy	 surface	
causes	 an	 artifactual	 along‐scan	 (east‐west)	 gradient	 in	 pixel	 val‐
ues,	which	can	cause	spectral	differences	as	large	as	those	between	
compositionally	different	forest	types	(Muro	et	al.,	2016;	Toivonen,	
Kalliola,	 Ruokolainen,	 &	 Naseem	 Malik,	 2006).	 However,	 recent	
advances	 in	 open	 data	 access	 policies	 (Woodcock	 et	 al.,	 2008),	
cloud	 screening	 and	 atmospheric	 correction	 algorithms	 (Masek	 et	
al.,	2006),	 and	directional	normalization	 (Van	doninck	&	Tuomisto,	
2017a)	now	make	it	possible	to	construct	seamless	medium	resolu‐
tion	 image	composites	with	a	reasonably	high	signal‐to‐noise	ratio	
over	large	areas	(Van	doninck	&	Tuomisto,	2018).

In	the	Landsat	composite	(Figure	1),	reflectance	variation	mostly	
corresponds	to	identifiable	surface	features.	Our	modelling	results	
(Table	 1)	 confirmed	 that	 multispectral	 surface	 reflectance	 data	

F I G U R E  6  Classification	of	Amazonia	
into	eight	geoecological	classes	based	
on	pixel‐wise	predictions	of	floristic	
ordination	scores	(PCoA	axes	1–3	
obtained	with	ferns	and	lycophytes;	
Figure	2b).	Predictions	were	based	on	the	
same	GLM	as	Figure	4a,	which	includes	
both	Landsat	reflectances	and	CHELSA	
bioclimatic	variables	as	predictors.	Black	
dots	indicate	the	locations	of	the	field	
plots	that	were	used	in	the	ordination.	
GLM,	generalized	linear	model;	PCoA,	
Principal	Coordinates	Analysis
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layers	 make	 a	 useful	 contribution	 to	 modelling	 understorey	 fern	
and	 lycophyte	species	composition	at	 the	basin‐wide	extent,	com‐
plementing	information	that	can	be	obtained	from	climate	variables.	
This	is	in	accordance	with	results	of	several	studies	carried	out	at	rel‐
atively	small	extents	(Buermann	et	al.,	2008;	Chaves,	Ruokolainen,	
&	Tuomisto,	2018;	Figueiredo,	Venticinque,	Figueiredo,	&	Ferreira,	
2015;	Higgins	et	al.,	2012,	2011;	Salovaara	et	al.,	2005;	Thessler	et	
al.,	 2005;	 Tuomisto,	 Poulsen,	 et	 al.,	 2003;	 Tuomisto,	 Ruokolainen,	
Aguilar,	 et	 al.,	 2003).	 New	 generation	 medium‐resolution	 multi‐
spectral	 instruments	with	 improved	spectral	and	radiometric	reso‐
lution	(Landsat	8	OLI,	Sentinel‐2)	can	be	expected	to	be	even	more	
valuable	for	these	applications.	Consequently,	we	disagree	with	the	
suggestion	 that	 the	 spatial	 and	 spectral	 resolution	 of	 this	 type	 of	
sensors	would	 be	 inappropriate	 for	 studies	 on	 spatial	 distribution	
of	biodiversity	or	 trait	variations	 (Lausch	et	al.,	2016;	Nagendra	&	
Rocchini,	2008).

The	choice	of	spatial	resolution	in	remote	sensing	studies	deter‐
mines	what	 information	 on	 biodiversity	 can	 be	 gained	 (Anderson,	
2018;	Rocchini	et	al.,	2016).	Our	results	show	that	when	the	aim	is	
to	map	broad‐scale	patterns	in	floristic	composition,	valuable	infor‐
mation	can	be	extracted	without	high‐resolution	 imagery.	Even	at	
medium	resolution,	a	single	image	pixel	 is	about	the	size	of	a	 large	
tree	crown	or	a	treefall	gap	 in	a	tropical	forest.	This	causes	a	high	
degree	 of	 local	 variability,	 because	 adjacent	 pixels	 can	 represent	
different	 phases	 of	 gap	 dynamics	 in	 different	 proportions,	 which	
makes	the	identification	of	general	patterns	more	difficult.	Filtering	
is	 the	 classical	method	 for	 eliminating	 local	 noise	 and	 it	 has	 been	
used	 in	earlier	studies	 in	Amazonia	 (Chaves	et	al.,	2018;	Salovaara	
et	al.,	2005).	We	indeed	found	that	applying	a	15‐pixel	median	filter	
considerably	improved	model	performance,	indicating	that	when	the	
aim	is	broad‐scale	floristic	mapping,	the	high	heterogeneity	between	
adjacent	30‐m	pixels	is	mostly	noise.

Nevertheless,	it	is	an	advantage	to	have	access	to	the	medium‐
resolution	data	and	not	only	coarse‐resolution	data.	Firstly,	this	al‐
lows	spectral	values	to	be	extracted	such	that	they	are	centred	on	
the	exact	locality	of	field	sampling	points,	rather	than	the	field	data	
being	potentially	marginally	placed	in	relation	to	a	large	pre‐defined	
pixel.	Secondly,	 there	may	be	non‐forest	 land	cover	 types	 such	as	
roads,	rivers	or	cultivated	fields	close	to	the	field	sampling	locations.	
With	coarse‐resolution	 imagery,	 these	would	 lead	 to	mixed	pixels,	
but	with	medium	resolution	imagery,	one	can	mask	out	the	irrelevant	
pixels	before	extracting	the	reflectance	values.	Finally,	medium	res‐
olution	data	allows	generating	entropy	or	variability	metrics,	which	
may	be	indicative	of	local	taxonomic	diversity	(Rocchini	et	al.,	2018),	
even	though	here	we	found	the	simple	standard	deviation	metric	to	
be	uninformative.

4.4 | Biogeographical inferences and practical 
applications

Our	 results	 show	 that	 Landsat	 reflectance	 can	 be	 used	 to	 gener‐
alize	 field	 data	 and	 to	 predict	 soil‐related	 floristic	 variation	 at	 the	
basin‐wide	extent.	Thereby,	Landsat	provides	information	that	goes	

beyond	 and	 complements	 climatic	 data.	 Although	 our	 maps	 are	
based	on	modelling	fern	and	lycophyte	species	compositional	gradi‐
ents,	patterns	identified	by	Landsat	are	hardly	specific	to	these	un‐
derstorey	plants.	Therefore,	we	expect	the	information	in	our	maps	
to	be	relevant	for	Amazonian	biota	more	generally,	 including	other	
plant	groups	and	those	animal	groups	that	react	to	spatial	variation	
in	soil‐related	forest	properties.	Further	work	 is	needed	to	 test	 to	
what	degree	 the	patterns	 identified	here	apply	 for	other	 taxa	and	
in	areas	for	which	we	had	no	field	data.	Nevertheless,	this	mapping	
approach	is	based	on	solid	ecological	principles	and	opens	exciting	
possibilities	for	future	ecological	and	biogeographical	research	with	
implications	for	how	we	view	Amazonia	and	the	threats	it	is	facing.

In	 general	 terms,	 the	 classical	 division	 of	 Amazonia	 into	 four	
geochemically	defined	regions	as	proposed	by	Fittkau	et	al.	(1975)	
is	 discernible	 in	 our	 results.	 In	 the	 geoecological	 classification	of	
Figure	 6,	 the	 red,	 pink	 and	 pale	 blue	 classes	 roughly	 correspond	
to	 western	 Amazonia,	 dark	 blue	 and	 green	 classes	 to	 central	
Amazonia,	 and	 orange	 and	 yellow	 classes	 to	 southern	 Amazonia	
and	the	Guiana	Shield.	However,	the	southern	part	of	the	western	
periphery	appears	both	in	the	Landsat	composite	(Figure	1)	and	in	
the	geoecological	classification	(Figure	6)	as	more	related	to	south‐
ern	 Amazonia	 than	 to	 the	 northern	 parts	 of	 western	 Amazonia,	
thus	 supporting	 the	 subdivision	 of	 the	 latter	 as	 proposed	 by	 ter	
Steege	et	al.	(2013).

The	 western	 limit	 of	 central	 Amazonia	 in	 our	 results	 coin‐
cides	 with	 a	 previously	 identified	 geological	 and	 floristic	 bound‐
ary	 (Higgins	 et	 al.,	 2011;	 IBGE,	 2004;	 Schobbenhaus	 et	 al.,	 2004;	
Tuomisto	et	 al.,	 2016).	Central	Amazonia	as	defined	by	 ter	Steege	
et	 al.	 (2013)	extends	 further	west	 than	 this,	whereas	 in	 the	north	
their	boundary	is	south	of	the	extensive	white	sand	areas	(Adeney	et	
al.,	2016;	Quesada	et	al.,	2011)	that	in	both	the	Landsat	composite	
and	the	geoecological	classification	associate	with	central	Amazonia.	
The	eastern	Amazonian	region	recognized	by	ter	Steege	et	al.	(2013)	
around	the	mouth	of	the	Amazon	river	stands	out	also	in	our	Landsat	
composite	(Figure	1),	and	was	allocated	to	a	different	class	than	most	
of	 southern	Amazonia	 (Figure	 6).	 It	must	 be	 noted,	 however,	 that	
lack	of	field	data	renders	our	results	for	this	area	(and	for	southern	
Amazonia	in	general)	rather	speculative.

The	limits	between	geoecological	subregions	mostly	did	not	fol‐
low	major	rivers,	with	the	exception	of	the	upper	Rio	Negro	and,	to	
some	degree,	the	lower	Amazon	itself	(Figures	1	and	6).	Traditionally,	
the	Amazon	River	and	its	main	tributaries	have	been	recognized	as	
distributional	 limits	 for	many	 animal	 species,	 and	 it	 has	 been	 sug‐
gested	 that	 the	 rivers	 function	as	dispersal	barriers	 (Aleixo,	2006;	
Godinho	&	da	Silva,	2018;	Haffer,	1974;	Nazareno,	Dick,	&	Lohmann,	
2017;	 Pomara,	 Ruokolainen,	 &	 Young,	 2014;	 Ribas	 et	 al.,	 2012;	
Wallace,	1852).	Where	a	river	coincides	with	habitat	differences,	it	
is	difficult	to	disentangle	the	possible	effects	of	a	river	barrier	from	
those	of	habitat	selection,	but	in	areas	where	rivers	and	habitat	lim‐
its	do	not	coincide,	the	two	hypotheses	make	different	predictions	
depending	on	species	vagility	and	degree	of	habitat	specificity.	This	
has	an	 important	practical	consequence:	any	regional	maps	where	
category	 limits	 are	 drawn	 using	 rivers	 as	 boundaries	 (such	 as	 the	
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WWF	ecoregion	map;	Olson	et	al.,	2001)	may	only	be	relevant	for	
river‐limited	organisms.

A	few	recent	studies	have	used	Landsat	data	as	environmental	lay‐
ers	in	species	distribution	models	(SDMs)	over	relatively	small	extents	
(Chaves	et	al.,	2018;	Figueiredo	et	al.,	2015).	Our	results	suggest	that	
the	same	approach	is	feasible	even	at	the	basin‐wide	extent	(see	also	
Van	doninck	&	Tuomisto,	2018).	For	example,	the	modelled	floristic	
gradient	 shown	 in	 Figure	 4a	 allows	 making	 rather	 specific	 predic‐
tions	about	the	potential	distributions	of	plant	species:	only	species	
tolerant	of	cation‐poor	soils	are	expected	to	grow	in	the	blue‐green	
areas	in	central	Amazonia,	while	increasing	redness	in	the	map	indi‐
cates	increasing	probability	of	occurrence	for	species	requiring	high	
cation	availability.	Until	now,	SDM	has	often	been	done	using	climatic	
variables	only,	and	 the	 few	studies	 that	have	used	digital	 soil	maps	
(Figueiredo	et	al.,	2018;	Levis	et	al.,	2017)	may	have	underestimated	
the	importance	of	soils	due	to	the	problems	with	thematic	and	spatial	
accuracy	in	the	available	soil	maps	(Moulatlet	et	al.,	2017).

Because	 our	models	 focus	 on	 the	 dominant	 floristic	 gradients	
only,	and	are	based	on	plants	with	relatively	good	dispersal	ability,	
they	have	been	trained	to	emphasize	environmental	site	conditions.	
The	degree	of	 floristic	 regionalization	 that	emerges	 through	 isola‐
tion	by	distance	is	probably	underestimated	even	for	ferns	and	lyco‐
phytes,	and	more	so	for	plant	groups	that	are	more	dispersal‐limited.	
This	will	need	to	be	taken	into	account	when	assessing	the	ecologi‐
cal	and	biogeographical	significance	of	the	subdivisions	of	Amazonia	
that	emerge	from	our	results	(especially	Figure	6).	Our	results	pro‐
vide	one	geoecological	view	over	Amazonia,	and	comparable	studies	
using	other	plant	groups	are	now	needed	to	test	this	view.
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