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Sinopse 
Nesta tese investigamos como fatores edáficos e climáticos determinam 
padrões biogeográficos, funcionais e evolutivos de plantas amazônicas. Foram 
usados modelos de distribuição para prever distribuição de espécies, dados de 
comunidades para entender respostas funcionais da vegetação em função de 
gradientes edáficos, topográfico e climáticos, e análises filogenéticas para 
propor modelos evolutivos basaeados em estratégias funcionais, filtros 
geoquímicos e eventos geológicos e climáticos do passado. 

Palavras-chave: 1. Solos. 2. modelos de nicho ecológico. 3. traços funcionais. 
4. geologia. 5. florestas tropicais. 6. topografia. 7. mudanças climáticas. 8. 
diversificação. 
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RESUMO 

O objetivo desta tese foi revelar a importância de filtros geoquímicos edáficos e condições climáticas 

para entender a biogeografia, o funcionamento e a história evolutiva da biodiversidade Amazônica em 

um contexto de mudanças climáticas. No primeiro capítulo comparamos a importância relativa de 

dados espaciais de solo e dados climáticos, para prever a macro distribuição de plantas na Amazônia. 

Na larga escala geográfica, assume-se que as restrições eco fisiológicas determinadas pelo clima 

representam o principal controle dos limites de distribuição das espécies. No entanto, dados de solo 

representaram os principais descritores da distribuição de espécies no macro escala. Conclui-se que em 

um cenário de mudanças climáticas, barreiras edáficas deverão restringir a dispersão das espécies e 

dificultar o rastreamento de condições climáticas favoráveis. No segundo capítulo, usamos uma 

assembleia de plantas herbáceas de sub-bosque florestal (Zingiberales) para testarmos se existe 

convergência e/ou divergência nos traços funcionais (área foliar específica, altura e tamanho das 

sementes) das comunidades ao longo de gradientes regionais de solo, topografia e clima. No geral, a 

composição funcional das comunidades tende a convergir para o que é esperado pela teoria clássica 

custo-benefício das estratégias funcionais ao longo de gradientes de recursos: habitats com maior 

disponibilidade de recursos (nutrientes e água) selecionam traços funcionais indicadores de estratégias 

de crescimento rápido e ciclo de vida curto. No entanto, a composição funcional das comunidades 

divergiu fortemente ao longo do gradiente climático, sendo impossível prever a composição funcional 

em regiões secas. Esses resultados sugerem que o funcionamento das florestas amazônicas está 

intrinsicamente relacionado com características do solo e topografia, mas ainda existem muitas 

incertezas sobre como as mudanças climáticas irão afetar sua estrutura e funcionamento. No terceiro 

capítulo, testamos um modelo evolutivo baseado em características funcionais intrínsecas de 

linhagens, relações de nicho e transformações da paisagem amazônica em decorrência do 

soerguimento dos Andes. As linhagens com estratégia funcional de crescimento rápida apresentaram 

maiores taxas de especiação, tiveram maior riqueza, originaram-se mais recentemente, estiveram mais 

associadas com ambientes produtivos, e sua origem e mudanças temporais nas taxas de diversificação 

estiveram associadas principalmente com eventos geológicos do Mioceno. As linhagens com 

estratégia funcional de crescimento lento apresentaram o padrão oposto. Estes resultados revelam a 

importância de características funcionais, relações de nicho e eventos geológicos para compreender a 

história evolutiva da biota amazônica. Esta tese demonstra claramente que padrões biogeográficos, 

funcionais e evolutivos na Amazônia estão intimamente relacionados com filtros geoquímicos 

edáficos. Ignorar os efeitos destes filtros em modelos de mudanças climáticas pode levar a sérios erros 

de predição. Compreender onde, como e quando estes filtros atuam é um aspecto essencial para a 

conservação de uma Amazônia em constante mudança.  
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BIOGROGRAPHIC, FUNCTIONAL AND EVOLUTIONARY PATTERNS UNDER CONTROL OF 

GEOCHEMICHAL AND CLIMATIC FILTERS IN AMAZONIA.  

ABSTRACT  

The goal of this study was to reveal the importance of edaphic-geochemical filters and of climate 

conditions to understand the biogeographic, functional and evolutionary patterns of the Amazonian 

biodiversity in a scenario of climate change. In the first chapter we used species distribution models 

to compare the relative importance of soil and climate data to predict species ranges of Amazonian 

plants. Climate has generally been recognized as the main driver of species distribution at large scales. 

However, we found that soil attributes were the main predictors of large-scale species distribution. The 

strong control of species ranges by edaphic features might reduce species’ abilities to track suitable 

conditions under climate change. In the second chapter, we used an assemblage of understory 

herbaceous plants (Zingiberales) to predict convergent and divergent functional trait response (specific 

leaf area, height and seed size) at community level along soil, hydro-topographic and climate 

gradients. Overall, the functional composition of communities tended to converge following the 

expectation of classical theory of plant strategy based on fast-slow grow trade-off: highly productive 

habitats (rich nutrient soil and bottomlands) selected functional traits indicating fast growth strategies. 

However, the functional composition of communities diverged widely along the broader climatic 

gradient, being impossible to predict which functional traits prevail in dry regions. These results 

suggest that functioning of Amazonian forests is tightly linked with geochemical conditions, but many 

uncertainties remain regarding how climate change will affect the functioning of tropical forests. In 

the third chapter, we tested an evolutionary model based on intrinsic clade functional strategy, niche-

based relationships and past geochemical transformations of Amazonian landscapes driven by Andean 

uplift. Clades with fast growth strategy had higher diversification rates, higher species richness, arose 

more recently, were more associated with highly productive habitats, and their origin and 

diversification dynamics were associated with main geological events of the Miocene. Clades with 

slow growth strategies had the opposite patterns. These results reveal that, to understand the 

evolutionary history of Amazonian biodiversity, it is essential to take account of niche and functional 

aspects of species/clades and past geochemical transformations of landscapes driven by paleo-

geological events. . In summary, we clearly demonstrate in this thesis that biogeographic, functional 

and evolutionary patterns in Amazonia are strongly controled by edaphic-geochemical filters. 

Overlooking the role of theses filters in models of climate change effects on tropical biodiversity may 

lead to unsatisfactory predictions. Understanding where, how and when these filters act is also 

essential for designing conservations strategies for an Amazonia under constant change.
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Figure 2. Contribution to explained variance (EV) of the unique and joint fractions of the soil and 
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coloured according to whether they were used in the CLIM models or in the SOIL models. 

Figure 4. Spatial projection of the differences in suitability scores between the SDMs, mapped only in 
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range from 0 (low probability of species occurrence) to 100 (high probability of occurrence). a) The 

difference in suitability between the best and CLIM models (Sbest – Sclim). b). The difference in 

suitability between the the best and SOIL models (Sbest – Ssoil). c) The Difference in suitability between 

the CLIM and SOIL models (Sclim – Ssoil). Low values in panels a) and b) denote regions where the 
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condition, but the SOIL models over-predict and the positive values means the opposite. Note that for 

42 species, the best models included both climatic and soil variables, and for the remaining two 

species, the best models included only soil variables. Maps are in Mollweide equal-area projection and 

the dashed line denotes the Equator.  
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Figure S1.1 Map of the 44 environmental layers used in SDMs with boundaries of Amazonian 

delineated in red. (C) and (S) are variables used in the CLIM and SOIL model, respectively. D, M and 

Q denote abbreviations for diurnal, month and quarter, respectively. 

Figure S2.2 The Linhom(r) function computed for for different filtering (fd) distances for 

Ischnosiphon martianus. For this species, the selected filtering distance was 30 km, resulting in 30 

presence records (n) free of spatial clustering. (r) is the radius distance setting by the algorithm at 

which Linhom(r) was estimated. The black line is the estimated Linhom(r) for the observed point 

process; grey bands represent the 95% bootstrap confidence interval for the observed Linhom(r); the 

dotted red line is the estimated theoretical Linhom(r) assuming an inhomogeneous Poisson process. 

Figure S3.3 Spatial projections of models for the 42 Amazonian plant species. From left to right, the 

first, second and third column panels denotes the spatial predictions of the relative occurrence 

probabilities (cumulative ROP of average predictions from the 10 fold cross-validation) of 

CLIM+SOIL model (CS), CLIM model (C) and SOIL (S) model, respectively. High values of 

cumulative ROP represent high probability of species occurrence (high suitability scores) and low 

values denote low probability of occurrence (low suitability scores). Model performance based on 

ΔAIC and median AUC are shown above the panels. The forth column panel shows the predicted 

distributional areas (orange areas) obtained by the best model (the CLIM+SOIL for the most of 

species) and areas in blue denotes the unsuitable climatic or/and soil conditions for species occurrence. 

Black crosses are the filtered presence records used to calibrate the SDM. The classification of 

distributional areas was based on setting the threshold on cumulative ROP that maximizes the sum of 

sensitivity plus specificity. Values above the forth column panels are the selected threshold (Th), 

omission rate (OR) and the fraction of predicted area (FPA) resulting from predictions’ classification. 

The geographical background (area of predictions) was set in accordance to criteria defined in 

Appendix S2. Species are grouped by life-forms: trees, palms, lianas, monocot herbs and ferns.  

Figure S3.4 Predicted species response curves (relative occurrence probabilities, ROPs) along the 44 

environmental variables. Species response curves were built using the contrasts plots from R package 

‘visreg’ (http://myweb.uiowa.edu /pbreheny/publications/visreg.pdf). ∆ROP was obtained shifiting the 

Xj values by a reference value, !", setting all species’ ROP into a comparable scale (between 0 – 1). 

Lines in each of the 44 plots represent the response curves of each of the 42 species. Dashed black 

lines indicate models that were worse than the null model, based on ∆AIC.  

Artigo 2 

Figure 1. Life-forms in some genera of Zingiberales.  
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Figure 2. The study area and location of 451 plots where ginger community and environmental data 

were obtained. Background map represents the dry season length. Legend denotes the maximum 

number of consecutive months with less than 100 mm of precipitation along the 1998 -2004 period. 

Black triangles represent the RAPELD plots (250 m x 2m) and blue triangles represent plots with size 

of 100 m x 5m located along the Juruá river.  

Figure 3. Correlation (Person’s r) between functional traits based on species level (A – C) and 

community level (D – I). Correlation between traits at species level were obtained applying a 

logarithm transformation and vertical plot’s axis are presented using that scale.  

Figure 4. Changes in functional composition (CWM) of 451 herbaceous communities along 

environmental gradients. Continuous and dashed lines represent the mean (µ) and variance (σ) 

response of CWM, respectively. Predicted mean is the 0.5 quantile and predicted variance denotes the 

interval between the 0.25 and 0.75 quantiles of the t family distribution (A - C) and Box-Cox t 

distribution (D - L). For each variable the predicted mean mean and variance were obtained keeping 

all other variables constant at their mean values. The µ (mean) and/or σ (variance) displayed in the 

upper-right corner of panels indicates significant association between parameters and predictor 

variables and ‘ns’ denotes non significant association. Vertical axis from E to L are in logarithm scale. 

Dots denote the partial residual and light grey crosses represent the original values.  

Artigo 3 

Figure 1. Time-calibrated phylogeny base on nuclear ITS marker (A) and intrinsic clade factors across 

the seven Amazonian lineages of Marantaceae (B). Clades in (A) are coloured according with their 

diversifications rates (r) exhibited in B and grey represent non Amazonian lineages lineages, which 

some of them are collapsed in a unique node (see the complete phylogeny in Fig. S2). In (B) are the 

intrinsic clade LMA (mean values in gm-2), diversification rates (r, in events per Mya), stem ages (Ast, 
in Mya), crown ages (Acr, in Mya), clade richness (R) and sampling fraction (sf) that means the 

proportion of extant taxa represented in the phylogeny. The diversification rates were estimated fitting 

a pure birth process, which was the best model compared with models assuming birth-death process 

(see detail in Methods). 

Figure 2: Relationships between diversification rates, LMA, clade species richness and clade age. In A 

is the simple relation between diversification rates and LMA. In B – C are the partial regression of the 

model including LMA and stem age as predictor variables, and in D – E denote the partial regression 

the model including diversification rates and LMA as predictors. The fitted line in B – E was obtained 

using conditional plots implemented in visreg R-package (25). The P values represent the statistical 

significance of relations, R2 the good-of-fitness of models including all variables and R2
out de good-of-

fitness of models without that variable.  
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Figure 3: Habitat association of the seven Marantacea clades. Vertical axis denotes the occurrence 

probabilities scaled to 0 – 1 using contrasting plot implemented in visreg R-package (25). Horizontal 

axis denotes the logarithm of sum of bases Ca, Mg plus K (SB), logarithm of vertical distance from 

drainage (VDD) and the dry season length (DSL). From top to bottom panels, clades are order based 

on their LMA values and colours are based on their stem age, which red represent the youngest blue 

the oldest clade. The statistical significance of clade-habitat association is given by the P values 

extracted from a GLM model using all the tree variables.  

Figure 4. Diversification dynamics of the fast-growth and slow-growth clades. Lines represent the 

posterior mean and polygons the 95% credible interval for diversification, speciation and extinction 

rates. Fast-growth clades include Breviscapus, Comosae and Microcephalum and slow-growth clades 

include Ischnosiphon, Monotagma, Ornata and Straminea. Geological events (red triangles and grey 

polygons) were obtained in Hoorn et al. (5). Paleo climate spatial trends is based on data from Zachos 

et al. (26), assessed in ftp://ftp.ncdc.noaa.gov/pub/data/paleo/. ∆T °C is the approximate difference 

from present-day temperature scaled according to concentration of isotopes of oxygen (δ O18) (see 

details in figure 2 of Zachos et al. (26)). Paleo climate points are coloured representing the gradient 

running from warm conditions (red) to cooler conditons (blue). 

Figure S1. Bayesian phylogenetic tree for 151 taxa in Marantaceae family based on matK sequences. 

The five major clades are according to Prince & Kress (44) and four clades in grey are those with 

centre of diversity outside Amazonia. Grey bars denote the 95% confidence interval of divergence 

times. 

Figure. S2. Bayesian phylogenetic tree for155 taxa in Calathea clade baed on ITS sequences. Clades in 

grey are those with centre of diversity outside lowlands Amazonian rain forest. Grey bars denote the 

95% confidence interval of divergence times. 

Figure S3. The study area and location of 451 plots where ginger community and environmental data 

were obtained. Background map represents the dry season length. Legend denotes the maximum 

number of consecutive months with less than 100 mm of precipitation along the 1998 - 2004 period. 

Black triangles represent the clusters of RAPELD plots (250 m x 2m) and blue triangles represent 

plots with size of 100 m x 5m located along the Juruá River. Clusters may have 5 to 57 plots spaced by 

at least 1 km. 

Fig S4. Density distribution of LMA values for the seven Amazoninan clades in Marantaceae. Red 

lines donotes the fitted distribution of the three parameter t family distribution adjusted to the mean 

LMA values for each species.   
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INTRODUÇÃO GERAL 
 

	 As florestas tropicais abrigam a maior parte da biodiversidade terrestre do planeta e 

desempenham um importante papel na regulação climática e manutenção dos serviços ecossistêmicos. 

Dentre as florestas tropicais encontradas nos diferentes continentes, a floresta amazônica representa a 

região com a maior cobertura florestal e ainda com um bom status de conservação. No entanto, esse 

imenso tapete verde e sua biodiversidade vêm sendo ameaçadas pelo avanço do desmatamento, da 

fronteira agrícola, pela instalação de grandes empreendimentos hidro energéticos e por mudanças 

climáticas (Nepstad et al. 2002; Fearnside 2006; Malhi et al. 2008; Nobre 2014). De maneira geral, 

essas pressões afetam sua intricada e complexa rede de interações ecológicas, responsáveis por manter 

o próprio sistema em funcionamento, assim como afetam sua capacidade de continuar gerando 

processos vitais e serviços ecossistêmicos que vão além dos seus limites geográficos (Lewis et al. 

2011; Nobre 2014). Portanto, é urgente e necessário entender quais os fatores que controlam a 

distribuição de sua biodiversidade, regulam seu funcionamento e como este sistema diverso e 

complexo evoluiu.  

 Esse imenso tapete verde, cobiçado pelos conquistadores e admirado pelos naturalistas 

europeus que por aqui chegaram à era pós-colombiana, tem se revelado cada vez menos homogêneo. 

Talvez, uma das primeiras propostas de bioregionalização da Amazônia seja a feita por Wallace 

(1852) após suas expedições pelos principais rios amazônicos no século XIX. Segundo Wallace, certas 

espécies de plantas e animais só ocorriam em um dos lados dos grandes rios e, portanto, eles 

definiriam os limites de regiões biogeográficas distintas. Mais tarde, essa e outras observações feitas 

pelo naturalista ao redor do globo sustentaram a base primordial do conceito de especiação alopatria 

por vicariância, ou seja, barreiras físicas teriam isolado espacialmente as populações e o fluxo gênico 

entre elas, dando origem a novas espécies (Wallace, 1876).  

 Embora o efeito de rios como barreiras tem se verificado em padrões de distribuição e 

processos evolutivos em tetrápodes (Hayes & Sewlal 2004; Ribas et al. 2012), esse modelo parece não 

se aplicar no caso de plantas (Hughes et al. 2013). Na década de 70, Fittkau et al. (1975) propuseram a 

subdivisão ecológica da Amazônia baseada em macrorregiões definidas por suas características 

geológicas, que por sua vez, determinavam tipos de solo e a produtividade dos sistemas terrestres e 

aquáticos. Para os autores, os padrões de distribuição de espécies de plantas estavam condicionados às 

diferentes macrorregiões geoedáficas e, portanto, os grandes domínios vegetacionais estariam sendo 

definidos pelas características químicas e físicas do substrato amazônico. Como o clima (precipitação 

e temperatura) são relativamente homogêneos na maior parte do seu território, a geoquímica dos solos 
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representaria a grande força ecológica seletiva ao longo das terras baixas amazônicas (Fittkau et al. 

1975). Essas idéias influenciaram novas e mais complexas subdivisões ecológicas da Amazônia 

(Sombroek 2000) e a extensiva coleta de dados bióticos e abióticos que vem acontecendo nas últimas 

décadas têm confirmado a existência de uma grande heterogeneidade geológica e edáfica (Brasil 1978; 

Quesada et al. 2010) e reforçado a importância de filtros geoquímicos para a estruturação espacial da 

diversidade e composição de plantas na Amazônia (Tuomisto, Ruokolainen & Yli-Halla 2003; 

Tuomisto et al. 2016; ter Steege et al. 2006; Higgins et al. 2011; Figueiredo et al. 2014; Zuquim et al. 

2014). 

 A noção de homogeneidade climática na Amazônia e seu desprezível fator seletivo proposto 

por Fitttkau et al. (1975) representam de certa forma uma visão simplista e subjetiva. Na região oeste, 

central e nordeste do bioma predominam climas com alta pluviosidade anual e com curtas estações 

secas enquanto que no Leste e nas periferias sul e norte predominam climas mais secos (Fig S1.1 no 

Material Suplementar – Cap. 1). A riqueza de espécies tende a aumentar em áreas mais úmidas 

(Gentry 1988; Clinebell et al. 1995; Steege et al. 2003; Stropp, Ter Steege & Malhi 2009), refletindo o 

fato de que muitas espécies são sensíveis à seca (Esquivel-Muelbert et al. 2016) e a composição 

florística varia de forma significativa em regiões onde o gradiente climático muda mais rapidamente 

(ter Steege et al. 2006; Toledo et al. 2011b). Estes resultados demonstram uma clara influência do 

clima determinando padrões de diversidade e composição na Amazônia.  

 Essa relação entre clima e diversidade sugere que a Amazônia não esteve e provavelmente não 

estará imune a oscilações climáticas do passado e do futuro. De fato, mudanças climáticas recentes já 

estão afetando as taxas de mortalidade de árvores e o ciclo do carbono na região (Lewis et al. 2011). 

Estudos paleo ecológicos mostram evidências de mudança de vegetação em resposta a oscilações 

climáticas passadas, como o aumento de diversificação em épocas mais quentes (Jaramillo & Cárdenas 

2013) e aumento de extinção em épocas mais secas (Van Der Hammen & Hooghiemstra 2000). 

Simulações climáticas projetam uma intensificação de condições secas, principalmente no sul da 

Amazônia (Boisier et al. 2015) e consequentemente uma redução na diversidade de espécies (Feeley et 

al. 2012). Diante de um cenário de mudanças climáticas, três efeitos são esperados: (1) as espécies se 

adaptam às novas condições e sobrevivem; (2) as espécies migram rastreando condições climáticas 

adequadas ou (3) as espécies nem migram nem se adaptam e, portanto, se extinguem. Assumindo um 

cenário de baixa adaptabilidade, a capacidade de migração das espécies depende de processos de 

dispersão, que por sua vez depende de características das espécies (modos de dispersão), e 

características espaciais do habitat, como conectividade e grau de resistência à locomoção dos 

indivíduos (Opdam & Wascher 2004). Portanto, condições climáticas e não climáticas devem ser 

levadas em conta em modelos de projeção de impactos de mudanças climáticas sobre a distribuição 

espécies. 
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Modelos espaciais correlativos tem se revelado uma importante ferramenta para explorar 

potenciais efeitos de mudanças climáticas nas distribuições de espécies (Pearson & Dawson 2003). No 

entanto, para que estes modelos sejam efetivos, dois pressupostos básicos são necessários: (1) que as 

espécies estejam em equilíbrio com condições climáticas, ou seja, seus pontos de ocorrência e 

ausência estejam em áreas climáticas favoráveis e desfavoráveis, respectivamente, permitindo 

estimativas mais realistas de suas tolerâncias climáticas (nicho climático); (2) que as espécies sejam 

capazes de dispersar e rastrear condições climáticas favoráveis (Araujo & Peterson 2015). Sob estas 

condições, consegue-se projetar suas distribuições em cenários de mudanças climáticas. No entanto, 

como já discutido anteriormente, os limites de distribuição de espécies não são apenas determinados 

por condições climáticas, sendo talvez os filtros edáficos os principais limitantes das distribuições 

atuais das espécies de plantas amazônicas. Variáveis edáficas são raramente utilizadas em modelos 

espaciais de larga escala, pois se assume que seus efeitos são restritos a escalas locais (1 – 10 km) 

(Pearson & Dawson 2003). No primeiro capítulo desta tese, utilizamos modelos espaciais 

correlativos para avaliar quais seriam os melhores modelos – climáticos, edáficos ou mistos – para 

mapear a distribuição de 42 espécies de plantas amazônicas (incluindo árvores, palmeiras, lianas, 

herbáceas e samambaias). Através da sobreposição dos modelos espaciais das 42 espécies, mapeamos 

macrorregiões onde clima ou solo, ou ambos os fatores restringem os limites de distribuição de 

espécies. 

Os filtros ambientais, como solo e clima, determinam a distribuição da diversidade e sua 

evolução através de restrições na funcionalidade de indivíduos, populações, espécies, comunidades e 

ecossistemas. A abundância ou escassez de nutrientes no solo influenciam diretamente nos processos 

fisiológicos dos indivíduos, que se refletem nos processos demográficos (taxas de nascimento, 

mortalidade, crescimento e dispersão), na estrutura funcional de comunidades e em última instância 

nas propriedades dos ecossistemas (ciclos energéticos e químicos) (Quesada et al. 2012; Reich 2014). 

Os filtros geoquímicos e climáticos tendem a selecionar certas expressões fenotípicas dos indivíduos, 

denominados de traços funcionais, gerando convergência funcional no nível de comunidades (Fortunel 

et al. 2014; Muscarella & Uriarte 2016). Por outro lado, processos locais, como a competição, as 

dinâmicas estocásticas de recursos e as dinâmicas populacionais de fonte-sumidouro atuam de forma 

oposta, gerando divergência funcional dentro das comunidades (Kraft, Valencia & Ackerly 2008) e até 

mesmo entre comunidades. Em ambientes ricos em recursos, como nutrientes e água, predominam 

espécies de rápido crescimento e ciclo de vida curto (estratégias aquisitivas) (Reich 2014). 

Consequentemente, as taxas de mortalidade de árvores tendem a ser mais altas nestes ambientes, 

gerando maior frequência de perturbação por queda e formação de clareiras (Quesada et al. 2012), o 

que em florestas pode afetar os processos demográficos e padrões funcionais no sub-bosque. Os 

efeitos podem ser diretos, afetando a mortalidade dos indivíduos, ou indiretos, gerando flutuações 

temporais nos níveis de luz que alcançam o sub-bosque. Na Amazônia, regiões mais chuvosas tendem 
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a ter também maior frequência de tempestades, o que influencia a dinâmica de distúrbios e a formação 

de clareiras na floresta (Espírito-Santo et al. 2010; Negrón-Juárez et al. 2017). Variações topográficas 

também interferem nas taxas de mortalidade de árvores, provavelmente devido à instabilidade no 

terreno e a disponibilidade diferenciada de água (Ferry et al. 2010; Toledo et al. 2011a). Dessa forma, 

os filtros externos (solo, clima e topografia) poderiam, em tese, gerar tanto convergência quanto 

divergência funcional. Em um cenário de predominância de respostas funcionais divergentes sobre 

convergentes ao longo de gradientes climáticos, por exemplo, indicaria uma ausência de 

previsibilidade de como as comunidades ecológicas responderiam às mudanças climáticas. No 

segundo capítulo avaliamos se solo, topografia e clima afetam os padrões de convergência e 

divergência funcional de 451 comunidades de plantas herbáceas de sub-bosque (Zingiberales) ao 

longo das florestas de terras baixas da Amazônia brasileira.  

Os padrões de diversidade que observamos no presente foram moldados por processos 

complexos e históricos que se desenvolveram ao longo de milhões de anos. Entender quais fatores e 

como eles afetaram a história evolutiva dos sistemas ecológicos pode trazer informações sobre como 

eles devem responder aos efeitos de mudanças ambientais no futuro (Jaramillo & Cárdenas 2013). 

Embora se tenha demonstrado que diferentes processos estejam envolvidos na formação das espécies 

tropicais (Bush 1994; Fine et al. 2005; Antonelli et al. 2009; Ribas et al. 2012), ainda temos a carência 

de um modelo de diversificação, ou seja, que proponha quais mecanismos permitiram a acumulação de 

espécies de maneira diferenciada entre linhagens, regiões e habitats. O soerguimento dos Andes tem 

sido reconhecido como um importante evento impulsionador da diversificação na Amazônia. Sugere-

se que seus impactos na diversidade tenham ocorrido devido à formação de barreiras vicariantes, 

transformações geoquímicas e morfológicas da paisagem e alterações dos regimes climáticos (Hoorn 

et al. 2010). Por outro lado, estudos recentes têm sugerido que não é necessário invocar o 

soerguimento dos Andes e suas decorrentes transformações para explicar padrões evolutivos na 

Amazônia (Smith et al. 2014; Dexter et al. 2017), sendo a acumulação diferenciada de espécies entre 

linhagens determinada primeiramente pelo tempo que as espécies tiveram para se dispersar e especiar 

ao longo da paisagem amazônica (Smith et al. 2014). Uma previsão simples deste modelo é que a 

riqueza de espécie dentro de um clado aumenta proporcionalmente conforme aumenta a idade de 

origem dos clados. Outros modelos, no entanto, têm focado em processos funcionais e ecológicos 

como geradores de diversidade (Fine et al. 2005; Baker et al. 2014). Espécies da família Burseraceae 

proximamente relacionadas tendem a ocupar habitats edáficos distintos, sugerindo a importância da 

radiação adaptativa ao longo de gradientes ambientais como formadores de espécies. Um outro estudo, 

conduzido com 21 gêneros de árvores, demonstrou uma relação entre taxas de diversificação e 

estratégias funcionais (Baker et al. 2014). Gêneros que possuem estratégias funcionais aquisitivas 

(indivíduos de rápido crescimento e ciclo de vida curto) apresentaram taxas de diversificação maiores 

que gêneros com estratégias opostas. Isso seria explicado pela relação negativa entre o tempo do ciclo 
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de vida dos organismos e a taxa de evolução molecular (Smith & Donoghue 2008). Como estratégias 

funcionais aquisitivas estão relacionadas a ambientes ricos em recursos minerais na Amazônia 

(Quesada et al. 2012), os resultados de Baker et al. (2014) sugerem que as transformações 

geoquímicas passadas ocorridas principalmente no Oeste da bacia, teriam contribuído para o aumento 

da diversificação de certos gêneros, e consequentemente para o aumento de riqueza em certas 

linhagens e regiões da Amazônia. Portanto, no terceiro e último capítulo desta tese usamos sete 

linhagens dentro da família Marantaceae (ervas monocotiledôneas) para testar se linhagens com traços 

funcionais característicos de estratégias de rápido crescimento tendem a ter altas taxas de 

diversificação e riqueza de espécies, contrastando com previsões do modelo de diversificação baseado 

no tempo de origem das linhagens, onde é esperada uma maior riqueza em clados antigos. Utilizamos 

ainda modelos de afinidade de habitats e análise de dinâmica de diversificação para revelar quais 

fatores ecológicos e paleoeventos (geológicos e climáticos) estariam associados com os padrões 

evolutivos na Amazônia.   

OBJETIVOS 
O principal objetivo desta tese foi revelar a importância de filtros geoquímicos e climáticos 

para o entendimento de padrões biogeográficos, funcionais e evolutivos de plantas na Amazônia.  

Capítulo 1: Avaliar a importância relativa de dados espaciais de solo e clima para prever a 

distribuição de espécies amazônicas.  

Capítulo 2: Testar se filtros geoquímicos, hidro topográficos e climáticos promovem convergência 

e/ou divergência funcional em comunidades vegetais amazônicas.  

Capítulo 3: Demonstrar como e quando transformações geoquímicas e morfológicas da paisagem 

decorrentes de eventos históricos e oscilações climáticas influenciaram nos processos evolutivos de 

plantas amazônicas.  
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ABSTRACT 

Aim To evaluate the relative importance of climatic vs. soil data when predicting species 

distributions for Amazonian plants and to gain understanding of potential range shifts under 

climate change. 	

Location Amazon rain forest.	

Methods We produced Species Distribution Models (SDM) at 5 km spatial resolution for 42 

plant species (trees, palms, lianas, monocot herbs and ferns) using species occurrence data 

from herbarium records and plot-based inventories. We modelled species distribution with 

Bayesian logistic regression using either climate data only, soil data only or climate and soil 

data together to estimate their relative predictive powers. For areas defined as unsuitable to 

species occurrence, we mapped the difference between the suitability predictions obtained 

with climate-only vs. soil-only models to identify regions where climate and soil might 

restrict species ranges independently or jointly.	

Results For 40 out of the 42 species, the best models included both climate and soil 

predictors. The models including only soil predictors performed better than the models 

including only climate predictors, but we still detected a drought-sensitive response for most 

of the species. Edaphic conditions were predicted to restrict species occurrence in in the 

centre, the northwest and in the northeast of the Amazonia, while the climatic conditions were 

identified as the restricting factor in the eastern Amazonia, at the border of Roraima and 

Venezuela and in the Andean foothills. 

Main conclusions Our results revealed that soil data, relative to climate, represents the most 

important predictor of plant species range in the Amazonia. The strong control of species 

ranges by edaphic features might reduce species’ abilities to track suitable climate conditions 

under a drought-increase scenario. Future challenges are to improve the quality of soil data 

and couple them with process-based models to better predict species range dynamics under 

climate change.  

Keywords Amazon rain forest; climate change; Bayesian Logistic Regression; Cation 

Exchange Capacity; Ecological Niche Models; SoilGrids; tropical soils; soil factors; species 

range; Species Distribution Models 
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INTRODUCTION	

Climate is known to be an important determinant of species ranges at broad spatial scales, so 

an understanding of how climate change will affect ecological systems is urgently needed. 

The most obvious effect that climate change can be expected to have on biodiversity is shift in 

species’ geographical distributions (Parmesan & Yohe, 2003; Thuiller, 2007). Species must 

either track suitable climate or adapt to novel climatic conditions scaping from extinction. In 

turn, some species can be favoured by climate changes and expand their ranges. However, 

range shifts may be decoupled from pure climatic tracking by other factors that also restrict 

species distribution, such as non-environmental spatial constraints, land-use, biotic 

interactions and soil conditions, (Hayes & Sewlal, 2004; Marage & Gégout, 2009; Blach-

Overgaard et al., 2010; Eiserhardt et al. 2011; Wisz et al., 2013). Identification of both 

climatic and non-climatic constraints on broad-scale species distributions is therefore 

necessary to better predict how specie will respond to climate change.	

Recent projections of global climate models predict significant climate change in Amazonia 

by the end of the 21st century (Boisier et al., 2015), which would affect the plant diversity 

patterns in important ways (Olivares et al., 2015). It is already known that soil conditions 

affect species occurrence patterns in Amazonia, and therefore they deserve special attention in 

the modelling of plant distributions. Edaphic heterogeneity is tightly related to geological 

features, such as soil age and mineralogical composition of the parent material (Irion, 1978; 

Quesada et al., 2010). Whereas climate is relatively uniform over large parts of the Amazon 

basin, geological formations differ widely in age and geochemistry. Many studies suggest that 

soils exert the main control on broad-scale floristic patterns in Amazonia (Fittkau et al., 1975; 

Tuomisto & Poulsen, 1996; Sombroek, 2000; Higgins et al., 2011). However, studies focused 

on the southern and northern extremes of Amazonia have found a significant turnover of 

species along precipitation and temperature gradients (ter Steege et al., 2006; Toledo et al., 

2011). This suggests that climatic conditions may be important in constraining species ranges 

at the borders of the biome. Although both climate and soil are considered important 

determinants of broad-scale floristic patterns in Amazonia, a rigorous evaluation of their 

relative roles for predicting plant species ranges has been overlooked.	

Several studies have used spatial correlative models to predict current species distributions 

and potential range shifts under climate change for Amazonian species (Buermann et al., 

2008; Feeley et al., 2012; Thomas et al., 2012; Vedel-Sørensen et al., 2013; Thomas et al., 
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2014). However, either these studies relied on climatic and remote sensing variables, or used 

proxies, such as coarse resolution polygon-based maps of Ecoregions or soil types, to 

represent other environmental factors than climate (Feeley et al., 2012; Vedel-Sørensen et al., 

2013; Thomas et al., 2014). In general, soil variables are often neglected in SDM because 

accurate and ecologically relevant data covering large extents are scarce. Recent efforts to 

develop digital soil maps, such as SoilGrids, have increased the availability of high-resolution 

grid-based soil information (Hengl et al., 2014). The available soil maps include chemical and 

physical properties of the soil, as well as occurrence probabilities of soil classes, which can be 

expected to predict plant species range better than the previously used coarse-resolution 

proxies.	

Here, we present the first broad-scale evaluation of how soil and climate variables interplay to 

predict plant species ranges in Amazonia using SDMs and a diverse set of climate and soil 

data layers. We focused on 42 plant species from phylogenetically distant groups that 

represent different growth forms: trees, palms, lianas, ferns and monocot herbs. We aimed to: 

(i) test whether the inclusion of soil variables improves the performance of climate-based 

SDMs; (ii) quantify the unique and joint contributions of climate and soil variables in 

explaining species distributions; (iii) quantify the relative importance of individual variables 

in predicting species distributions; and (iv) predict areas where soil and climatic conditions, 

independently and jointly, restrict species ranges. We expected that inclusion of a 

physiologically relevant set of edaphic predictors in SDM in combination with climate 

variables would produce more accurate predictions of species distributions and shed light on 

how soil and climate changes may interact to drive shifts in species ranges in Amazonia.	

METHODS	

Species and Environmental data	

Species data. We focused on 42 plant species (Table 1) to investigate the predictive 

performance of climate and soil variables for mapping species distributions. The species were 

selected to cover a wide spectrum of plant sizes and life history strategies (trees, palms, 

lianas, monocot herbs and ferns) as well as different range sizes (some restricted to 

Amazonian rain forests and others also found in other biomes). Species occurrence records 

were obtained from two sources: plot-based inventories and herbarium records. To ensure 

data consistency, species that are easy to identify in the field were preferably considered, and 
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all species in the final set had to be well represented in the species occurrence data. Details 

about the data sources can be found in Table S1, Appendix S1 in Supporting Information.	

Environmental data. As climate predictors, we used both WorldClim variables and remote 

sensing data. Out of the available WorldClim data (http://www.worldclim.org), we used the 

19 bioclimatic variables, which express 11 temperature and eight precipitation metrics at 

about 1 km resolution (WorldClim version 1.4; Hijmans et al., 2005). The WorldClim 

variables were produced by spatial interpolation between meteorological stations, which 

creates high uncertainty in the estimated climate data in many parts of Amazonia, where 

stations are sparse. Therefore, we also included precipitation data as estimated by the Tropical 

Rainfall Measuring Mission (TRMM) satellite (Kummerow et al., 1998; 

http://disc.sci.gsfc.nasa.gov). We converted monthly data from 1998 to 2004 of the TRMM 

product 3B43 V6 at a 0.25° resolution (about 28 km at the equator) into two climatic 

variables: annual precipitation and dry season length, defined as the maximum consecutive 

number of months with less than 100 mm of precipitation.	

We used four remote sensing variables that describe terrain and forest structure properties: 

elevation, percentage tree cover, percentage evergreen tree cover and canopy height. 

Elevation was obtained from the Shuttle Radar Topography Mission (http://worldgrids.org). 

Tree cover and evergreen tree cover were derived from images of the NOAA’s Advanced 

Very High Resolution Radiometer acquired in 1992–93 (DeFries et al., 2000; 

http://www.landcover.org). Canopy height was derived from the spaceborne Geoscience 

Laser Altimeter System (Simard et al., 2011; http://daac.ornl.gov). All remote sensing 

variables were originally provided at about 1 km resolution. We included the terrain and 

forest structure data in the pool of climate variables because these variables can be expected 

to represent ecophysiological constraints on species distribution via complex interactions 

between temperature, precipitation and solar radiation (Grubb, 1977; Kempes et al., 2011). 

Although soil and topography also affect forest structure, these relationships must be detected 

specially at fine-scale resolution. 

Soil variables were obtained from the SoilGrids 250m database (https://www.soilgrids.org). 

We used 19 soil variables that provide predicted values for the surface soil layer (0 – 15 cm 

depth). These included: three soil texture variables (percent of clay, sand and silt), which are 

related to soil drainage; two chemical variables related to nutrient availability, the cation 

exchange capacity (CEC, measured in cmolc kg-1 at pH 7) and pH (determined in KCl); and 
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other 14 variables representing different soil classes (following the classification of FAO’s 

World Reference Base), which are related to soil physical conditions and nutrient availability 

(Quesada et al., 2010). The soil classes were selected based on their moderate to high 

occurrence probabilities in the Neotropics. We used each soil class layer as an independent 

continuous predictor, where the value for a given pixel represents the probability of 

occurrence of that soil class. In this way, our SDMs take into account the uncertainty 

associated with the spatial limits of soil classes. This differs from the common approach of 

treating polygon-based soil classes as categorical variables in statistical models, so that each 

grid cell belongs to exactly one soil class. Extreme environmental conditions (bare soils areas, 

sparsely vegetated areas and water bodies) recognized as improbable to be occupied by our 

species were excluded by combining the spatial mask present in all aforementioned 

environmental data and also the spatial mask employed in SoilGrids 1km (Hengl et al., 2014; 

product SMKISR accessed in http://worldgrids.org). The latter excludes several non-vegetated 

areas that are included in SoilGrids 250m. We rescaled all environmental data to a 0.05° 

spatial resolution (about 5 km at the equator) and both environmental and species data were 

transformed to the Mollweide equal-area projection before analysis. The maps of all 44 

environmental variables are presented in Fig. S1.1. 

Modelling framework	

To evaluate the role of climate and soil factors in predicting species ranges we built a set of 

three SDMs for each species: (i) CLIM models based on WorldClim and remote sensing 

variables; (ii) SOIL models based on SoilGrids variables; (iii) and CLIM+SOIL models based 

on both sets of variables together. Our modelling approach includes six steps, as detailed 

below: 	

Step 1: Pre-modelling: detecting outliers, reducing sample bias and setting geographical 

background.  	

To improve SDM quality, we first coarsened the spatial resolution of the occurrence data. We 

retained only one presence record per 5x5 km grid cell and removed geographical and 

environmental outliers in the presence records. Then, we applied a spatial filter procedure to 

reduce sample bias (spatial aggregation) of occurrence records (Fig. S2.2). Finally, we 

constrained the area for model calibration, evaluation and prediction separately for each 
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species to avoid predicting species presence in areas far beyond their potential ranges. Details 

of the pre-modelling procedures are given in Appendix S2. 	

Step 2: Predicting relative species occurrence probabilities using Bayesian Logistic 

Regression 	

To predict the relative occurrence probability of a species in each 5x5 km grid cell we applied 

logistic regression using presence and pseudo-absence points. Logistic regression using 

presence and pseudo-absence points is similar to methods widely used in ecology (e.g., 

MAXENT and resource selection functions). All of these methods are closely related to the 

Poisson point process model recently viewed as an appropriate way to analyse presence-only 

data in a regression framework (Warton & Shepherd, 2010; Aarts et al., 2012; Renner & 

Warton, 2013; Renner et al., 2015). To approximate our SDM to the Poisson point process 

model, one has to generate a sufficient number of pseudo-absences (background points) in a 

regular or uniform random design (Warton & Shepherd, 2010; Renner et al., 2015). For each 

species, we generated 10,000 random background points over the geographical background 

area defined in step 1. We used Bayesian logistic regression instead of a conventional 

maximum likelihood logistic model because the maximum likelihood algorithm tends to 

overestimate regression coefficients when the number of presence records is very small in 

relation to absence or pseudo-absence points, or when the distribution of a species along an 

environmental gradient is very narrow (Hefley & Hooten, 2015).  Bayesian logistic regression 

circumvents these problems by combining the information of the likelihood functions and a 

weakly informative default prior based on the Cauchy distribution to estimate model 

parameters (Gelman et al., 2008).	

We performed stepwise model selection (backward-forward) using Akaike Information 

Criterion (AIC) to find the most parsimonious model for each species separately. We allowed 

high correlated variables belonging to different source groups (WorldClim, TRMM climatic 

data, remote sensing data or SoilGrids) to compete in the same model selection, but we 

excluded variables that were too highly correlated with another variable in the same source 

group. Before the model selection procedure, we found pairs of variables that had correlation 

greater than 0.7 (absolute value of Pearson correlation) and excluded one of them which had 

greater variance inflection factor. We stopped the process when all pairwise correlation was 

less than 0.7. Only linear and second-order polynomial effects (Gaussian-shaped curve) were 

used. We started the backward-forward procedure including linear effects only. Second-order 
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polynomials were allowed to enter the models at any step. We repeated model selection three 

times for each species to obtain the best CLIM+SOIL, CLIM and SOIL models.  

Step 3: Evaluating model performance 	

To evaluate the performance of CLIM+SOIL, CLIM, and SOIL models, we employed two 

criteria. First, the goodness-of-fit of the models was compared using ΔAIC, which represents 

the difference in AIC between the model being evaluated and the best model (Burnham & 

Anderson, 2002). ΔAIC of the best model for a given species is therefore zero, and the higher 

ΔAIC value for a given model, the poorer the empirical support for it. As a rule of thumb, 

ΔAIC values smaller than 2 indicate models with good support. To evaluate if the best models 

are better than a null model, we also computed ΔAIC values for models including only the 

intercept term. Second, the spatial accuracy of models was evaluated by AUC, defined as the 

area under the receiver operating characteristic curve (Bradley, 1997). In a presence-

background design, the false positive rate of the ROC plot is replaced by the fraction of 

predicted area. AUC values range from 0 to 1, with AUC values higher than 0.7 indicating 

models with good performance and values lower than 0.5 indicating that a model is worse 

than the null model (Araújo et al., 2005).  Before computing AUC, the relative occurrence 

probabilities (ROP) were transformed into cumulative values, which assigns a pixel the sum 

of all ROP values equal to or lower than the ROP values for that pixel, multiplied by 100 to 

give a percentage (Phillips et al., 2006). Cumulative ROP (hereafter defined as suitability 

index) ranges from 0 to 100 and is better than the raw ROP output to visualize species range 

boundaries (Merow et al., 2013). For the best models returned by the model selection 

procedure, we applied a 10-fold cross-validation and computed the AUC test of each 

replicate. The final prediction of each model was produced by averaging the 10 replicates 

returned by cross-validation.  

For each species, we applied a two-tailed non-parametric Wilcoxon test to check if spatial 

predictions measured by the AUC were better than the null model. For those species with best 

models better than null, the difference in AUC scores between CLIM+SOIL, CLIM and SOIL 

models was tested using Generalized Mixed Effect Models (GLMM) (Pinheiro & Bates, 

2000). Model type was used as the fixed term and species were set as the random term. Since 

AUC range from 0 to 1, we fitted the GLME assuming that AUC scores follow a beta 

distribution (logit transformation). 	
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Step 4: Quantifying the unique and joint effects of climate and soil variables on species 

distribution models	

Since Bayesian logistic regression can be viewed as a Generalized Linear Model with a 

constrained approach to estimate model parameters, we employed the same procedure of 

variance partitioning used in linear modelling (Borcard et al., 1992) to quantify how much of 

the variances explained by the best CLIM+SOIL, CLIM and SOIL models were explained 

uniquely by climate or soil variables and jointly by both sets of variables. Given that we 

applied the model selection procedure to find the best models in each of the three model 

settings, the SOIL and CLIM models do not necessarily include the same subset of variables 

that were retained in the best CLIM+SOIL model. Hence, our approach is not a true variance 

partitioning, but an approximation of it. Percentage of total explained variance (EV) in 

logistic models, also known as pseudo-R2, was given by: 	

#$ = 	'())	*+,-.'/+ − 1+2-*(.)	*+,-.'/+'())	*+,-.'/+ ∗ 100	

as suggested by Zuur et al. (2009). The unique contribution of climate was computed as 

EVclim+soil – EVsoil, and that of soil as EVclim+soil – EVclim. The joint contribution of climate and 

soil was obtained as EVsoil + EVclim – EVclim+soil. We report the unique and joint contributions 

of CLIM and SOIL model as percentages of EV rather than as percentages of total variance. 

This is done because pseudo-absence data may be generated also for pixels containing 

presence records, so the total variance will never be fully explained. 	

Step 5: Quantifying the relative importance of individual variables.	

For each species, we ran Bayesian logistic regressions separately with each variable to 

quantify their relative importance. For each of 44 predictors, we ran a single-variable SDM 

and selected the best shape of the species response curve (no effect, linear, or second order 

polynomial) using ΔAIC scores. The EV of the single-predictor model was then expressed as 

a percentage of the EV of the best model identified in step 3. Finally, we ranked variables 

based on their median EV values over all species.	

Step 6: Mapping the difference between predictions of CLIM and SOIL models.	

Since our goal is to identify which factors (climatic, soil or both) potentially restrict species 

distribution, we mapped the difference between the models´ predictions only in areas defined 
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as unsuitable, i.e, in areas that species are likely to be absent. To define the unsuitable areas, 

we applied a threshold on each species suitability scores that maximizes the sum of sensitivity 

(1 - omission error) and specificity (the fraction of predicted area) (Manel et al., 2001). First, 

we mapped the difference in suitability between the best model (usually CLIM+SOIL) and 

each of the models being tested, the CLIM or SOIL models. In both case, high values (over-

predictions) indicate areas that variables evaluated are unlikely to be the restricting factor for 

species occurrence. Second, to identify areas where both predictors may jointly or 

independently restrict species range, we mapped the difference between predictions of the 

CLIM and SOIL model. Values close to zero indicate areas where we hypothesised that both 

soil and climate restrict species range. Positive values indicate regions where the CLIM model 

over-predicted suitable conditions relative to SOIL model and, hence, we hypothesised that 

species range was mainly restricted by soil in such areas. Conversely, negative values indicate 

regions where climate may be the main restricting factor. Finally, we averaged the maps of all 

species across Amazonia sensu latissimo (Eva & Huber, 2005) to produce an overall 

predictive map of potential climate and soil constraint on species ranges.  

All analyses were conducted using the R platform (v3.3.2; R Development Core Team, 2015). 

Manipulation of raster and vector data was done using ‘raster’ (Hijmans, 2006) and ‘sp’ 

(Pebesma & Bivand, 2005) packages. Data from GBIF and iDigBio were downloaded using 

the function occ from package ‘spocc’ (Chamberlain et al., 2016). Geographical outliers were 

detected and removed using the function rjack of ‘biogeo’ package (Robertson, 2016). We 

executed the spatial filtering procedure using functions lohboot and remove.duplicates of the 

‘spatstat’ (Baddley & Turner, 2005) and ‘dismo’ package (Hijmans et al., 2017), respectively;  

exclusion of correlated variables with vifcor function of the ‘usdm’ package (Naimi, 2015); 

Bayesian logistic regression with function bayesglm of ‘arm’ package with default options 

(Gelman & Su, 2016); computation of  AUC scores using function auc from package ‘MESS’ 

(Ekstrøm, 2016); evaluation of model significance with the wilcox.test function of the ‘stats’ 

package (R Development Core Team, 2015). The tests of differences in model performance 

were done fitting a GLMM using function gamlss of the ‘gamlss’ package (Rigby & 

Stasinopoulos, 2005). We implemented our own R function to perform the model selection 

procedure and the R scripts are available upon request. 	

RESULTS 	
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Our results clearly indicate that soil data are important for the species distribution models 

developed in this study (Fig. 1). For 39 of the 42 species, the models combining climatic and 

soil data (CLIM+SOIL) were supported as the best models, and for the three remaining 

species, either the relative ranking of the CLIM+SOIL and SOIL models was uncertain, or the 

SOIL model had more support. The CLIM model was not supported as the best model for any 

of the species. Models including soil predictors only had better performance than models 

including climate predictors only. Across all species, and controlling for random effects, the 

AUC values for the SOIL models were significantly lower than those for CLIM+SOIL 

models (P<0.001) but higher than those for CLIM models (P<0.005). For every species, the 

best models showed fair to good prediction accuracy. All median AUC of the best models 

were greater than 0.7 (Fig. S3.3) and significantly greater than the null model (all P < 0.005 

based on Wilcoxon test of AUC). All model statistics (∆AIC, AUC, omission rates, fractions 

of predicted area and thresholds used to define unsuitable areas) are provided in Fig S3.3. 

For 25 species (60%), more variance was explained uniquely by SOIL variables than uniquely 

by CLIM variables, and for 30 species (71 %), more than 50% of the explained variance was 

due to the joint contribution of CLIM and SOIL variables (Fig. 2).  Annual precipitation, dry 

season length, canopy height, tree cover and Haplic Xanthic Ferralsols were the variables with 

the highest explained variance, on average, in the single-variable SDMs (Fig. 3). However, 

single-variable models never explained more than 15% of the variance explained by the 

corresponding best model, and the average was less than 8% for each one of the 44 variables. 

Species response curves along the most important CLIM variables revealed that most species 

tend to avoid dry conditions (drought-sensitive) and occur preferentially in tall closed forest 

(Fig. S3.4). The response curves of the 42 species along each of the 44 variables are shown in 

Appendix S3.	

Visual assessment of the SDMs for each of the 42 species showed that SOIL models predicted 

more irregular and more patchy distributions than CLIM models (Fig. S3.3). CLIM models 

over-predicted suitable conditions in central Amazonia, upper Rio Negro, northern Guianas 

and in some areas of southern Amazonia, which reveals that it is more likely that species are 

absent in these areas due to soil restriction, not due to climate restriction (Fig. 4). The 

opposite was true in areas where the SOIL model over-predicted suitable conditions, i.e, in the 

Andean foothills, the border zone between Peru and Acre state, eastern Amazonia and the 

savannas of Roraima and Venezuela (Fig. 4). Both models predicted low suitability in 
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southern Amazonia, which indicates that soil and climate jointly restrict species occurrence in 

this area (Fig. 4c).  

 

DISCUSSION	

Using SDM and a diverse set of climatic and edaphic predictors, we demonstrated that the 

soil-only models provide more accurate predictions than the climate-only models. This can be 

seen as contradicting the classical assumption of biogeography that climate is the main driver 

of broad-scale species distribution patterns (Gaston, 2003; Pearson & Dawson, 2003). The 

higher importance of soil relative to climate may reflect the fact that the variation in rainfall 

and temperature is narrow across large parts of Amazonia. On the other hand, the edaphic 

differences among regions can be so large that they act as filters preventing species from 

occurring over the entire biome. Indeed, the combined soil and climate models had good 

predictive power for most species, which is consistent with earlier findings suggesting that 

both climate and soil properties are important as drivers of plant diversity and community 

composition across Amazonia (Tuomisto et al., 2003b; ter Steege et al., 2006, Zuquim et al., 

2014). 	

Differences between the predictions made by the best models, climate-only and soil-only 

models are illustrative, because they indicate areas where species distributions might be 

constrained jointly by both groups of variables, or predominantly by one of them. ter Steege 

et al. (2006) found that the main axis of floristic variation across Amazonia was associated 

with a southwest-northeast soil fertility gradient and the second axis with a northwest-

southeast climatic gradient. Our predictive maps reveal a more complex and slightly different 

spatial pattern of soil and climate control on species distribution than that. In particular, our 

results suggest that that soil might be more decisive than climate in restricting species 

occurrence particularly in the upper Rio Negro area, central Amazonia and the northern part 

of the Guiana region, which are covered predominantly by very acid and poor nutrient soils, 

or even by sandy soils (Sombroek, 2000; Quesada et al., 2010). Our findings, therefore, are in 

accordance with previous studies that predict the absence of rich-soil species in large areas of 

Amazonia, particularly in the centre of biome (Fittkau et al. ,1975; Zuquim et al., 2014; 

Tuomisto et al. 2016). On the other hand, where climate conditions vary markedly over short 

distances (in the Andean foothills, in the border between Peru and Acre state, eastern 
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Amazonia and the savannas of Roraima and Venezuela), climate may become more restrictive 

to species occurrence, especially if soil conditions are relatively uniform. The southern and 

north-western borders of Amazonia were predicted as unsuitable by both climate-only and 

soil-only models, suggesting that the northwest-southeast floristic gradient that was 

interpreted to be climatic by ter Steege et al. (2006) may reflect soil-related factors as well. 

When the environmental variables were used separately in single-predictor SDMs, the ten 

most important predictors included precipitation-related variables (annual rainfall and dry 

season length), forest structural variables (canopy height and percentage of evergreen tree 

cover) and soil variables (Haplic Xanthic Ferralsols, pH and Haplic Acrisols). However, any 

variable alone explained less than 15% of the variance explained by the corresponding best 

model, indicating that species ranges are controlled by multiple factors. Many of the predictor 

variables are strongly correlated, and for most species the proportion of deviance explained 

jointly by climatic and edaphic variables was more than 50% of total explained variance. Such 

relationships can be causal, as temperature, precipitation and topography are among the main 

factors that affect soil formation (Jenny, 1994). Nevertheless, climate conditions seem to be 

less important than age and quality of the parent material in determining soil properties in 

Amazonia (Irion, 1978; Quesada et al., 2010). Soils in most of lowland Amazonia are derived 

from sedimentary deposits, and different kinds of sediments have been deposited on top of 

each other during different time periods (Räsänen et al., 1987; Hoorn et al. 2010). The 

relationship between topography, soil properties and climate is somewhat complex. In 

Amazonian lowlands, local and regional altitudinal differences can be related to soil 

properties (texture and nutrient content) (Tuomisto et al., 2003a; Costa et al., 2005; Higgins et 

al., 2011), but in mountains there are also marked changes in temperature and solar radiation 

(Grubb 1977). In addition, forests structure can be affected by climate, especially the amount 

and seasonality of rainfall, and hydrological soil properties, which are largely defined by soil 

texture and topography (Levine et al. 2016). More detailed studies are still needed to 

disentangle the complex relationships and interactions among climate, soil, topography, forest 

structure and other variables that can affect species distributions.	

Current hydrological trends and recent projections of global climate models predict increasing 

dry season length for the southern part of Amazonia (Boisier et al., 2015). Increasingly dry 

conditions may cause forests to become shorter and more open (Hutyra et al., 2005; Olivares 

et al., 2015; Levine et al., 2016). The species response curves along annual precipitation, dry 
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season length and forest structure gradients suggest that most of our focal species avoid dry 

conditions and prefer tall and closed forests. This is consistent with the prevailing view that 

many Amazonian plant species are sensitive to drought (Nepstad et al., 2007; Phillips et al., 

2010) and that their ranges may contract if dry seasons become more severe (Feeley et al., 

2012; Olivares et al., 2015). Temperature showed weak predictive power in our SDMs, 

suggesting that changes in temperature may be less important for range shifts than changes in 

water availability.	

Massive species loss in Amazonia is expected under climate change if species are not able to 

either track suitable climate by migration or adapt to the new conditions (Feeley et al., 2012). 

If species distributions are strongly controlled by soils, species migrations may be effectively 

prevented by barriers created by large areas of unsuitable soil (Tuomisto et al. 2016). In our 

analyses, climatic variables alone explained species range limits in fewer areas than soil 

variables alone did, which suggests that species may indeed face problems in finding suitable 

routes to track climate change. Since soil properties change much slower than climate does, 

and climate does not seem to be an important driver of soil features in Amazonian lowlands 

(Quesada et al. 2010), the presence of edaphic constraints on species ranges can decouple 

potential range shifts from pure climate tracking. 

Dispersal process and habitat heterogeneity are important aspect to understand species’ range 

shift under climate change (Opdam & Wascher, 2004; Schurr et al., 2012). Species range 

dynamics are affected by a combination of processes operating at different spatial scales. 

Regional climate changes force range shifts (expansion or contraction) while landscape 

heterogeneity and metapopulation dynamics control the velocity at which a species’ range 

actually changes. For instance, where suitable soil conditions are restricted to isolated patches, 

dispersal rates within metapopulation are low and it becomes more difficult for species both 

to track suitable climate to new areas and to persist in areas that are becoming climatically 

unsuitable (Opdam & Wascher, 2004). Disregarding soil variables in fine-scale dynamic 

models has led to inaccurate predictions of potential distributional areas of species under 

climate change in Europe (Bertrand et al., 2012). Although the fine spatial configuration of 

soil properties is not reflected in the coarse spatial resolution of our analyses, our results 

suggest that species distributions are more irregular and patchy than the rather continuous 

areas that get predicted by climate-only models. The inclusion of an edaphic dimension, 
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therefore, in the forthcoming process-based dynamic models should guide useful conservation 

and management strategies to protect Amazonian plant species under climate change.  

Our analyses followed the standard procedure of using environmental data that are publicly 

available. However, WorldClim data have been criticised as inaccurate (Soria-Auza et al., 

2010). Although the quality of the SoilGrids data layers has not yet been properly assessed, 

inaccuracies must be expected simply because the density of field sampling in Amazonia is 

very low. In addition, our analyses were carried out at a 5 km resolution, which reduced our 

ability to capture fine-scale soil variation. A probable consequence of this is that the models 

predict edaphic niches to be wider than they are in reality, which leads to spatial over-

prediction of suitable conditions. Despite these limitations, the contribution of soil data to the 

modelled species geographical ranges was significant, and we expect that better soil data will 

further reinforce this finding.  

Another potential problem is that the available soil variables may not be ecologically optimal 

for species distribution modelling. For example, the soil data available in SoilGrids do not 

include the summed concentration of base cations (Ca, Mg, K, Na), which has been shown to 

be an important determinant of floristic patterns in several studies (Tuomisto et al., 2003b; 

Higgins et al., 2011; Figueiredo et al., 2014; Zuquim et al., 2014, Tuomisto et al., 2016, 

Cámara-Leret et al. 2017). Cation exchange capacity (CEC) is available, but CEC is affected 

both by base cations and by aluminium, which is not a plant nutrient and becomes toxic to 

some species at high levels (Delhaize & Ryan, 1995). Indeed, CEC did not come out as an 

important variable in our SDMs, probably because it is a mixed variable that does not 

properly represent either the soil fertility gradient or the soil toxicity gradient. Soil pH did 

emerge as important in our SDMs, even though studies based on plot-based inventories have 

often found pH to be less important than the sum of base cations for explaining species 

occurrence patterns in Amazonia (Ruokolainen et al., 2007; Tuomisto et al., 2016). It is 

beyond the scope of the present study to assess the extent of such problems, although they are 

likely to lead to underestimating the importance of soil factors in SDMs.  	

The relative importance of climate as opposed to edaphic drivers of species distribution has 

traditionally been considered a matter of scale of analysis. Climate is expected to be useful at 

broad extents (e.g. global, continental and regional) and soil is expected to be relevant only at 

small extents and in high-resolution studies (e.g., landscape and local scales) (Pearson & 

Dawson, 2003; Eiserhardt et al., 2011). In our analyses, soil variables emerged as the most 
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important even at the continental extent. This is no doubt related to relative homogeneity of 

the climate within Amazonia, at least when compared to subtropical, temperate and montane 

areas where climatic differences are much larger and, therefore, more restrictive to plant 

distributions. However, even at global-scale, edaphic variables can better explain ecological 

patterns (e.g., the variation in some leaf functional traits) than do climatic variables (Maire et 

al., 2015). In Amazonia, soils mediate several ecological patterns and processes, such as 

large-scale floristic turnover (ter Steege et at., 2006; Tuomisto et al., 2016), biotic interactions 

(Fine et al., 2004), species diversification (Fine et al., 2005), forest dynamics and resilience 

(Quesada et al., 2012, Levine et al., 2016). We believe that it is time to scale-up the 

importance of soil in ecology and biogeography. The inclusion of the soil component in 

macroecological models will also provide a better framework toward understanding the 

complex impacts of climate change on ecological systems. 
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TABLES	

Table 1. List of the 42 Amazonian plant species, geographical regions of occurrence and the 

number of occurrence records (N) after removing outliers and applying a spatial filtering 

procedure with the indicated radius distance (d) to reduce sample bias. The geographical 

regions were classified as Amazonian rain forest (AM), Central American rainforest (CA), 

Cerrado biome (CB) and Atlantic rain forest (AT). 	

Plant group	 Species 	 Family	 Distribution	 N	 d (km)	

Tree	 Caryocar glabrum (Aubl.) Pers.	 Caryocaraceae	 AM	 375	 50	

Tree	 Caryocar microcarpum Ducke	 Caryocaraceae	 AM	 106	 25	

Tree	 Couepia dolichopoda (Prance) Sothers & Prance	 Chrysobalanaceae	 AM	 24	 5	

Tree	 Eperua falcata Aubl.	 Fabaceae	 AM	 72	 50	

Tree	 Henriquezia nitida Spruce ex Benth.	 Rubiaceae	 AM	 43	 5	

Tree	 Inga alba (Sw.) Willd.	 Fabaceae	 AM,CA,CB,AT	 534	 50	

Tree	 Jacaranda copaia (Aubl.) D. Don	 Bignoniaceae	 AM,CA	 513	 50	

Tree	 Jacaratia spinosa (Aubl.) A. DC.	 Caricaceae	 AM,CA,CB,AT	 238	 50	

Tree	 Manilkara huberi (Ducke) A. Chev.	 Sapotaceae	 AM	 178	 50	

Tree	 Mezilaurus itauba (Meisn.) Taub. ex Mez	 Lauraceae	 AM	 318	 50	

Tree	 Minquartia guianensis Aubl.	 Olacaceae	 AM,CB	 183	 50	

Tree	 Nectandra turbacensis (Kunth) Nees	 Lauraceae	 AM,CA,CB	 89	 50	

Tree	 Poecilanthe effusus Huber	 Fabaceae	 AM	 154	 50	

Tree	 Simarouba amara Aubl.	 Simaroubaceae	 AM,CA,CB,AT	 576	 50	

Tree	 Siparuna decipiens (Tul.) A. DC.	 Siparunaceae	 AM	 411	 50	

Palm	 Astrocaryum aculeatum G. Mey.	 Arecaceae	 AM	 96	 50	

Palm	 Bactris acanthocarpa Mart.	 Arecaceae	 AM,AF	 108	 50	

Palm	 Iriartea deltoidea Ruiz & Pav.	 Arecaceae	 AM.CA	 133	 50	
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Palm	 Leopoldinia pulchra Mart.	 Arecaceae	 AM	 45	 15	

Palm	 Oenocarpus bataua Mart.	 Arecaceae	 AM	 106	 50	

Palm	 Socratea exorrhiza (Mart.) H. Wendl.	 Arecaceae	 AM,CA	 210	 50	

Liana	 Callichlamys latifolia (Rich.) K. Schum.	 Bignoniaceae	 AM,CA,CB,AT	 231	 50	

Liana	 Machaerium amplum Benth.	 Fabaceae	 AM,CB,AF	 83	 20	

Liana	 Machaerium ferox (Mart. ex Benth.) Ducke	 Fabaceae	 AM	 62	 5	

Liana	 Machaerium multifoliolatum Ducke	 Fabaceae	 AM	 41	 15	

Liana	 Martinella obovata (Kunth) Bureau & K. Schum.	 Bignoniaceae	 AM,CA,CB	 162	 50	

Liana	 Pleonotoma jasminifolia (Kunth) Miers	 Bignoniaceae	 AM,CB	 83	 15	

Liana	 Rourea cuspidata Benth. ex Baker	 Connaraceae	 AM,CB	 74	 30	

Monocot herb	 Goeppertia fragilis (Gleason) Borchs. & S. Suárez	 Marantaceae	 AM	 20	 5	

Monocot herb	 Goeppertia loeseneri (J.F. Macbr.) Borchs. & S. Suárez	 Marantaceae	 AM	 33	 5	

Monocot herb	 Goeppertia zingiberina (Körn.) Borchs. & S. Suárez	 Marantaceae	 AM	 69	 20	

Monocot herb	 Heliconia schumanniana Loes.	 Heliconiaceae	 AM	 93	 10	

Monocot herb	 Hylaeanthe hexantha (Poepp. & Endl.) A.M.E. Jonker & 

Jonker	
Marantaceae	 AM	 45	 5	

Monocot herb	 Ischnosiphon martianus Eichler ex Petersen	 Marantaceae	 AM	 28	 30	

Monocot herb	 Monotagma ulei K. Schum.	 Marantaceae	 AM	 30	 5	

Monocot herb	 Renealmia breviscapa Poepp. & Endl.	 Zingiberaceae	 AM	 80	 50	

Fern	 Adiantum pulverulentum L.	 Pteridaceae	 AM,CA,CB,AT	 257	 50	

Fern	 Adiantum tomentosum Klotzsch	 Pteridaceae	 AM	 120	 40	

Fern	 Cyathea pungens (Willd.) Domin	 Cyatheaceae	 AM,CA,CB,AT	 168	 50	

Fern	 Cyclopeltis semicordata (Sw.) J. Sm.	 Lomariopsidaceae	 AM,CA	 190	 50	

Fern	 Lindsaea guianensis (Aubl.) Dryand.	 Lindsaeaceae	 AM,CA,CB,AT	 100	 50	

Fern	 Schizaea elegans (Vahl) Sw.	 Schizaeaceae	 AM,CA,CB,AT	 199	 50	
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FIGURES 

	

Fig 1. Performance of CLIM+SOIL, CLIM and SOIL species distribution models of 42 plant species 

in Amazonia. The ranking of model performance is based on ∆AIC scores, and the number of species 

within each ranking class is shown in parentheses. The “=” indicates a difference smaller than 2 (no 

evidence that the model with lower ∆AIC is better) and “<” indicates a difference greater than 2 

(evidence that model with lower ∆AIC is better). ∆AIC values for each species separately are 

presented in Appendix S3. 
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Fig. 2. Contribution to explained variance (EV) of the unique and joint fractions of the soil 

and climate models for each of 42 Amazonian plant species (species of different life-forms 

are shown with different symbols). EVJoint represents the EV that is jointly explained by soil 

and climate variables. Horizontal axis represents the difference between the unique 

contributions of the soil model (EVSOIL) and climate model (EVCLIM). Species for which the 

unique contribution of the soil model was higher than the unique contribution of the climate 

model are found to the right of the vertical midline.  
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Fig. 3 Individual variables ranked by their importance in SDMs of 42 plant species in 

Amazonia. Importance is defined as the median value across all species of the explained 

variance (EV) in single-variable models, expressed as a percentage of the EV in the 

corresponding best model. Variables are coloured according to whether they were used in the 

CLIM models or in the SOIL models. 
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Fig. 4 Spatial projection of the differences in suitability scores between the SDMs, mapped 

only in areas defined as unsuitable to species occurrence (averages across 42 plant species). 

Suitability scores range from 0 (low probability of species occurrence) to 100 (high 

probability of occurrence). a) The difference in suitability between the best and CLIM models 

(Sclim – Sbest). b). The difference in suitability between the the best and SOIL models (Ssoil – 

Sbest). c) The Difference in suitability between the CLIM and SOIL models (Sclim – Ssoil). High 

values in panels a) and b) denote regions where the CLIM and SOIL models over-predict the 

suitable conditions relative to the best models, respectively. In panel c) values close to zero 

(green) indicate areas where the CLIM and SOIL models jointly predict low suitable 

condition; negative values (blue) denote areas where the CLIM models predict low suitable 

condition, but the SOIL models over-predict and the positive values (red) means the opposite, 

so blue indicates where climate is the main restricting factor and red indicates where soil is 
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the main restricting factor. Note that for 42 species, the best models included both climatic 

and soil variables, and for the remaining two species, the best models included only soil 

variables. Maps are in Mollweide equal-area projection and the dashed line denotes the 

Equator.  
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Appendix S1. Species occurrence data sources (Table S1) and maps of the 44 environmental 
layers used in SDMs (Fig. S1.1). 

Species occurrence data sources 

Species occurrence records were obtained from two complementary sources: plot-based 
inventories and herbarium records, for which most of the data is available on the web. Details 
about plot-based sampling can be found in: Emilio et al. 2010 (trees); Tuomisto et al. 2016 
(palms); Costa et al. 2006, Figueiredo et al. 2014 and Moulatlet et al. 2014 (monocot herbs); 
Tuomisto et al. 2014, Zuquim et al. 2014, and Tuomisto et al. 2016 (ferns).  Reference are 
provided in end of Appendix S1. The local of data assessed are given in the Table S1.  

 

 

 

 

 

 

 

 

 

 

Table S1. Species occurrence data sources.  
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Data type Data source Local accessed Plant group 

Herbarium 
records 

Global Biodiversity 
Information Facility (GBIF) 

www.gbif.org trees, palms*, 
lianas, 
monocot 
herbs, ferns 

Integrated Digitized 
Biocollections (iDigBio) 

https://www.idigbio.org trees, palms*, 
lianas, ferns  

SpeciesLink http://splink.cria.org.br monocot 
herbs 

Herbario do Instituto 
Nacional de Pesquisas da 
Amazônia (INPA)  

Herbario IAN – Embrapa 
Amazônia Oriental (IAN) 

Herbario do Museu Paraense 
Emílio Goeldi (MG) 

http://herbaria.plants.ox.ac.uk/bol/brahms monocot 
herbs 

New York Botanical 
Garden’s Virtual Herbarium 
(NY) 

http://sciweb.nybg.org/science2 monocot 
herbs 

Missouri Botanical Garden 
(MBG) 

www.tropicos.org monocot 
herbs† 

Plot-based 
inventory 

Projeto RADAM Brasil  https://archive.org/download/ftp-
geoftp.ibge.gov.br 201401 

trees 

Brazilian Program for 
Biodiversity Research 
(PPBio) 

https://ppbio.inpa.gov.br/ monocot 
herbs§, ferns 

Amazon Research Team – 
University of Turku  

http://www.utu.fi/en/sites/amazon (not 
avaliable on web) 

ferns 

* include also occurrence data recorded in systematic plot-based inventories.  
§ include published and non-published data. 
† provided directly by the institution due to large amount of data. 
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Figure S1.1 Map of the 44 environmental layers used in SDMs with boundaries of Amazonian 
delineated in red. (C) and (S) are variables used in the CLIM and SOIL model, respectively. 
D, M and Q denote abbreviations for diurnal, month and quarter, respectively. 
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Appendix S2. Description of the pre-modelling procedures: detection of outliers, reductions 
of sample bias (Fig. S2.2) and definitions of geographical background. 

Detecting environmental and geographical outliers 

For each species dataset, we reduced the multiple number of occurrences to one record per 5 
km2, i.e., the spatial resolution of our study. Since our SDM only includes lowland-forest 
species we used SRTM and Tree Cover layer to remove records that were located in high 
altitudes and non-forest habitats. Environmental outliers were detected and removed using the 
reverse jackknife algorithm (Chapman, 2005) implemented in Biogeo R package (Robertson 
et al., 2016). For all plant groups, geographical outliers were visually identified comparing 
the species range maps published in Monographs (when available) and the distribution of our 
presence points. Just for the palm Socratea exorrhiza some occurrence records were identified 
as outliers (presence records located in Atlantic rainforest biome), and then were manually 
removed.  

Spatial filtering to reduce sample bias in presence records 

We employed a spatial filter procedure to reduce spatial bias in presence records.  Spatial 
filtering consists in removing presence records that are within a predefined spatial radius, 
hereafter called filtering distance (Boria et al., 2014). Recent studies advocated that presence-
only records of species occurrence should be viewed as a particular realization of a spatial 
point process, the inhomogeneous Poisson process (Renner et al., 2015). The K Ripley’s 
function and its modified version, L function, provide a useful statistic to describe inter-point 
spatial dependence and clustering. Here we employed the inhomogeneous version of the L 
function (Baddeley et al., 2000) to objectively choose filtering distance. To choose filtering 
distance for each species we set different filtering radius starting at 5 km and varying by 5 km 
until to 50 km. For each filtering distance we estimated the L function Linhom(r) of the 
observed point process. Observed Linhom(r) values greater than the estimated theoretical 
Linhom(r) are indicative of spatial clustering. We set the filtering distance when 95% of the 
estimated theoretical Linhom(r) values were higher than low band of the 95% bootstrap 
confidence interval of observed spatial point process. Below (Fig. S1) we present the 
Linhom(r) for each filtering distance for Ischnosiphon martianus. All the procedures were 
performed in R program. Duplicated points within the filtering distance were removed using 
the function remove.duplicates of dismo package; confidence bands and theoretical Linhom(r) 
were computed using the function lohboot of the spatstat package. In the function lohboot we 
set ‘best’ for the argument correction and ‘TRUE’ for the argument global.  
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Figure S2.2 The Linhom(r) function computed for for different filtering (fd) distances for 
Ischnosiphon martianus. For this species, the selected filtering distance was 30 km, resulting 
in 30 presence records (n) free of spatial clustering. (r) is the radius distance setting by the 
algorithm at which Linhom(r) was estimated. The black line is the estimated Linhom(r) for the 
observed point process; grey bands represent the 95% bootstrap confidence interval for the 
observed Linhom(r); the dotted red line is the estimated theoretical Linhom(r) assuming an 
inhomogeneous Poisson process. 

 

Delimiting the area for model calibration, evaluation and prediction 

To avoid over-predictions in species range, i.e., predict species to be present in areas far 
beyond their actual occurrence, we spatially restricted the area for model calibration, 
evaluation and prediction. For each species we used the median geographical distance of 
filtered occurrence records as the radius buffer and set the geographic background as being 
the smallest convex polygon around buffer geometry. By doing that, we adjusted the size of 
background area with the size of the species range. Radius buffer was allowed to vary 
between a minimum and maximum distance of 500 km and 1000 km, respectively. See in 
Appendix S3 the background areas set for each species. 
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Appendix S3.3 Spatial projections of SDM for the 42 Amazonian plant species (Fig. S3.3) 
and the predicted species response curves along each of the environmental layers (Fig. S3.4)  

Fig. S3.3 
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Figure S3.3 Spatial projections of models for the 42 Amazonian plant species. From left to right, the 
first, second and third column panels denotes the spatial predictions of the relative occurrence 
probabilities (cumulative ROP of average predictions from the 10 fold cross-validation) of 
CLIM+SOIL model (CS), CLIM model (C) and SOIL (S) model, respectively. High values of 
cumulative ROP represent high probability of species occurrence (high suitability scores) and low 
values denote low probability of occurrence (low suitability scores). Model performance based on 
ΔAIC and median AUC are shown above the panels. The forth column panel shows the predict 
distributional areas (orange areas) obtained by the best model (the CLIM+SOIL for the most of 
species) and areas in blue denotes the unsuitable climatic or/and soil conditions for species occurrence. 
Black crosses are the filtered presence records used to calibrate the SDM. The classification of 
distributional areas was based on setting the threshold on cumulative ROP that maximizes the sum of 
sensitivity plus specificity. Values above the forth column panels are the selected threshold (Th), 
omission rate (OR) and the fraction of predicted area (FPA) resulting from predictions’ classification. 
The geographical background (area of predictions) were set in accordance to criteria defined in 
Appendix S2. Species are grouped by life-forms: trees, palms, lianas, monocot herbs and ferns.  
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Fig S3.4 
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Figure S3.4 Predicted species response curves (relative occurrence probabilities, ROPs) along the 44 
environmental variables. Species response curves were built using the contrasts plots from R package 
‘visreg’ (http://myweb.uiowa.edu /pbreheny/publications/visreg.pdf). ∆ROP was obtained shifiting the 
Xj values by a reference value, !", setting all species’ ROP into a comparable scale (between 0 – 1). 
Lines in each of the 44 plots represent the response curves of each of the 42 species. Dashed black 
lines indicate models that were worse than the null model, based on ∆AIC.  
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 Abstract 

1. External forces, such as soil, topography and climate tend to promote convergence in 

functional composition among communities. However, these variables are also related 

to disturbance regimes in tropical forest, which can promote divergence in functional 

composition within and even among communities. Divergent effects have not been 

addressed in regional studies, yet they can decrease our ability to predict the functional 

response of communities under environmental changes.  

2. Using 451 inventory plots of understory herbaceous ginger assemblages, distributed 

across the Brazilian Amazon lowland rain forest, we measured the leaf mass per area 

(LMA), height and seed size for 192 species.We examined the roles of soil, hydro-

topography and climate gradients as predictors of: (1) functional trait variability within 

local communities (2) convergent and divergent changes in functional composition 

among communities.   

3. At the local within-community scale, variability in seed size and height tend to 

increase in bottomlands and in poor soils, a sign of divergence. At the larger 

Amazonian scale, functional composition converged more than it diverged along 

environmental gradients, except for height. Convergence followed a classical fast 

versus slow growth trade-off, with richer soils having fast-growth traits: lower means 

for LMA, height and seed size. The filtering effect of soil on LMA was the strongest 

among all traits and environmental variables. Functional composition diverged along 

climatic gradients, with communities in dry regions having widely distinct functional 

compositions. Among traits, LMA was under higher convergent pressure, while height 

and seed size were under higher divergent pressure.  

4. Synthesis The functional composition among herbaceous communities in Amazonian 

is under both convergent and divergent pressures. The strength and direction of these 

forces depend on which environmental gradient and which trait is analysed. While all 

traits converged along soil fertility gradients, traits related to light acquisition and 

dispersal tend to diverge along topographic and climate gradients. These results 

suggest that natural stochastic gap-disturbance and non-equilibrium population 

dynamics partially control the functional composition of understory herbaceous 

communities and indicate there is still much uncertainty in how climate change will 

affect the structure and functioning of Amazonian rain forest.   
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Introduction 

Convergence and divergence have been seen as opposite forces defining the functional 

structure of communities. Convergence is driven by environmental filtering and tends to 

restrict the functional variation within communities, while divergent forces tend to promote 

local functional trait variation (Grime 2006; Kraft, Valencia & Ackerly 2008; Cornwell & 

Ackerly 2009). So far, studies of large scale plant functional patterns in tropical forests have 

focused on how environmental forces drive the variation of optimum functional traits and 

strategies among communities, revealing a trait-strategy convergence governed by climate 

and edaphic conditions (ter Steege et al. 2006; Fyllas et al. 2009; Fortunel et al. 2014; 

Muscarella & Uriarte 2016). On the other hand, local scale studies have explicitly evaluated 

how traits diverge within communities, in a search for signals of interspecific competition 

controlling local species coexistence (Kraft et al. 2008; Sterck et al. 2011). Several processes 

beyond interspecific competition may constitute divergent forces, including fine scale spatial 

or temporal resource heterogeneity (e.g. light gap dynamics), source-sink population 

dynamics, and other stochastic natural disturbances. If regional environmental filters are not 

strong, divergent forces may overcome their selection pressure, increasing the trait diversity 

within communities as well as the variance among trait communities´ optimum. This 

perspective is lacking on studies of regional trait structure between communities, which 

mostly view variance as random errors. Recognizing the specific factors and processes that 

can generate predictable variance in traits at large scales can improve understanding and 

modelling of community and ecosystem dynamics. 

Functional traits represent the phenotypic expression of individuals and relate to 

population vital rates (growth, recruitment, mortality) and plant life strategies. Direct 

measurements of the life cycle of organisms or of plant tissues are not straightforward, 

especially in high diversity ecosystems and in large scale applications, so plant functional 

ecologists have been using a set of traits as proxies of plant growth strategy. These include 

height, leaf mass per area (LMA, in g m-2) and seed size (Westoby 1998; Reich 2014; Díaz et 

al. 2016). Height of plants is directly related to organism longevity and to light niche position, 

especially in forests. Taller species have more access to light, but with high cost to produce 

and sustain the stem. Seed size summarizes the reproduction and establishment strategy. 

Large-seeded species produce few seeds with high supply of reserves, enabling them to 

establish under scarce-resource conditions, while small seeds produced in large quantities 



	

83	
	

enable species to colonize micro-sites that are rare in space and time (e.g. light-gaps) (Dalling, 

Hubbell & Silvera 1998; Kitajima 2002). LMA strongly summarizes the global spectrum of 

leaf economics, running from fast to slow return of investment in leaf tissues and nutrients 

(Wright et al. 2004). Ecological theory predicts that at low level of resources (nutrients, light, 

water), species grow slowly because they often invest in highly durable tissues at either leaf, 

wood and root levels (Reich 2014). Under these conditions species have low mortality rates, 

high longevity, and expressing phenotypes marked by stature, seed size and LMA. The 

opposite strategy is expected under high availability of resources.  

Soil and climate represent key environmental filters of functional trait strategies of 

trees across Amazonian forests. Tree species with slow growth strategies (conservative traits) 

tend to successfully establish and thrive in nutrient poor forests. Fast growth species 

(acquisitive traits) dominate in nutrient rich forests (ter Steege et al. 2006; Fyllas et al. 2009; 

Quesada et al. 2012). Climate is expected to modulate leaf traits and plant size at the global 

scale, but often a weak relation to climate has been found for leaf traits (Wright et al.; Maire 

et al. 2015). In tropical forests, patterns of tree functional change along rainfall gradients have 

been contradictory. Fyllas et al. (2009) found a positive relationship between LMA and 

annual precipitation in Amazonian forests, whereas Muscarella & Uriarte (2016) found a 

negative relationship across a rainfall gradient in Central America. However, organisms do 

not access the total amount of water provided by rainfall. Water availability depends also on 

the local topo-edaphic conditions, such as the soil capacity to retain water and the proximity 

to water table. Topography strongly influences the variation of hydraulic traits of species. It 

may be as stronger a filter of functional strategies as climate (Cosme et al. 2017) but has not 

yet been included in studies of large scale functional patterns. 

Natural disturbances are expected to interact asymmetrically with soil, climate and 

topography in tropical forests, promoting trait diversity and generating what may be 

recognized as noise in the observed trait community optimum (mean trait values) among 

communities. It has been documented that fast growth and corresponding high rates of tree 

mortality lead to a higher frequency of disturbance in rich soils or soils with physical 

limitations (Quesada et al. 2012), which can potentially increase local spatial heterogeneity of 

light. Frequency of windstorms should be higher in areas with high levels of precipitation and 

may also increase the dynamics of forest gap-disturbance (Espírito-Santo et al. 2010; Schietti 

et al. 2016; Negrón-Juárez et al. 2017). Tree mortality rates tend also to be higher in 
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bottomlands than on hilltops and plateaus (Ferry et al. 2010; Toledo et al. 2011). All these 

connexions between regional environmental factors and disturbance regimes can change the 

expectations from classical community-trait trade-off theory by generating trait divergence, 

more so in those traits related to dispersal and light acquisition.  

Trait-based community studies in the tropics have mostly targeted canopy trees and neglected 

understory species. Whether environmental gradients affect the functional structure of both 

these groups in the same way is an open question. A reversal of the dicot strategy along light 

gradients has been proposed for understory monocot herbs (Swenson 2009). Light demanding 

species showed higher density tissues (leaf and culm) than shade tolerant ones, the opposite 

pattern observed in trees, suggesting a biomechanical constraint on species trait variation. 

Height of understory herbs is directly related to their light interception capacity and may 

define the light niche position of species. The higher intensity and frequency of gap-

disturbance regimes associated with rich soils, bottomland and wet regions, as expected 

above, may thus favour the predominance of light demanding species in such habitats. 

According to the understorey monocot strategy proposed by Swenson (2009), it would be 

possible that communities in these habitats would have predominantly tall species with high 

LMA, i.e., the opposite expectation of classical acquisitive-conservative trade-off for trees.  

Here, we investigate the variation of functional trait patterns of 420 herbaceous communities 

across the Amazon basin under a trait divergence-convergence perspective. Our objectives are 

two-fold. First we test whether regional environmental gradients (soil, topography and 

climate) affect the within community trait variation (Community Weighted Deviation, CWD) 

of LMA, height and seed size. Our expectation is that the within community trait variation 

will increase towards nutrient-rich soils, bottomlands and wet areas in response to the higher 

disturbance levels associated with these conditions. The second objective is to test whether 

regional environmental gradients promote trait convergence (evaluated by the mean response 

of Community Weighted Means, CWM) or mean trait divergence (evaluated by the variance 

response of CWM) among communities. Following the classical fast-slow growth trade-off, 

we expect that LMA, height and seed size CWM should decrease as soil nutrients and water 

availability increase. However, according to understory monocot functional strategy along 

light-gradients, LMA and height should increase in more disturbed areas - the rich soils, 

bottomlands and wet regions - an opposite pattern to that expected by the classical functional 

trade-off. In terms of the variance response of CWM, we also expected that variance of mean 
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trait values will increase in rich soils, bottomlands and wet conditions, given the high level of 

disturbance associated to them. By joint modelling the mean and variance parameter of the 

community trait means we can estimate the relative importance of convergence and 

divergence forces that structure the functional changes across herbaceous communities in 

tropical forests.  

METHODS 

Taxonomic group: Our study was based on functional trait patterns of the Zingiberales 

(hereafter gingers), a rich pantropical order within monocots, with about 2,000 species (Kress 

et al. 2001). Ginger species are rhizomatous herbs, varying in habit from small rosulate herbs 

(10 cm height) to tall palm-like or scandent plants (5m tall) (Fig. 1). In Amazonian lowland 

rain forest, ginger species greatly contribute to the abundance and diversity of understory 

herbaceous plants (Costa 2004; Costa, Magnusson & Luizao 2005) and floristic variations of 

ginger assemblages are in accordance with other taxonomic groups (Figueiredo et al. 2014; 

Tuomisto et al. 2016) 

 

Study area and plots design: 

This study was conducted in the Brazilian Amazonia. Our sample design included only non-

inundated lowland rain forest, covering a wide range of soil and topography conditions. Based 

on time series of Tropical Rainfall Measuring Mission (TRMM) orbital sensor data 

(Kummerow et al. 1998) annual precipitation ranges from 1,900 to 3,200 mm across the study 

area.  

Biotic and abiotic data were obtained in 451 plots of 500 m2 established in non-inundated 

forest (Fig Sx). Data came from two plot designs: (1) 412 plots of 250 x 2 m set up on 

topographical isoclines, following the RAPELD protocol (Costa & Magnusson 2010); (2) 39 

plots of 100 x 5 m sub-sampled from 500 x 5 m transects oriented to include representative 

local topographic variation (Tuomisto et al. 2016). Altitudinal values at 5 m intervals allong 

the 500 m long transect were extracted from a digital elevation model to guide the selection of 

a 100m long continuous section having internal topographical variation as low as possible, in 

order to make the two sample designs comparable. RAPELD sample units are aggregated in 

spatial modules, but with minimum geographic distance between plots of 1 km. 
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Data collection  

Species data - We identified and counted every clump with a height >5 cm rooted inside the 

plot. Clumps were defined as groups of stems or leaves arising from the soil less than 20 cm 

from each other, or based on our field experience with each species. We identified the species 

based on specialized literature and sent fertile material to specialists Helen Kennedy and Paul 

Maas, to confirm identifications. Voucher collections are deposited in the INPA Herbarium in 

Manaus, BR; the University of British Columbia Herbarium, CA; and the National Herbarium 

of the Netherlands at Utrecht University, NL. 

Functional Trait data - Our analyses were based on three functional traits: LMA, height and 

seed size. LMA is the ratio between the dry leaf mass and fresh (i.e, completely expanded) 

leaf area. Here, we adapted the original method to estimate LMA, using small pieces of the 

lamina of dried material from herbarium collections. For each individual, a maximum of 4 

pieces (3 cm2 average) were excised from different parts of the lamina (at the middle and 

close to the base and apex), excluding the main vein. We carefully chose leaf pieces where the 

tissue had no or very little shrinkage and avoided young leaves. LMA for each species was 

calculated as the average of all pieces obtained from a maximum of six individuals and 

minimum of one individual, when the species was rare and collected only once. Height and 

seed size were obtained by searching monographs, field guides and our field observations. 

Seed size was obtained using the formula for area of an ellipse based on the two largest 

dimensions of the seed reported in the literature. We were unable to obtain measures of LMA, 

height and seed size for 23, 23 and 109 species respectively. Trait values in these cases were 

assigned based on the mean trait value of their genus.  

Environmental data - To represent soil fertility, topographic and climatic gradients we used 

the concentration of exchangeable base cations (Ca, Mg e K) defined as sum of bases, the 

vertical distance from the nearest drainage (VDD) and the dry season length in months, 

respectively. The sum of exchangeable bases is a good proxy for soil fertility in Amazonia 

since it is well correlated with phosphorus concentration, a limiting soil nutrient (Quesada et 

al. 2010), and is strongly related to diversity patterns across the basin (Higgins et al. 2011; 

Figueiredo et al. 2014; Tuomisto et al. 2016). Fertility was determined from soil samples 

taken at each plot. The protocols for soil sampling and laboratory analyses are described in 

previous studies (Figueiredo et al. 2014; Moulatlet et al. 2014; Zuquim et al. 2014; Tuomisto 

et al. 2016). 
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The topographical descriptor was based on the vertical distance from drainage (VDD), 

extracted from SRTM digital elevation models (SRTM-DEM). VDD have been successfully 

used to map local hydrological conditions and to explain floristic patterns in Amazonia 

(Rennó et al. 2008; Schietti et al. 2013; Moulatlet et al. 2014). Plots with low VDD values 

indicate that individuals are closer to bottomlands and consequently closer to water table and 

with better access to water than individuals in plots with high VDD values, located often on 

hill tops and plateaus, distant from water table. VDD values were obtained from three similar 

algorithms. For 198 plots, located in the interfluve Purus-Madeira and in the state of Pará, 

VDD was derived from the Height Above Nearest Drainage (HAND) algorithm using the 

90m resolution SRTM-DEM (Rennó et al. 2008; Moulatlet et al. 2014; Pinheiro, Rennó & 

Escada 2015). For 193 plots located north of the Amazon River in central Amazonia, VDD 

was obtained from the Elevation Over Channel Network algorithm using the hydrological 

tools of the SEXTANTE spatial data analysis library (http://www.sextante- gis.com/), coupled 

with the open-source gvSIG v 1.10 software (http://www.gvsig.org/web/) (see details in 

Figueiredo et al. 2014). For the remaining plots, VDD was obtained from 30m SRTM-DEM 

using the Vertical Distance to Channel Network (Bock & Köthe 2008) algorithm, 

implemented in QGis software through the SAGA-toolbox.  

Dry season length was estimated from data of the TRMM satellites (Kummerow et al. 1998) 

available at http://disc.sci.gsfc.nasa.gov. We converted monthly data from 1998 to 2004 of the 

TRMM product 3B43 V6 at a 0.25° resolution (about 28 km at the equator) into the dry 

season length variable, defined here as the maximum number of consecutive months with less 

than 100 mm of precipitation along that period. For each plot, the dry season length value was 

extracted after rescaling the data to a 0.05° (~ 5 km) spatial resolution. We used the raster 

package in R to manipulate and process TRMM variable (R development core team 2015; 

Hijmans et al. 2017). 

 

Data analysis 

In order to evaluate the effect of environmental gradients on functional trait patterns within 

and among communities, we first estimated two trait community values for each plot. We 

estimated the community weighted mean (CWM) to characterize the optimum trait strategy 

for each community (Díaz et al. 2007; Violle et al. 2007) and the community weighted 



	

88	
	

deviance (CWD) to characterize the within community trait variability. The CWM and CWD 

are given by the following formulas: 

678 = 9:,"×=:,"
>?
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>?
:@A
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where w is the relative abundance of the species j in the community (plot) k, and T is the trait 

value of the species j in the community k. 

To evaluate the convergence-divergence patterns of trait response among and within 

communities, we performed generalized additive models for location, scale and shape 

(GAMLSS) (Rigby & Stasinopoulos 2007) to jointly estimate the effect of environmental 

gradients on the mean (µ) and variance (σ) of community-trait response. The general idea is 

to fit the model assuming that response variables (CWM or CWD of each trait) can be 

represented by a general distribution family, which include not only the location parameter 

(mean), but also a scale parameter (variance), and shape parameters (skewness and kurtosis). 

The approach consists in modelling all parameters as linear and/or non-linear responses of 

predictor variables using specific link functions for each of the parameters. For CWD, we 

only fitted a mean response model as a function of environmental variables because our 

expectations are only based on that parameter. The CWD model was fitted using a zero 

adjusted Gamma distribution for the response variable, since we recorded only one species in 

some plots and thus CWD can assume values equal to zero.  

For CWM, we fitted a model based on the mean and variance response of each functional 

trait. Another feature of GAMLSS is that we can test several distribution families that best fit 

the distribution of response variables. For height and seed size, we tested several continuous 

distribution assuming y>0, which run from simple family distributions, e.g. exponential with 

one parameter, to more complex ones, e.g. Box-Cox t with four parameters. For LMA, we 

included also the family distributions that do not have lower bounds, e.g. Normal distribution. 

The chosen family distribution was that with low values of the generalized Akaike 

information criteria (GAIC) obtained fitting the available distributions on observed values of 

CWM (without environmental predictors). However, the best family sometimes lead to 
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problems in the convergence optimization of model parameters when the predictor variables 

are included in the model. Thus, the second best, third best and so on were selected until the 

full model (with environmental predictors) have reached good convergence properties. For 

height and seed size, CWM models were fit using a Box-Cox t with four parameters assuming 

a log link for mean, variance and kurtosis and identity link for the skewness parameter. For 

LMA, the CWM model was fit using a t family distribution with 3 parameters using identity 

link for mean and log link for variance and skewness parameters.  

After setting the distribution that better fits our response variables, we performed a model 

selection procedure using again the GAIC to set which independent variables better explain 

the variation of each parameter of our response variables. For CWD, we only evaluated the 

mean response, because our ecological expectations are based on this parameter, and thus the 

intercept of the variance parameter of a zero adjusted Gamma distribution was estimated. For 

CWM, we tested mean and variance responses as functions of environmental predictors. The 

intercept of skewness and kurtosis parameters were also estimated, but their values were not 

allowed to vary in response to environmental predictors. Model selection procedure started 

with forward approach applied first in the mean model and subsequently in the variance 

model. The procedure finishes running the backward selection on the contrary direction, from 

variance to mean. Only linear relationships between response and predictor variables were 

allowed. 

We performed GAMLSS models using the mixed effect design (Zuur et al. 2009). The spatial 

modules of RAPELD protocol and plots in the Juruá River (Tuomisto et al. 2016) were set as 

the random term in the GAMLSS model, for two reasons. First, to estimate model parameters 

and the significance statistics controlling for the spatial autocorrelation present in our 

sampling design, due to spatial aggregation of plots within localities. And second, to control 

the potential bias in the estimation of model parameters generated by differences in protocols 

for soil and topographic data. The sum of bases and vertical distance from drainage were 

logarithmically transformed before the analysis to fit the assumptions of normality required in 

linear models. 

To compare the relative importance of convergent and divergent effects of predictors on the 

CWM, we fitted three kinds of models: one allowing only the environmental effect on the 

mean parameter (convergent effect); the second allowing only the environmental effect on the 

variance parameter (divergent effect); and a third model allowing the effect of environment in 
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the mean and variance parameters. Models’ performance was evaluated using the ΔGAIC and 

generalized R2 (Nagelkerke 1991) implemented for GAMLSS models (Rigby & 

Stasinopoulos 2007). 

GAMLSS models were run using the gamlss R-package and model selection was based on the 

function stepGAICAll.A from the same package (Rigby & Stasinopoulos 2005).  

 

RESULTS 

General results 

We recorded 47,129 herb individuals belonging to 192 species. Five plots had only one 

species and three or less individuals and were removed from the analyses. The minimum, 

median and maximum abundance per plot was was 4, 66 and 897 individuals, respectively. 

The median of species richness per plot was 8, varying from a minimum of 1 to a maximum 

of 23 species. Functional traits were often moderately or weakly inter-correlated at species 

and community level. At the species level, a high and positive correlation was observed 

between LMA and height (Fig. 3a). Communities with high local variance (CWD) in height 

were also those with high variance in seed sizes (Fig. 3f) and communities with dominance 

(CWM) of taller species tended also to have a dominance of species with larger seeds (Fig. 

3i). The complete list of species and their functional trait values is presented in Table S1 of 

Supporting Information.  

Environmental effects on within community trait variation (CWD) 

We found a weak effect of environmental gradients on local, within community trait 

variability (Table 1). The variation of seed size within communities was slightly higher in 

poor nutrient soils and in bottomlands (Table 1). The variation of height followed the same 

pattern as seed size, but the best height-environment model had very week support when 

compared with a null model (ΔAIC < 2). 

Environmental effects on functional composition among communities (CWM) 

We found significant convergent and divergent effects of environmental gradients on 

functional trait composition among communities. The best model (low ΔAIC and high R2) 

included significant effects of the environmental variables on mean and variance response of 



	

91	
	

CWM, except for LMA, whose mean response was associated with environmental gradients 

(Table 1). Models that included only the mean response of CWM had better performance than 

models that included only the variance response, except for height (Table 1). 

The rate of change in trait values among communities varied strongly among distinct traits 

and environmental predictors. As expected by the classical fast-slow growth trade-off, the 

mean LMA was lower in nutrient rich soils and bottomlands, but contrary to our expectation, 

there was no change in LMA along the dry season length gradient (Fig 4 a-c). The 

standardized rate of change of mean LMA values along the soil fertility gradient (b=-2.52) 

was the highest comparing all models, and was twice bigger than the rate of change along the 

topography gradient (b=1.18).  

 

The patterns of change of mean height and seed size along environmental gradients were very 

similar (Fig. 4d-i), probably due to the high correlation between these two traits at community 

level (Fig. 4f and 4i). As for LMA, height and seed size also decreased as soil fertility 

increases, but with smaller rates of change than LMA (Table 1, Fig 4a). Mean seed size 

slightly decreased in bottomlands, but with a smaller rate of change than the rate at which the 

variance increased (Table 1). 

Contrary to the observed for LMA, we found a significant effect of topography and climate on 

the among-community variance of height and seed size. As expected, the mean community 

values of height and seed size diverged more than in bottomlands than in uplands (Fig. 4e and 

f). In bottomlands we found wide variation in terms of optimum traits given by CWM, while 

in uplands there was a predominance of herbs with intermediate stature and medium seed size. 

Contrary to our expectation, the variance of CWM height and seed size increased in drier 

conditions, while in wet areas the dominant species were those with medium height and seed 

size (Fig. 4g and h).  

 

Discussion 

Our findings reveal that regional environmental gradients affect both the within-community 

and among-community functional trait patterns of the ginger’s assemblage in Amazonian 

forests. At local communities, the within-community variability (CWD) in seed size and 
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height tend to increase in bottomlands and in poor soils. At the larger Amazonian scale, 

functional composition mostly converged towards higher LMA, height and seed size in 

nutrient-rich soils, in accordance with classical fast-slow growth trade-off. Height and seed 

size tended to diverge among communities across topographic and climatic gradients. The 

filtering effect of soil in LMA was the strongest among all traits and environmental variables, 

revealing that soil is a key factor driving regional changes of functional composition across 

the Amazonian basin. Bottomlands had low values of LMA and seed size and no predictable 

functional compositional changes were observed along the climatic gradient. The functional 

composition diverged more among communities in bottomlands and dry regions than in 

uplands and wet regions, but only in respect to height and seed size, suggesting that local 

disturbance events and disequilibrium population dynamics may be relevant factors to explain 

changes in functional composition at regional scales in Amazonian forests.  

Within-community variation in seed size and height tend to increase in bottomlands and in 

poor soils 

Our expectation that local trait variance would be associated to environmental conditions that 

promote higher frequency of disturbances was partially valid. The within community 

variabilities of seed size and height were slightly greater in bottomlands. Seed size is related 

to dispersal and colonization strategies, and height of understory plants may be directly linked 

to their light niche position. Bottomlands are more prone to natural disturbance than uplands, 

given terrain instability and physical constraints of their soil, leading to higher rates of tree 

mortality (Ferry et al. 2010; Toledo et al. 2011; Quesada et al. 2012). The higher the tree 

mortality rates, the higher the spatial and temporal heterogeneity of light in the understory, 

which would explain the presence of species with more variable seed sizes and heights co-

occurring in local communities within bottomlands.  

Tree mortality tends also to be higher in rich soils (Quesada et al. 2012), but contrary 

to our expectation, local trait variance of height and seed size slightly increased as soil 

fertility decreased. A potential explanation is that light may not be limiting in rich soils due to 

high intensity and frequency of tree mortality events, which makes the canopy uniformly 

more open and light more widely available. Therefore, the strategy of being tall may not be 

necessary or advantageous in this environment. At the same time, high productivity habitats 

also favour the fast-growth strategy (Reich 2014) which may limit the potential of species to 
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achieve high stature, as this would potentially divert resources that could be better invested in 

faster reproduction.  

Local trait variability was not associated with climatic gradients. We expected that wet 

regions would have higher local trait variability assuming that storms are more frequent in 

such regions. In central Amazonia, the frequency of storms have been indexed by the number 

of days per year with precipitation higher than 20 mm of rain (Espírito-Santo et al. 2010), 

which may not be directly associated with the size of dry season length, as used here. Further 

investigations may be done in order to check if this storm-index is valid for the whole 

Amazon basin, and if it useful to predict patterns of trait variability in plant communities.  

Soil-resource and topographic gradients drive convergence in functional composition among 

communities  

Functional composition (CWM) among herbaceous communities converged more than 

diverged along environmental gradients, with soil gradients having the strongest filtering 

effect. Trait values observed along the soil gradient are in perfect accordance with the 

classical fast-slow growth trade-off, which predicts that acquisitive traits (low LMA, low 

stature and small seed size) dominate in highly productive habitats, while conservative traits 

predominate in low resource conditions (Reich 2014). Indeed, the rate of change in 

community trait means was higher along the soil gradient than along  topographic or climatic 

gradients, reinforcing that soil-fertility is the key driver of regional changes in functional 

compositional across Amazonian lowland rain forest, as previously described for trees  (Fyllas 

et al. 2009; Quesada et al. 2012).  

The functional composition of ginger´s assemblage also converged along 

topographical gradients following the expectation of classical acquisitive-conservative 

strategy trade-off along water-resource gradients (Hoffmann et al. 2005; Reich 2014). 

Uplands tend to suffer more with water deficit than bottomlands, favouring the predominance 

of conservative strategies (low LMA and larger seed size). A similar trend was observed at a 

local scale for trees, species associated with plateaus tend also to have higher LMA than 

species associated with valleys in central Amazonia (Cosme et al. 2017). Soil on plateaus in 

central Amazonia are slightly more nutrient rich than valleys, indicating that increase of LMA 

in uplands is more probably associated with water availability than soil nutrients in this local 

scale (Cosme et al. 2017). Topographic variation has been disregarded in regional scale 
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studies of community patterns, and probably these investigations fail to capture tight links 

between changes in functional composition and water deficit, which depends not only on 

climate, but the interaction of it with topography.  

Changes in functional composition of ginger assemblage were not associated to the 

climatic gradient. In tropical forests, functional changes among tree communities along 

rainfall gradients have been contradictory, with some studies showing that LMA is higher in 

wet conditions (Fyllas et al. 2009) and others showing the opposite pattern (Muscarella & 

Uriarte 2016). We did not find any tendency of increasing or decreasing of trait values along 

the climatic gradient, probably because most trait variation was explained by soil-resources 

and water-topography gradients. The aforementioned studies only evaluated direct relations 

between community traits and climatic gradients, which can lead spurious correlation if 

terrain-based environmental filters were not taken into account, although the sampling design 

in Muscarella & Uriate (2016) included a single soil type. The absence of climate effect on 

LMA could also arise by the presence of deciduous species in dry regions. Deciduous species 

are often associated with dry regions and tend to have lower LMA than evergreen ones 

(Poorter et al. 2009) which could annulated the trend of increase LMA (conservative strategy) 

in directions to dry regions. Although we have not directly evaluated the deciduous pattern in 

our dataset, our field observations suggest that some short species of Goeppertia and 

Chamaecostus can exhibit this behaviour. However, as LMA is under the strong control of 

soil conditions, it is expected that deciduous may be conditioned jointly by the dry conditions 

and high concentrations of nutrients in soils.  

Our findings are in perfect agreement with the classical fast-slow growth trade-off. 

Species with acquisitive traits dominate in habitats with high levels of resources (rich soils 

and bottomlands). Another expectation however, according to the monocot functional strategy 

along light-gradients (Swenson 2009), was that the high levels of light reaching the 

understory of rich soils and bottomlands, as consequence of high rates of tree mortality (Ferry 

et al. 2010; Quesada et al. 2012) would favour the predominance of tall species with high 

LMA in these habitats. This reversal of the dicot strategy was previously described at the 

species level. Here we did not observe this pattern at community level and regional scale, 

where external environmental filters drive the community optimum functional strategy. 

However, about half of variation in the mean trait values of communities was not explained 
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by our external environmental filters, which may partially represent the noise generated by the 

monocot strategy along light-gradients.  

Climatic and topographic gradients promote divergence in functional composition among 

communities  

The functional composition of understory herbs diverged along topographic and 

climatic gradients, but not along the soil nutrients gradient. We found that bottomlands and 

dry regions supported communities with very distinct dominant functional strategies in terms 

of height and seed size. Height of understory herbs seems to be directly linked to their 

capacity to intercept light, in which often, tall species may be the light-demanding and short 

species the shade-tolerant. Small-seeded species are better adapted to colonize gaps (Dalling 

et al. 1998; Westoby et al. 2010) and thus are expected to predominate in forests with high 

gap-disturbance. Thus, stochastic gap-disturbance events may be driving changes in light 

conditions above the canopies and thus promoting the high variation in mean trait values 

across bottomlands. The dominant trait, however, will be driven by the intensity and 

frequency of gap-disturbance events. 

The functional composition also diverged more in dry than in wet regions. As climate 

becomes drier, the forest becomes shorter, more open and consequently more heterogeneous. 

According to the metapopulation model, colonization rates are expected to decrease and local 

extinction rates to increase in highly heterogeneous habitats (Levins 1969). In addition, the 

dry regions in Amazonia found in its border and in the east, may have suffered some degree 

of forests fragmentations and local extinctions driven by long-term cycles of high-low 

precipitations regimes in the last 2 Mya (Van Der Hammen & Hooghiemstra 2000; Cheng et 

al. 2013). Metapopulation dynamics and long-term climate oscillation can interact to set the 

vegetation into disequilibrium, i.e, local communities will never contain all species 

climatically adapted due to dispersal limitation (Svenning & Sandel 2013). Thus, population 

disequilibrium dynamics may be driving divergent functional compositional patterns of 

understory herbs in Amazonian dry regions.  
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Conclusions 

Our study shows that external environmental filters, especially soil and topography, 

are the major determinants of functional composition among understory herbaceous 

communities across Amazonian forests. Local trait variation is also associated to external 

filters, partially due to the correlation between terrain instability and disturbance and partially 

by constraints imposed by high levels of soil nutrients. The changes in functional composition 

among communities are in agreement with expectations based on the classical fast-slow 

growth trade-off: acquisitive traits (low LMA, low stature and small seeds) predominate in 

resource-rich habitats (rich soil and bottomlands), while conservative traits predominate in 

resource-poor habitats, which is exactly the pattern observed for tropical forest tree 

communities. Mean functional composition was not associated with climate, on the contrary, 

functional composition widely diverged along the climatic gradient, potentially due to a long-

term effect of past climate oscilation on population dynamics in dry regions. Recently, 

regional climate simulations have been confirmed a potential increase of dry conditions in 

southern Amazonia (Boisier et al. 2015) and thus, there is an urgent need in understanding 

how climate change will affect the structure and functioning of Amazonian forest (Olivares et 

al. 2015). Our findings revealed that terrain features (soil and topography) are crucial to 

predict composition functional across Amazonian rainforest but there is still much uncertainty 

in predicting which functional patterns will prevail in specific future climatic conditions.  

  



	

97	
	

 

Table 1: Summary results of mixed-effect GAMLSS models for CWD and CWM. The CWD 

models were fit using the zero adjusted Gamma distribution family and included only 

association between the mean (µ) parameter and predictor variables. The CWM models were 

fit using the three parameters t family distribution for LMA, the four parameters Box-Cox t 

for height and seed size, and included the association between mean and/or variance (σ) with 

predictor variables. Best models appear in bold and models where predictor variables were 

not significant (P > 0.05) are not shown. Null models are the first entry for each response 

variable. Values in brackets denote the scaled β coefficients.  

  

Trait Response 
variable 

Model ΔAIC R2 

LMA CWD (µ) ~ 1|random(sites) 0 0.35 

 CWM (µ) ~ 1|random(sites) 63.28 0.38 

  (µ) ~ (-2.52)SB + (1.18)HAND + 1|random(sites) 
(σ) ~ 1 

0 0.469 

  (µ) ~ 1  
(σ) ~ (0.14)SB  

58.59 0.392 

Height CWD (µ) ~ 1|random(sites) 1.88 0.381 

  (µ) ~ (-0.04)SB + (-0.06)HAND + 1|random(sites) 0 0.386 

 CWM (µ) ~ 1|random(sites) 45.83 0.398 

  (µ) ~ (-0.04)SB + (-0.03)HAND + 1|random(sites) 41.73 0.407 

  (µ) ~ 1|random(sites) 
(σ) ~ (-0.26)HAND + (0.23)DSL  

3.57 0.457 

  (µ) ~ (-0.05)SB + 1|random(sites) 
(σ) ~ (-0.25)HAND + (0.23)DSL 

0 0.463 

Seed size CWD (µ) ~ 1|random(sites) 11.73 0.469 

  (µ) ~ (-0.04)SB + (-0.06)HAND + 1|random(sites) 0 0.487 

 CWM (µ) ~ 1|random(sites) 75.73 0.503 

  (µ) ~ (-0.08)SB + (0.05)HAND + 1|random(sites) 37.54 0.548 

  (µ) ~ 1|random(sites) 
(σ) ~ (-0.36)HAND + (0.23)DSL 

49.44 0.536 

  (µ) ~ (-0.07)SB + (0.08)HAND + 1|random(sites) 
(σ) ~ (-0.58)HAND + (0.29)DSL 

0 0.587 
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Figure 1: Life-forms in some genera of Zingiberales.  
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Figure 2. The study area and location of 451 plots where ginger community and 

environmental data were obtained. Background map represents the dry season length. Legend 

denotes the maximum number of consecutive months with less than 100 mm of precipitation 

along the 1998 - 2004 period. Black triangles represent the clusters of RAPELD plots (250 m 

x 2m) and blue triangles represent plots with size of 100 m x 5m located along the Juruá 

River. Clusters may have 5 to 57 plots spaced by at least 1 km. 
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Fig 3. Correlations (Person’s r) between functional traits at the species (A – C) and 

community levels (D – I). Correlations between traits at species level were obtained applying 

a logarithm transformation and vertical plot’s axes are presented using that scale.  
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Fig 4. Changes in functional composition (CWM) of 451 herbaceous communities along 

environmental gradients. Continuous and dashed lines represent the mean (µ) and variance 

(σ) response of CWM, respectively. Predicted mean is the 0.5 quantile and predicted variance 

denotes the interval between the 0.25 and 0.75 quantiles of the t family distribution (A - C) 

and Box-Cox t distribution (D - L). For each variable the predicted mean and variance were 

obtained keeping all other variables constant at their mean values. The µ (mean) and/or σ 

(variance) symbols displayed in the upper-right corner of panels indicates which of these 

parameters had a significant association with predictor variables and ‘ns’ denotes non-

significant association. Vertical axes from E to L are in logarithm scale. Dots denote the 

partial residual and light grey crosses represent the original values.   
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Table S1: List of the 192 species in the ginger order of flowering plants and their functional trait values. LMA denotes leaf mass per unit of area. 

Family Genus Species LMA (gm-2) Height (m) Seed size (cm2) 
Costaceae Chamaecostus Chamaecostus acaulis 26.59 0.2 0.074 
Costaceae Chamaecostus Chamaecostus congestiflorus 71.93 0.8 0.074 
Costaceae Chamaecostus Chamaecostus fragilis 33.46 0.6 0.074 
Costaceae Chamaecostus Chamaecostus fusiformis 45.89 0.7 0.074 
Costaceae Chamaecostus Chamaecostus sp1 19.34 0.6 0.074 
Costaceae Chamaecostus Chamaecostus sp1 pec 17.67 0.6 0.074 
Costaceae Chamaecostus Chamaecostus sp2 29.26 0.6 0.074 
Costaceae Costus Chamaecosuts fragilis 27.18 0.6 0.074 
Costaceae Costus Costus acreanus 53.52 1.7 0.074 
Costaceae Costus Costus amazonicus 59.98 2.0 0.074 
Costaceae Costus Costus arabicus 42.23 1.8 0.074 
Costaceae Costus Costus fusiformis 57.44 0.7 0.074 
Costaceae Costus Costus guanaiensis var guanaiensis 57.09 2.0 0.074 
Costaceae Costus Costus laisus 42.11 1.0 0.074 
Costaceae Costus Costus lasius 40.67 1.0 0.074 
Costaceae Costus Costus scaber 54.11 1.5 0.074 
Costaceae Costus Costus sp1 acre 43.45 1.5 0.074 
Costaceae Costus Costus sp1 cunia 42.29 1.5 0.074 
Costaceae Costus Costus sp1 m01 40.58 1.5 0.074 
Costaceae Costus Costus sp1 pec 19.36 1.5 0.074 
Costaceae Costus Costus sp1 VIRMAR 46.11 1.5 0.074 
Costaceae Costus Costus sp2 27.85 1.7 0.074 
Costaceae Costus Costus sp2 m01 40.58 1.5 0.074 
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Costaceae Costus Costus sp3 pec 33.07 1.5 0.074 
Costaceae Costus Costus sp4 23.16 1.6 0.074 
Costaceae Costus Costus sp5 31.79 1.8 0.074 
Costaceae Costus Costus sp6 31.61 1.7 0.074 
Costaceae Costus Costus sp7 40.58 1.5 0.074 
Costaceae Costus Costus sp7 pec 59.03 1.8 0.074 
Costaceae Costus Costus sp8 54.98 1.7 0.074 
Costaceae Costus Costus spiralis 65.52 2.0 0.074 
Costaceae Costus Costus sprucei 40.58 1.5 0.074 
Costaceae Costus Costus zingiberoides 28.81 1.5 0.074 
Costaceae Dimerocostus Dimerocostus strobilaceus 49.30 2.5 0.074 
Heliconiaceae Heliconia Heliconia 46 39.79 2.0 0.334 
Heliconiaceae Heliconia Heliconia acuminata 43.78 0.9 0.296 
Heliconiaceae Heliconia Heliconia aemygdiana 30.92 2.2 0.821 
Heliconiaceae Heliconia Heliconia bihai 48.09 2.0 0.350 
Heliconiaceae Heliconia Heliconia brachyantha 52.14 1.4 0.236 
Heliconiaceae Heliconia Heliconia chartacea 44.46 2.2 0.334 
Heliconiaceae Heliconia Heliconia den angustifolia 36.10 1.5 0.361 
Heliconiaceae Heliconia Heliconia den densiflora 30.73 1.0 0.361 
Heliconiaceae Heliconia Heliconia hirsuta 25.05 1.7 0.334 
Heliconiaceae Heliconia Heliconia juliani 53.20 2.0 0.304 
Heliconiaceae Heliconia Heliconia juruana 88.56 2.2 0.334 
Heliconiaceae Heliconia Heliconia lasiorachis 42.89 1.7 0.247 
Heliconiaceae Heliconia Heliconia lourtegiae 51.42 0.6 0.334 
Heliconiaceae Heliconia Heliconia psittacorum 40.71 1.3 0.334 
Heliconiaceae Heliconia Heliconia rostrata 49.69 2.5 0.334 
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Heliconiaceae Heliconia Heliconia schumanniana 52.14 1.6 0.227 
Heliconiaceae Heliconia Heliconia sp1 chand 43.03 0.8 0.334 
Heliconiaceae Heliconia Heliconia sp1 pec 44.09 1.5 0.334 
Heliconiaceae Heliconia Heliconia spathocircinata 42.73 1.8 0.334 
Heliconiaceae Heliconia Heliconia stricta 44.27 1.7 0.371 
Heliconiaceae Heliconia Heliconia tenebrosa 48.72 0.8 0.334 
Heliconiaceae Heliconia Heliconia velutina 46.80 1.8 0.350 
Marantaceae Calathea Calathea crotalifera 45.10 1.7 0.225 
Marantaceae Calathea Calathea lutea 52.20 2.5 0.250 
Marantaceae Calathea Calathea striata 44.49 0.9 0.237 
Marantaceae Ctenanthe Ctenanthe eriacae 37.86 2.0 0.212 
Marantaceae Ctenanthe Ctenanthe sp1 acre 35.66 0.2 0.212 
Marantaceae Ctenanthe Ctenanthe sp1 pime 32.03 0.5 0.212 
Marantaceae Goeppertia Goeppertia altissima 63.53 1.3 0.454 
Marantaceae Goeppertia Goeppertia attenuata 53.23 1.0 0.234 
Marantaceae Goeppertia Goeppertia brev m10 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia cannoides 70.44 1.5 0.234 
Marantaceae Goeppertia Goeppertia capitata 42.48 2.0 0.217 
Marantaceae Goeppertia Goeppertia comosa 46.39 2.0 0.217 
Marantaceae Goeppertia Goeppertia curaraya 35.19 0.2 0.234 
Marantaceae Goeppertia Goeppertia elliptica 50.49 0.7 0.234 
Marantaceae Goeppertia Goeppertia exscapa 29.13 0.4 0.234 
Marantaceae Goeppertia Goeppertia fragilis 50.65 1.7 0.234 
Marantaceae Goeppertia Goeppertia fucata 42.34 0.2 0.106 
Marantaceae Goeppertia Goeppertia hopkinsii 25.45 0.7 0.234 
Marantaceae Goeppertia Goeppertia loeseneri 37.89 0.8 0.212 
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Marantaceae Goeppertia Goeppertia maassiorum 50.50 0.5 0.234 
Marantaceae Goeppertia Goeppertia metallica 25.97 0.4 0.196 
Marantaceae Goeppertia Goeppertia micans 36.56 0.2 0.144 
Marantaceae Goeppertia Goeppertia microcephala 43.84 0.2 0.147 
Marantaceae Goeppertia Goeppertia neblinensis 42.38 0.8 0.234 
Marantaceae Goeppertia Goeppertia ovata 27.44 0.5 0.234 
Marantaceae Goeppertia Goeppertia panamensis 19.98 0.3 0.234 
Marantaceae Goeppertia Goeppertia picturata 40.80 0.3 0.234 
Marantaceae Goeppertia Goeppertia polytricha 29.03 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp m2 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp m3 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp m4 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp m5 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp m9 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp1 acre 30.34 0.4 0.234 
Marantaceae Goeppertia Goeppertia sp1 brev uat 35.93 0.7 0.234 
Marantaceae Goeppertia Goeppertia sp1 pec 24.65 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp11 altissima 52.17 1.5 0.454 
Marantaceae Goeppertia Goeppertia sp15 20.26 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp16 30.22 0.4 0.234 
Marantaceae Goeppertia Goeppertia sp17 28.02 0.2 0.234 
Marantaceae Goeppertia Goeppertia sp18 19.33 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp19 37.08 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp2 orna vir 65.39 1.8 0.234 
Marantaceae Goeppertia Goeppertia sp20 11.44 0.4 0.234 
Marantaceae Goeppertia Goeppertia sp21 35.31 0.3 0.234 
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Marantaceae Goeppertia Goeppertia sp22 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp24 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp25 25.69 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp26 35.59 0.6 0.234 
Marantaceae Goeppertia Goeppertia sp28 36.09 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp29 61.06 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp3 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp3 acre 26.56 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp30 37.00 0.6 0.234 
Marantaceae Goeppertia Goeppertia sp31 23.40 0.4 0.234 
Marantaceae Goeppertia Goeppertia sp32 31.53 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp33 43.49 0.1 0.234 
Marantaceae Goeppertia Goeppertia sp35 30.01 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp36 24.56 0.2 0.234 
Marantaceae Goeppertia Goeppertia sp38 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp39 36.17 0.5 0.234 
Marantaceae Goeppertia Goeppertia sp4 48.43 0.7 0.234 
Marantaceae Goeppertia Goeppertia sp40 28.12 0.3 0.234 
Marantaceae Goeppertia Goeppertia sp41 44.18 0.3 0.234 
Marantaceae Goeppertia Goeppertia straminea 82.77 0.8 0.234 
Marantaceae Goeppertia Goeppertia taeniosa 35.12 0.3 0.234 
Marantaceae Goeppertia Goeppertia variegata 44.55 1.7 0.454 
Marantaceae Goeppertia Goeppertia zingiberina 62.30 0.8 0.279 
Marantaceae Hylaeanthe Hylaeanthe hexantha 20.19 0.4 0.157 
Marantaceae Hylaeanthe Hylaeanthe unilateralis 19.41 0.6 0.118 
Marantaceae Ischnosiphon Ischnosiphon arouma 58.24 2.0 0.825 
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Marantaceae Ischnosiphon Ischnosiphon cannoideus 43.40 1.3 0.200 
Marantaceae Ischnosiphon Ischnosiphon canoideus 39.28 1.3 0.200 
Marantaceae Ischnosiphon Ischnosiphon cerotus 43.01 1.5 0.670 
Marantaceae Ischnosiphon Ischnosiphon crassispicus 150.87 3.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon gracilis 47.50 1.7 0.503 
Marantaceae Ischnosiphon Ischnosiphon grandibracteatus 49.00 3.0 0.962 
Marantaceae Ischnosiphon Ischnosiphon hirsutus 32.14 0.8 0.261 
Marantaceae Ischnosiphon Ischnosiphon killipii 29.82 3.0 0.746 
Marantaceae Ischnosiphon Ischnosiphon lasiocoleus 47.20 1.6 0.393 
Marantaceae Ischnosiphon Ischnosiphon leucophaeus 58.62 0.8 0.234 
Marantaceae Ischnosiphon Ischnosiphon longiflorus 42.92 4.0 1.292 
Marantaceae Ischnosiphon Ischnosiphon martianus 57.32 1.2 0.503 
Marantaceae Ischnosiphon Ischnosiphon obliquus 27.44 2.5 0.605 
Marantaceae Ischnosiphon Ischnosiphon paryrizinho 60.17 2.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon petiolatus 53.69 0.9 0.548 
Marantaceae Ischnosiphon Ischnosiphon pub puberulus 35.55 2.5 0.512 
Marantaceae Ischnosiphon Ischnosiphon pub verruculosus 48.63 2.5 1.060 
Marantaceae Ischnosiphon Ischnosiphon sp1 29.74 3.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp10 48.24 1.9 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp2 55.22 3.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp4 50.29 3.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp5 59.72 1.5 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp6 48.24 1.9 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp7 65.71 1.8 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp8 50.65 2.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon sp9 44.16 3.0 0.512 
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Marantaceae Ischnosiphon Ischnosiphon surumuensis 55.39 2.0 0.512 
Marantaceae Ischnosiphon Ischnosiphon ursinus 47.18 1.3 0.512 
Marantaceae Maranta Maranta ciclophylla 16.97 0.3 0.314 
Marantaceae Maranta Maranta humilis 20.07 0.4 0.314 
Marantaceae Maranta Maranta sp1 acre 23.29 0.3 0.314 
Marantaceae Maranta Maranta sp1 jur 21.55 0.3 0.314 
Marantaceae Maranta Maranta sp1 pec 20.22 0.3 0.314 
Marantaceae Maranta Maranta sp1 pime 25.78 0.3 0.314 
Marantaceae Maranta Maranta sp2 acre 9.77 0.2 0.314 
Marantaceae Maranta Maranta sp2 jur 24.94 0.4 0.314 
Marantaceae Maranta Maranta sp2 pime 18.75 0.3 0.314 
Marantaceae Maranta Maranta sp3 pime 15.04 0.3 0.314 
Marantaceae Monophyllanthe Monophyllanthe araracuarensis 59.57 0.7 0.118 
Marantaceae Monophyllanthe Monophyllanthe oligophylla 57.17 0.1 0.118 
Marantaceae Monotagma Monotagma angustissimum 44.98 1.0 0.396 
Marantaceae Monotagma Monotagma aurantispathum 29.64 0.8 0.227 
Marantaceae Monotagma Monotagma breviscapum 35.96 0.7 0.385 
Marantaceae Monotagma Monotagma contractum 47.59 0.7 0.205 
Marantaceae Monotagma Monotagma contrariosum 44.15 1.0 0.271 
Marantaceae Monotagma Monotagma densiflorum 55.37 1.3 0.227 
Marantaceae Monotagma Monotagma exile 41.66 0.4 0.248 
Marantaceae Monotagma Monotagma flavicomum 30.30 0.3 0.428 
Marantaceae Monotagma Monotagma floribundum 63.34 1.6 0.286 
Marantaceae Monotagma Monotagma humile 29.77 0.4 0.225 
Marantaceae Monotagma Monotagma juruanum 42.57 0.7 0.440 
Marantaceae Monotagma Monotagma laxum 50.52 1.0 0.302 
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Marantaceae Monotagma Monotagma lilacinum 46.24 0.7 0.221 
Marantaceae Monotagma Monotagma plurispicatum 48.76 0.8 0.271 
Marantaceae Monotagma Monotagma secundum 53.25 0.7 0.324 
Marantaceae Monotagma Monotagma sp1 57.18 0.7 0.286 
Marantaceae Monotagma Monotagma sp1 acre 54.93 0.7 0.286 
Marantaceae Monotagma Monotagma sp2 pime 51.91 0.7 0.286 
Marantaceae Monotagma Monotagma sp3 m10 35.78 0.3 0.286 
Marantaceae Monotagma Monotagma sp3 pime 46.19 0.4 0.286 
Marantaceae Monotagma Monotagma sp4 pime 42.75 0.6 0.286 
Marantaceae Monotagma Monotagma sp5 cunia 43.50 0.6 0.286 
Marantaceae Monotagma Monotagma sp5 jur 42.99 0.7 0.286 
Marantaceae Monotagma Monotagma tomentosum 51.75 0.6 0.319 
Marantaceae Monotagma Monotagma tuberosum 26.04 0.2 0.226 
Marantaceae Monotagma Monotagma ulei 38.73 0.5 0.211 
Marantaceae Monotagma Monotagma vaginatum 44.93 0.7 0.402 
Strelitziaceae Phenakospermum Phenakospermum guyannense 64.07 5.0 0.605 
Zingiberaceae Renealmia Renealmia acreana 50.38 1.5 0.059 
Zingiberaceae Renealmia Renealmia alpinia 44.14 2.0 0.063 
Zingiberaceae Renealmia Renealmia aromatica 48.93 1.7 0.067 
Zingiberaceae Renealmia Renealmia breviscapa 52.62 0.8 0.063 
Zingiberaceae Renealmia Renealmia cernua 58.16 1.5 0.057 
Zingiberaceae Renealmia Renealmia floribunda 66.37 1.5 0.054 
Zingiberaceae Renealmia Renealmia monosperma 40.56 0.3 0.076 
Zingiberaceae Renealmia Renealmia sp1 38.09 1.5 0.067 
Zingiberaceae Renealmia Renealmia sp1 br319 45.85 1.0 0.067 
Zingiberaceae Renealmia Renealmia sp1 pec 45.85 1.0 0.067 
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Zingiberaceae Renealmia Renealmia sp1 pime 45.85 1.0 0.067 
Zingiberaceae Renealmia Renealmia sp10 49.30 1.5 0.067 
Zingiberaceae Renealmia Renealmia sp4 jur 32.88 0.4 0.067 
Zingiberaceae Renealmia Renealmia sp5 jur 51.48 0.4 0.067 
Zingiberaceae Renealmia Renealmia sp7 jur 39.76 0.6 0.067 
Zingiberaceae Renealmia Renealmia sp8 40.76 1.0 0.067 
Zingiberaceae Renealmia Renealmia sp9 jur 45.85 1.0 0.067 
Zingiberaceae Renealmia Renealmia thyrsoidea 39.24 1.5 0.108 
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ABSTRACT 

We propose a diversification model for Amazonia based on intrinsic clade functional traits, 

habitat association and past geological events. Using seven clades of Marantaceae, a species 

rich Neotropical family of monocots, we demonstrate that short versus long generation time, 

corresponding respectively to fast growth rate on fertile substrate versus slow growth rate on 

infertile substrate, is the major determinant of widely distinct diversification rates observed 

across the Marantaceae. Species richness in each lineage is well predicted by these functional 

constraints and not by clade age. Clades with acquisitive strategies were often associated with 

highly productive habitats – nutrient-rich soils and bottomlands – and their origin and 

diversification dynamics match past geological events mediated by Andean uplift. We further 

show that a pure allopatric-dispersal model disconnected from past geological and ecological 

forces is inadequate to explain floristic evolutionary and diversity patterns in Amazonian 

lowlands. A major geochemical and physical transformation of the Amazon landscape in the 

Miocene, driven by Andean uplift, increased soil fertility over large portions of Amazonia, 

providing the opportunity for the evolution of clades with fast growth and short generation 

times, boosting rates of molecular evolution and of diversification in Amazonian forests. 

INTRODUCTION 

Amazonia harbors the greatest diversity of plants and animal in the world. Such spectacular 

species accumulation through time has been linked with several historical events and complex 

processes (1–3), but a mechanistic explanation, linking past events to diversification 

dynamics and diversity patterns, remains elusive. Historical events include climate 

oscillations and geological-landscape transformations (4, 5). The refuge theory based on 

Pleistocene climate oscillations, popular in the 1970s, was gradually replaced by alternative 

models as its predictions did not find support in the spatial and temporal evidence (1, 6, 7). 

With the advance of paleo-ecological and molecular studies, geological events coupled with 

landscape transformation have emerged as key elements to explain biological diversification 

patterns in Amazonia (5, 8, 9).  

The intense physical landscape change caused by Andean uplift during the Neogene is 

postulated to have promoted speciation in tetrapodes via an allopatric-vicariance process (8). 

In this model, the emergence of mountains and rivers isolated widespread populations, 

interrupting their gene flow and forming new species. Recently, the allopatric-vicariance 
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model has been criticized because spatial and temporal genetic patterns between closely 

related lineages vary widely and do not match the timing of geological events (10). In contrast 

to the vicariance model, the dispersal model assumes that allopatric speciation is driven by 

dispersal events and the speciation outcome from organism-specific abilities to persist and 

disperse in the landscape (10). According to this model, diversity is expected to be higher in 

old clades as they have had more time to accumulate species and also higher in clades with 

poor dispersal abilities becuase gene flow is more restricted (10). The allopatric-vicariance 

model also does not find support in plant phylogenies (3). Molecular analysis of four species 

rich and abundant clades of Neotropical trees showed that local forest communities in 

Amazonia are comprised of lineages widely randomly distributed across the phylogenetic tree 

(11). It therefore seems unlike that vicariance events have pooled common evolutionary 

histories into distinct and isolated geographic regions. These recent findings refute the idea of 

a deep imprint of geological events and their associated barriers on the structure of 

diversification and of evolutionary patterns in lowland rain forest of Amazonia. 

The transformation caused by the Andean uplift, however, goes beyond the emergence of 

mountain and river barriers. The intense geological activity promoted an intense input of 

nutrients mainly in Western Amazonia and a gradual transformation of lowlands substrates 

that extends to Central and Eastern Amazonia (5, 12). From the late Oligocene onward, the 

predominant uplands habitats with low productivity of the Amazonia Craton were replaced by 

a high productivity bottomland landscape (13). These geo-physical gradients are strongly 

related to several spatial diversity and evolutionary patterns in Amazonian plants. Floristic 

differences are well documented along bottomland to uplands gradients of non-inundated 

forest (14, 15). Soil derived from the Miocene mega-wetlands are markedly richer in 

nutrients, harbor a distinct floristic composition and have higher species richness compared to 

forest growing on soils derived from nutrient-poor substrates(16–18). Species-habitat 

associations mapped within plant phylogenies has revealed that (1) closely related species 

have different soil affinities, (2) multiple events of speciation probably occurred by parapatric 

speciation across a heterogeneous edaphic landscape and (3) the origin of species associated 

with clay soils coincided with sedimentation history in the Miocene (9). All these findings 

suggest that the Andean uplift may have left a deep imprint in diversification patterns through 

the chemical and physical transformation of the broader Amazon landscape, favoring species 

divergence along this ecological dimension. However, it remains elusive how these past 

geological events can be linked to explain large differences in diversity and speciation rates 
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across tropical plant lineages.  

Availability of resources is tightly related to plant functional strategies. The topographic and 

soil resource gradients of tropical forests have been shown to be associated with these 

strategies (19–21). Species with acquisitive functional traits (e.g. low woody density, low 

stature and low leaf mass per unit of area), having high turnover rates (low longevity), 

predominate in nutrient rich habitats and bottomlands, while conservative functional strategies 

are more common in nutrient poor habitats and uplands. An interesting study combining 

phylogenies across 51 tree genera and plot-based demographic data in Amazonia showed that 

clades of species with fast growth strategy (and short generation times) showed markedly high 

rates of diversification and tended to be richer than clades with a slow growth strategy (22). 

These findings inspired us to build and test a mechanistic model framework linking 

geological history, habitat heterogeneity, intrinsic functional traits of lineages and the 

diversification patterns of Amazonian flora. The key point is to include past geological events 

and the appearance of resource rich soils as a driver of evolution of species with short 

generation times and high speciation rates. 

Here, we use phylogenetic data and a functional trait proxy for fast versus slow growth 

strategies for a set of 100 species from seven clades of a species-rich understory herbaceous 

family (Marantaceae, ~230 recognized species in Amazonian), found in 400 standard plots, 

each having environmental data (soil and topography), to present an ecological model of 

diversification based on the history of geochemical and physical transformation of Amazonian 

substrate. We hypothesize that, when low productivity upland habitats were replaced in the 

Western Amazon by higher productivity bottomland habitats, due to the intensification of 

Andean uplift at the Oligocene-Miocene boundary (~23 Mya), the origin of new clades with 

acquisitive functional traits was favoured, and that shorter life cycles of these fast-growing 

taxa lead to higher diversification rates in these new environments. By contrast, old clades are 

expected to have conservative functional traits (longer life cycles), low diversification rates 

and to be associated with habitats resembling the Amazonian landscape that predominated 

prior to the early stages of the Andean uplift (upland habitats with nutrient poor soil). In terms 

of current diversity patterns, we expect that variation in species richness across clades will be 

better predicted by clade functional traits and by diversification rates than by clade age 

because the increase in diversification rates of fast-growt and young clades must overcome 

the species acuumulation in old clades.Finally, we explore the diversification dynamics of 
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clades with distinct functional strategies, searching for temporal congruences between shifts 

in diversification rates and the major paleo geological and climatic events.  

RESULTS  

Clade functional traits, and not age, explain diversification rates and diversity patterns 

The clade functional strategy here is represented by the leaf mass per area (LMA, g m-2). 

LMA describes a spectrum of leaf economics, running from fast to slow return on investments 

of resources and of dry mass in leaves, and is related with organisms’ fitness and population 

demographic rates (23, 24). Species with low LMA often have the acquisitive strategy: fast 

growth, high mortality rates and short generation times.The opposite is generally true for 

species with high LMA (conservative strategy). For the diversification rates, six models were 

tested, running from simple (includes only births with constant speciation rates) to more 

complex (include births deaths with speciation varying exponentially over time)  

Species richness, diversification rates (r), ages and mean LMA values vary markedly across 

the seven lowland rain forests lineages of Marantaceae (Fig. 1). For all seven clades, 

diversification rates were best estimated by a pure birth model process, i.e., with no 

extinctions and constant speciation rates. The three clades with the highest diversification 

rates (Breviscapus, Comosae and Microcephalum) were also those with the lowest LMA, i.e., 

clades with acquisitive functional strategy, and in average were younger than the four 

remaining clades (Fig. 1). In fact, the intrinsic diversification rates were strongly dependent 

on the clade functional trait (Fig. 2a), and both diversification rate and LMA predicted 

relatively well the species richness across the seven lineages (Fig 2b –d). Clades with an 

acquisitive strategy had higher diversification rates and were richer than those with 

conservative strategies (Fig, 2b-d). Contrary to predictions of the age-dispersal model, species 

richness was not associated with clade age, (Fig, 2c and 2e).  

Clade habitat-association related to functional traits and time of origin 

The habitat association of the seven clades was also clearly related to the diversification rates, 

functional strategies and time of origin. Clades that originated before 30 Mya, with 

conservative traits and low diversification rates (Straminea, Monotagma, Ischnosiphon and 

Ornata) tended to be associated to soils with low to medium levels of nutrients (Fig 3). 

Straminea and Ornata clades were also associated with uplands, while Monotagma and 
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Ischnosiphon did not show any topographic preferences (Fig 3). On the other hand, the three 

lineages that originated between 25 – 20 Mya (Microcephalum, Comosae and Breviscapus), 

those with the highest diversification rates and acquisitive functional strategies, had better 

associated to rich soils. The Breviscapus clade was more variable in terms of association to 

the soil gradient, with high preferences for both poor or rich soils, and avoiding soils with 

intermediate levels of nutrients. All clades had preferences to wet conditions and tended to 

avoid dry conditions (Fig 3).  

Diversification dynamics related to paleo events.  

Until now, we assumed that diversifications rates can only be constant, or vary linearly or 

exponentially through time. The analysis employed in this section relaxes this assumption 

allowing speciation and extinction to freely vary in any time. We revealed first, an impressive 

congruence between diversification dynamics and paleo geological and climatic events, and 

second, markedly distinct behaviour dynamics between clades with different functional 

strategies (Fig 4).  The diversification dynamics of conservative clades started around 45 Mya 

in the middle Eocene and the speciation and extinction rates kept low and constant until the 

late Oligocene – early Miocene (~20 Mya). This period marks a phase of intensification of 

Andean uplift and the beginning of the fluvial-wetland system (~23 Mya) and match with a 

slight increase in the speciation and diversification rates. After that, a new constant regime in 

the speciation and extinction rates of these clades predominates until the present. By contrast, 

the diversification dynamics of acquisitive clades started later and was more dynamic than the 

diversification history of conservative clades (Fig 4). The most recent common ancestor of 

acquisitive clades (Breviscapus, Comosae e Microcephalum) dated from 23.7 (19.7 – 29.8, 

95% confidence interval) and matched again with the early stages of the western fluvial-

wetlands system. The speciation rates kept constant for the following 10 Mya. Interestingly, 

the extinction rates of this group slightly increase until the middle Miocene (~15 Mya), 

making indistinguishable the differences between diversification rates of acquisitive and 

conservative clades. The speciation rates of acquisitive clades only started to speed up slightly 

before to the end of the Pebas phase and the beginning of the Acre system (~10 Mya), the 

same period where extinction rates started to decline resulting in a rapid increase in 

diversification rates. Speciation and diversification rates of fast growth clades reached a peak 

around the end of Pliocene, followed by an abrupt decline in the beginning of Pleistocene (~3 

Mya) which stabilized only in the last million years. 
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DISCUSSION 

Intrinsic clade functional trait-strategy drives diversification rates and diversity 

patterns. 

Our results clearly establish a link between an intrinsic clade functional trait (LMA), past 

geological events, diversification dynamics and current species diversity. We found a strong 

functional-evolutionary trade-off structuring the phylogenetic patterns of seven major clades 

of Marantaceae in Amazonia lowland rain forest. Clades with an acquisitive functional 

strategy (low LMA) tended to be younger, had high diversification rates and higher species 

richness than clades with a conservative strategy (high LMA). The acquisitive strategy is 

associated with short generation times, which speed up the rate of molecular evolution 

resulting in an increase of speciation events (Smith & Donoghue 2008), independent of the 

mechanism involved in speciation – vicariance, isolation by distance or ecological divergence. 

By contrast, species with high LMA invest in high durable tissues and consequently, tend to 

have long generation times, low rates of molecular evolution and low rates of speciation. Our 

findings are in perfect accordance with a previous study in Amazonia which showed that tree 

genera with high turnover rates (high rates of mortality) tend to have also high diversification 

rates (22).  

Assuming a neutral process, where speciation and extinction rates are randomly distributed in 

the phylogeny, old clades would have more species merely due to the larger time to 

accumulate species than new clades (25). The age-diversity relationship is invoked to partially 

explain differences in diversity between regions (e.g. latitudinal gradient in species richness) 

and across clades within biomes (26–28). Within the Neotropical, the temporal constraining 

effect on clade’s species accumulation was found to be a major determinant of variation in 

species richness across bird lineages (10). Our findings for Amazonian Marantaceae clades do 

not support the age-diversity model. On the contrary, recent clades of Marantaceae often 

exhibited higher species richness than old clades because the speed up in diversification rates 

of young clades driven by the origin of fast-growth strategy was big enough to counterattack 

the temporal restriction for species accumulation. Although the age-diversity model has not 

been directly contrasted with functional-diversification model in the previous tropical studies, 

it seems plausible that functional-diversification trade-off controls also the diversity pattern 

across tropical tree clades, instead of the age-diversity relationship. The Inga genus is 
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emblematic here, since it is the richest genus and have the highest diversification rates among 

Amazonian trees, most of species are fast-growth and its origin (6 Mya) and radiation (4 Mya) 

are very recent (22, 29).  

Deep imprint of paleo-geochemical transformation on evolutionary patterns in 

Marantaceae 

The functional fast-slow trade-off observed across our seven lineages correlates with their 

preferences along the resource-substrate gradients. This relationship agrees with previous 

studies demonstrating the soil-fertility gradient as the main driver of the fast-slow growth 

trade-off in tropical forests (20, 30). However, the role of the soil-resource gradient as a driver 

of ecological patterns transcends ecological time scales and goes deep into the 

evolutionary/geological scale as we have shown here. The slow-growth clades - associated to 

soils with low or intermediate levels of nutrients - evolved early in the Eocene, while the 

emergence of fast-growth clades – associated with nutrient-rich soils – dated from the late 

Oligocene. Since the fast-growth strategy is strongly conditioned by resource availability (31), 

this suggests that the birth of these clades was only made possible by the emergence of highly 

productive environments in Amazonia. Paleo-geological and ecological evidences strongly 

support the replacement of a low productivity Craton-derived landscape by a high 

productivity fluvial system and an incipient wetlands landscape in Western Amazonia in late 

Oligocene-Early Miocene (~23 Mya), driven by an intense phase of the Andean uplift (5, 13). 

Occasional marine incursions observed in this period (32) may have also contributed 

significant levels of nutrients, especially calcium, to Amazonian ecosystems. Still today, it is 

possible to detect the resource-soil gradients related to sediments from the early Miocene 

(Pebas formation) structuring ecological and biogeographical patterns in Western forests, 

including for the herbaceous groups analysed here (18). The gap-disturbance regime tends 

also to be higher in rich soils, due to short generation times and high mortality rates of trees 

(20), allowing higher penetration of light to the understory, which is another important 

resource structuring the functional fast-slow strategy trade-off (31). Our results suggest 

therefore that the emergence of high productivity and dynamic habitats were essential to the 

evolution the evolution of a fast growth strategy and consequently enhancement of the 

diversification rates.  

The imprint of the long-term topographic transformation along Amazonian history on 
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functional and evolutionary patterns across Marantaceae clades is less evident than that by 

geochemical transformation, because most clades showed no preference along topographic 

gradients. However, association exclusively with uplands were found in clade with high LMA 

and associations exclusively with bottomlands were observed for the Breviscapus clade, that 

with the highest diversification rates and LMA. The establishment of the modern Amazonian 

drainage system started only in the late Miocene (~9 Mya) and is relatively more recent than 

geochemical transformation that took place in Amazonia in the early-middle Miocene (13, 

33), which may favour recent speciation events driven by adaptive radiation along 

topographic gradients. In central Amazonia, for instance, it is common to find member of 

sisters species pair associated to valleys and the other to plateaus (21) suggesting that 

speciation across topographical gradients may be relatively recent and may have occurred 

several times within clades. This evolutionary pattern would lead to the absence of a general 

topographical association at any higher than species level. Further studies can elucidate this 

question mapping the topographic affinities within clades through a similar approach as that 

used by Finne et al. (9). Contrasting he absence of topographical association of most clades, 

all of them were associated with wet climatic conditions, revealing that dry conditions are 

somewhat detrimental to diversification of all clades analysed here. The inexistence of a deep 

evolutionary divergence associated to large-scale water conditions however, indicate that past 

climate oscillations have not driven the emergence of new clades and their differences in 

intrinsic diversification rates, functional strategies and diversity patterns.  

Distinct diversification dynamics between acquisitive/conservative clades and the role of 
past geological and climatic events.  

The diversification dynamics signature of two groups with distinct functional strategies was 

quite distinct in terms of response to past geological and climatic events. The diversification 

rates of conservative clades were in an almost pure steady-state along their 44 Mya of 

existence, with a gradual reduction in extinction rates and a short increase in the speciation 

rates at the early Miocene (~20 Mya). The intense transformation of the landscape driven by 

intensification of Andean uplift seem to have slightly impacted the speciation rates of 

conservative clades, since some clades in this group have intermediate values of LMA that 

must have been favoured by the increment of resources. While the dynamics of conservative 

clades can be described as constant and stable process, we can not say the same for of 

acquisitive clades.  
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 According to our molecular tree and niche analysis, the evolution of Breviscapus, Comosae 

and Microcephalmum clades begins in late Oligocene (~23 Mya), probably due to the 

emergence of high productive habitats in Western Amazonia that favoured the rapid evolution 

of fast-growth functional strategy. Paleo-environmental reconstruction suggests that fluvial 

environments, some marine incursions and an incipient wetland established in Western 

Amazonia at early Miocene (~ 24 to 16 Mya) and evolved into a huge and complex mega-

wetland, formed by lacustrine, swamp and riverine systems in the middle-early Miocene (~16 

a 11 Mya, Pebas phase), covering an area represented today by the Western lowlands (5, 13). 

Although acquisitive clades have been already established in the Pebas phase, the steady-state 

of speciation rates during this period and the slight increase in extinction rates lead to a 

reduction in net diversification to levels indistinguishable from diversification rates of 

conservative clades. This scenario suggests that diversification of western lineages associated 

with non-inundated forest was not favoured by the expansion of mega-wetlands, probably due 

to reduction of suitable area. Evidences of the inhibiting effect on speciation process caused 

by Pebas system has been also found in evolutionary history of Neotropical palms (34). The 

boosted diversification of acquisitive clades was only observed at the end of Pebas phase 

when a new stage of intensity of Andean uplift drove the gradual replacement of mega-

wetlands by fluvio-tidal wetlands and the early Amazon river system (~11 to 7 Mya, Acre 

phase) (13). The expansion of terrestrial habitats over the wetlands, supported by 

predominance of continental vertebrates in fossil records (35), may have favoured dispersal 

events across the landscape and speciation events could have emerged by the combination of 

long dispersal events, geographical isolation of populations and process of adaptive 

divergence (36) with species radiating across a highly heterogeneous topo-edaphic landscape.  

The net diversification rates continued speeding up and reach the peak at the late Pliocene and 

abruptly declined at early Pleistocene (~3 Mya). The Plio-Pleistocene period mark a transition 

from warm to cold and dry climatic conditions (1, 37). Evidences from fossil pollen records 

also indicate a general decline in plant diversification along Pleistocene by the increase of 

extinction rates (38), but in the case of Marantaceae clades these climate changes may have 

affected diversification by a slow down effect on speciation rates. The negative effect of 

cooling-dry conditions observed only in acquisitive clades and not in conservative clades 

suggests that fast-growth tropical plants may depend on relatively high temperatures and 

humidity, possibly to sustain their higher metabolism rates. Due to biophysical constraints, a 

really fast-growth strategy is only possible if all vital resources (e.g, nutrients, carbon, water 
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and radiations) are provided in enough quantities to keep elevated the metabolic rates (31). By 

contrast, current evidences have shown that slow-growth species are less sensitive to drought 

(39), supporting the distinct response between acquisitive and conservative clades to paleo-

climate changes.  

The dependence of acquisitive clades on warm-wet conditions also suggests that the rapid 

raising temperature at late Oligocene could have also favoured the emergence of the 

acquisitive clades. The increase of palynological diversity in Neotropics associated with 

warming periods from the Paleocene to the early Miocene (65 to 20 Mya) (40) have been 

attributed to a speed up in biochemical kinetics, rate of molecular evolution and speciation 

rates driven by the increase of temperatures (41). However, diversification rates in 

Marantaceae did not increase in the Miocene Climatic Optimum warming period (17 to 15 

Mya), and a strong increase in diversification rates happened at middle – late Miocene (~10 

Mya) when the temperature conditions resembled those before the late Oligocene warming 

period. The paleo-climate cycles only, therefore, were unlike to have favoured the birth of 

acquisitive clades and seeped up the diversification rates in Marantaceae, leading us to 

conclude that Andean uplift and the landscape transformation have played a decisive role in 

this process. 

CONCLUDING REMARKS  

By combining plant growth trade-off and long-term diversification dynamics we provided 

clear evidences that landscape transformation boosted by Andean uplift was the paramount 

driver of the diversification history of Marantaceae clades in Amazonian lowland rainforest. 

This process may have involved two main mechanisms, each prevailing at a different stage. 

The intense Andean uplift (~23 Mya) drove the emergence of highly dynamic and productive 

environments and promoted evolution of lineages with fast demographic strategies to live in 

such abundant resource conditions via trait-niche divergence. Fast growth strategies 

associated to short generation times, led to fast molecular evolution, speeding up the 

speciation rates (42). This process, however, stayed latent for the next 10 Mya due to low 

availability of vast continental areas. As the mega-wetlands system gave place to terrestrial 

environments due to the second phase of intense mountain raising (~10 Mya), new extensive 

areas of terrestrial habitats became available. Over this vast and heterogeneous topo-edaphic 

landscape diversification speeded up by the combination of allopatric-dispersal and adaptive 
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divergence (9, 10, 36). Diversification slowed down in the cooling phase during Pleistocene, 

but until there, most of the species known today have already established. The higher the 

speciation rates, the higher was species’ accumulation, resulting in high number of extant 

species. Since more than 50% of species in the Marantaceae-Calathea clade are found in the 

three fast-growth clades, it is reasonable to assume that such tumultuous past events caused 

by Andean uplift in Amazonia significantly contributed to current diversity of its lowlands 

rain forest. We agree with previous studies that is not necessary to invoke the allopatric 

vicariance-geological model to explain evolutionary history and diversity patterns in 

Amazonia (10, 11). However, a pure dispersal model, disconnected from past geological 

events, ecological forces and focused in recent speciation events do not seem to be the best 

alternative (10, 11). We propose that coupling functional trait-niche framework to the long-

term diversification dynamics must provide plentiful insights into the complex evolutionary 

history of tropical forests and potential mechanisms underlying the origin and evolution of its 

spectacular biological diversity. Geological and ecological forces shaped the evolutionary 

history and diversity patterns in Amazonian forest.  
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FIGURES 

 

Figure 1. Time-calibrated phylogeny based on the nuclear ITS marker (A) and intrinsic clade 
factors across the seven Amazonian lineages of Marantaceae (B). Clades in (A) are coloured 
according with their diversifications rates (r) exhibited in B and grey represent non 
Amazonian lineages, with some of them collapsed in a unique node (see the complete 
phylogeny in Fig. S2). In (B) are the intrinsic clade LMA (mean values in gm-2), 
diversification rates (r, in events per Mya), stem ages (Ast, in Mya), crown ages (Acr, in Mya), 
clade richness (R) and sampling fraction (sf) that means the proportion of extant taxa 
represented in the inferred phylogeny. Diversification rates were estimated fitting a pure birth 
process, which was the best model compared with models assuming birth-death process (see 
details in Methods and Results). 
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Figure 2: Relationships between diversification rates, LMA, clade species richness and clade 
age. In A is the simple relation between diversification rates and LMA. In B – C are the 
partial regression of the model including LMA and stem age as predictor variables, and in D – 
E denote the partial regression of the model including diversification rates and LMA as 
predictors. The fitted line in B – E was obtained using conditional plots implemented in visreg 
R-package (43). The P values represent the statistical significance of relations, R2 the good-
of-fitness of models including all variables and R2

out de good-of-fitness of models without that 
variable.  
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Figure 3: Habitat association of the seven Marantaceae clades. Vertical axis denotes the 
occurrence probabilities scaled to 0 – 1 using contrasting plot implemented in visreg R-
package (43). Horizontal axis denotes the logarithm of sum of bases Ca, Mg plus K (SB), 
logarithm of vertical distance from drainage (VDD) and the dry season length (DSL). From 
top to bottom panels, clades are order based on their LMA values and colours are based on 
their stem age, which red represent the youngest blue the oldest clade. The statistical 
significance of clade-habitat association is given by the P values extracted from a GLM 
model using all the tree variables.  
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Figure 4. Diversification dynamics of the fast-growth and slow-growth clades. Lines represent 
the posterior mean and polygons the 95% credible interval for diversification, speciation and 
extinction rates. Fast-growth clades include Breviscapus, Comosae and Microcephalum and 
slow-growth clades include Ischnosiphon, Monotagma, Ornata and Straminea. Geological 
events (red triangles and grey polygons) were obtained in Hoorn et al. (5). Paleo climate 
spatial trends is based on data from Zachos et al. (37), assessed in 
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/. ∆T °C is the approximate difference from present-day 
temperature scaled according to concentration of isotopes of oxygen (δ O18) based on benthic 
foraminifera record (see details in figure 2 of Zachos et al. (37)). Paleo climate points are 
coloured representing the gradient running from warm conditions (red) to cooler conditons 
(blue). 

METHODS 

Target taxa - Marantaceae is species rich pantropical Monocot family within the order 

Zingiberales (gingers). Most species are rhizomatous herbs, varying in habit from 10 cm tall 

small rosulate to 4 m tall palm-like or scandent. Nearly 550 species are recognized world-

wide but most (~450 spp) are found in the Neotropics (44). Here, we focus on the Neotropical 

Calathea clade, a lineage of four genera (Calathea, Goeppertia, Ischnosiphon and 

Monotagma) with 360 species, occurring in Amazonia, Atlantic Coastal Forest and Central 

America. Goeppertia is the richest genus within Marantaceae (~250 species). It is split into 

six well-supported clades defined in previous phylogenetics studies (45, 46): Breviscapus, 

Comosae, Microcephalum, Ornata, Scapifolia and Straminea. Clades with diversity centers 

outside the lowland rain forest of the Amazon basin (genera Calathea, Scapifolia and a sub-

clade of Breviscapus) were removed from our main analyses, but were included to build a 

time-calibrated phylogenetic tree at the family level (see details in next section). In summary, 

our main analyses were based on seven Amazonian clades: five clades in Goeppertia 

(Breviscapus, Comosae, Microcephalum, Ornata e Straminea) and the two genera 

Ischnosiphon and Monotagma. Images and taxonomic details of some of species included 

here can be found in (47). 

Molecular data - Our molecular data included sequences of 170 Marantaceae taxa overall. 

For 70 taxa, DNA samples were collected by our team in Amazonia and Atlantic forest sites. 

The remainder were obtained from GenBank, accessed at 

https://www.ncbi.nlm.nih.gov/genbank/. To calibrate the tree of species in seven Amazonian 

clades, we used GenBank data  for all available sequences of all Marantaceae clades. DNA 

was extracted from leaf tissues using the CTAB protocol and the DNeasy Plant minikit 
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(Qiagen, Valencia, California). Molecular analyses were based on sequences of nuclear 

ribosomal internal transcribed spacer regions (ITS 1 and 2; 850 bp), the plastid matK gene, 

and flanking 30 trnK intron, as described in Borchsenious et al. (45). PCR fragments of ITS 

were amplified with annealing temperatures of 54–58°C and matk, following the protocol in 

Borchsenious et al. (45) and Saka (46). Sequencing was conducted at the Laboratório de 

Temático de Biologia Molecular at INPA, Manaus, Brazil and at Macrogen Inc., Seoul, South 

Korea. We aligned sequences using the MAFT algorithm and then made fine-tune 

adjustments manually using Geneious software. 

Phylogenetic inference and temporal reconstruction – To estimate our time-calibrated 

topology we performed a Bayesian analysis using BEAST v1.8.3 (48). This was done in two 

stages. (1) We first estimated a family-wide, time-calibrated topology using 151 matk 

sequences. The root age of our plastid tree was based on diversification times estimated from 

an Order-level topology calibrated with three well-identified fossils of gingers (49). We set 

the root age of the matK tree using a normal distribution prior with mean of 60 Mya and 2 

standard deviations (sd). The analysis was run using a GTR substitution model (Gamma site 

heterogeneity model with four categories), an uncorrelated relax clock with lognormal relaxed 

distribution (ucld) and a Birth-Death model of speciation. Exponential priors for ucld.mean 

and ucld.sd were set to 0.001 and 0.5 events per million years, respectively. (2) Based on the 

node ages estimated in the first step, we then estimated the ITS tree containing 150 sequences 

of taxa from the Calathea clade only, setting the root age to 45 Mya (normal distribution with 

5 sd). We applied the same settings used for the matK tree, but with ucld.mean and ucld.sd set 

to 0.003 and 0.6, respectively. This gave some low effective sample size (ESS) values for 

some parameters so we ran the analysis again using the simpler HKY substitution model and 

the Yule process model of speciation. For each topology, the plastid tree and nuclear tree, the 

tree’s parameters were obtained after a run of 2x107 generations of Markov Chain Monte 

Carlo (MCMC), sampling each 20,000 generations.  With these modifications the ESS values 

exceeded 200 for both trees, which indicate good convergence in the parameter estimations. 

We burned-in 10% of the 1,000 Bayesian trees and obtained the maximum clade credibility 

tree (MCC) using TreeAnnotator software. The MCC trees of plastid and nuclear markers are 

shown in Figures S1 and S2, respectivelly.  

Trait-based data - The leaf mass area (LMA in m g-1) was used to summarize the functional 

strategy of clades and was obtained from 190 individuals of 118 species sampled in our field 
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plot inventories (see plot-based data description below). LMA is the ratio between the dry leaf 

mass and fresh (i.e, completely expanded) leaf area. Here, we adapted the original method to 

estimate LMA, using small pieces of the lamina of dried material from herbarium collections. 

For each individual, a maximum of 4 pieces (3 cm2 in average) was cut in different parts of 

the lamina (at middle and close to the base and apex), excluding the main vein. We choose 

carefully for leaf pieces where the tissue had no or very little shrinkage and avoided young 

leaves. LMA for each species was calculated as the average of values obtained in maximum 

of six individuals and minimum of one individual, when the species was rare and collected 

only once.  

Plot-based data - Presence-absence data of species in Calathea clade were obtained in 451 

plots of 500 m2 established in non-inundated forest (Fig S3). Data came from two plot design: 

(1) 409 plots with 250m x 2m set up on the topographical isoclines following the RAPELD 

protocol (50); (2) 39 plots with 100m x 5 m sub-sampled from 500m x 5m transects oriented 

to include representative local topographic variation (18). Altitudinal values for each 5m 

points within the 500m long transect were extracted from digital elevation model to guide the 

selection of the continuous 5m sub-units with low internal topographical variation as possible 

in order to make the two sample design comparable. Sample units of RAPELD design are 

aggregated in spatial modules with minimum geographic distance between plots of 1 km. The 

details about field sampling can be found in Figueiredo et al. (51) and Tuomisto et al. 2016 

(18). 

Environmental data – To represent soil fertility, topographic and climatic gradients we used 

the concentration of exchangeable base cations (Ca, Mg e K) defined as sum of base, the 

vertical distance from drainage (VDD) and the dry season length, respectively. The sum of 

base is a good proxy of soil fertility in Amazonia since it is well correlated with Phosphorus 

concentration (52) and is strongly related to diversity patterns across the basin (17, 18, 51). 

The protocol of soil sample and the laboratory analysis are described in previous published 

studies (15, 18, 51, 53) 

The topographical descriptor was based on the vertical distance from drainage (VDD), 

extracted from SRTM digital elevation models (SRTM-DEM). VDD have been successfully 

used to map local hydrological conditions and to explain floristic patterns in Amazonia (15, 

54, 55). Plots with low VDD values indicate that individuals are closer to bottomlands and 

consequently closer to water table and with better access to water than individuals in plots 
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with high VDD values, located often in hill tops and plateaus, distant from water table. VDD 

were obtained from three similar algorithms. For 198 plots, located in the interfluve Purus-

Madeira and in the Pará state, VDD was derived from the Height Above Nearest Drainage 

(HAND) algorithm using the 90m SRTM-DEM (15, 54, 56). For 193 plots located at north of 

Amazonas river in central Amazonia, VDD were obtained from the Elevation Over Channel 

Network algorithm using the hydrological tools of the SEXTANTE spatial data analysis 

library (http://www.sextante- gis.com/), coupled with the open-source gvSIG v 1.10 software 

(http://www.gvsig.org/web/) (see details in Figueiredo et al. 2014). For the remained plots, 

VDD was obtained from 30m SRTM-DEM using the Vertical Distance do Channel Network 

(57) algorithm, implemented in the QGis software trough SAGA-toolbox.  

Climatic variable was estimated by the TRMM satellite (58) available at 

http://disc.sci.gsfc.nasa.gov. We converted monthly data from 1998 to 2004 of the TRMM 

product 3B43 V6 at a 0.25° resolution (about 28 km at the equator) into the dry season length 

variable, defined here as the maximum number of consecutive months with less than 100 mm 

of precipitation along that period. For each plot the dry season length value were extract after 

rescale the data to a 0.05° (~ 5km) spatial resolution. We used the raster package in R to 

manipulate and process TRMM variable (R development core team 2015; Hijmans et al. 

2017). 

Intrinsic clade diversification rate and relation to trait functional, clade age and species 

richness – The diversifications rates for each of the seven Amazonian clades were estimated 

using maximum likelihood inference, implemented in R RPANDA package (59). For each 

phylogeny, we fitted six different models. Three pure birth models (no extinction) with and 

different parameterization for speciation rates for each model: time-constancy, time-linear 

variation and time-exponential variation. And three bird-death model allowing extinction with 

constant, combined with same parameterization of speciation rates used before. 

Diversification rates were defined here as the maximum rate observed thought time. For 

instance, in the case of models with ascending diversification rates, rates would be defined at 

present and for descending-rate models, at clade origin (initial diversification rates). For 

model with constant rate, no time adjustment is needed. Essentially, model parameters are 

estimated given three information a priori: a time-calibrated phylogeny tree, the total time 

which process happened (crow age or stem age) and the number of extant species. A fourth 

optional parameter is the fraction of extant species represent in the phylogeny. This is 
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essential for us since we do not have a complete phylogeny and the sampling effort is 

unbalanced across clades. We extracted accepted taxa names by genus in the World Checklist 

of Selected Plant families, accessed at http://apps.kew.org/wcsp/home.do. Based on ancillary 

literature and our taxonomic knowledge about the group we removed no valid taxa and add 

other not included in the list. Taxa were also classified based their occurrence in the four 

major regions in the Neotropics: Amazonia, Atlantic forest, Cerrado biome and Central 

America). We assumed that taxa not identified at species level included in our phylogeny are 

one of those in the checklist, and thus the sampling fraction of each clade was defined as the 

ratio of tips in the phylogeny and the total accepted Amazonian taxa belonging that clade. 

Diversification rates were estimated using both, crown ages and stem ages. The best model 

was assessed comparing Akaike information criteria with corrected sample size (AICc).  

In order to test if clade diversification were related to clade functional strategy we applied a 

simple linear model using the mean LMA taken for clades as independent variable. Since for 

all clades the time-constant rate model was set the best model, no temporal adjustment was 

need to set a single rate value for each clade. We estimated the mean LMA values for each 

clade fitting a three parameter t family distribution (mean, variance and skewness) over the 

distribution of species trait values using the gamlss R-package (60) in order to reduce the 

effect of outlier in the mean estimates (Fig. S4). To evaluate whether functional strategy, 

diversification rates and clade age predict clade species richness we performed multiple linear 

model. Two models were fitted separately, one using LMA and clade age as independent 

variables, and other using diversification rates and clade age. This was done since we presume 

that diversification rates and LMA were correlated and because we do not have statistical 

degree of freedoms enough to fit complexes model (e.g. with three variable). The relative 

importance of each variable was obtained estimating the reduction in the adjusted R2
 after 

removing each one variable from the model. Linear models were run using the stat R package. 

Clade habitat association - We estimated clade habitat affinities fitting a Generalized Linear 

Model with a binomial family distribution (logistic regression). The presence-absence data for 

each clade obtained in the 448 plots were regressed against logarithm of sum of base, 

logarithm of vertical distance from drainage and dry season length. Linear and second order 

polynomial response curves were allowed and best fitted models were chosen using AIC 

values. All species recorded in the plot inventories were included, even they were not 

represented in the phylogeny. 
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Diversification dynamics and relation to paleo events– To evaluate changes in the 

trajectory of diversification dynamics between clades with different functional strategies and 

their association with past geological and climatic events we used a compound Poisson 

process on Mass-Extinction Times (CoMET) algorithm implemented in TESS R-package 

(61). The advantage of CoMET is that it does not assumes a priori a unique and independent 

branching-process that generated the branching-pattern of our tree, e.g. a pure birth or birth-

death process with exponential varying rates. Instead, it estimates rates (speciation, extinction 

and mass extinction) in any point of time using compound Poisson process (CPP) model and 

reversible-jump MCMC to average over a vast set of possible birth-death process (61). We 

merged our seven clade into two groups, one consisting of the three clades with low LMA 

values – acquisitive clades (Breviscapus, Comosae and Microcephalum) and the conservative 

clades with the four remained lineages, and performed the CoMET analysis separately for 

each of them. We did not consider the mass extinction events in our model and thus we 

disabled this option before running the algorithm. The prior for speciation and extinction rates 

were defined using the automatic empirical hyperprior procedure already implemented in 

CoMET. To ensure sufficient converge in reversible-jump MCMC we used the auto-stopping 

rules setting high number of maximum iteration (108) and the minimum ESS equal to 500. 

Thus, the the MCMC stops after this threshold has been reached. The main geological events 

related to Andean uplift (5) and paleo climate reconstruction (37) were plotted in conjunct 

with diversification dynamics profiles to identify potential association between past events 

and shifts in the diversification rates. 
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SUPPORTING INFORMATION 

 

Fig. S1: Bayesian phylogenetic tree for 151 taxa in Marantaceae family based on matK 

sequences. The five major clades are according to Prince & Kress (44) and four clades in grey 

are those with centre of diversity outside Amazonia. Grey bars denote the 95% confidence 

interval of divergence times. 
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Fig. S2: Bayesian phylogenetic tree for155 taxa in Calathea clade baed on ITS sequences. 

Clades in grey are those with centre of diversity outside lowlands Amazonian rain forest. 

Grey bars denote the 95% confidence interval of divergence times. 
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Fig S3. The study area and location of 451 plots where ginger community and environmental 

data were obtained. Background map represents the dry season length. Legend denotes the 

maximum number of consecutive months with less than 100 mm of precipitation along the 

1998 - 2004 period. Black triangles represent the clusters of RAPELD plots (250 m x 2m) and 

blue triangles represent plots with size of 100 m x 5m located along the Juruá River. Clusters 

may have 5 to 57 plots spaced by at least 1 km. 
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Fig S4. Density distribution of LMA values for the seven Amazoninan clades in Marantaceae. 

Red lines donotes the fitted distribution of the three parameter t family distribution adjusted to 

the mean LMA values for each species whint that clade.  
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SINTESE 
Demonstramos nesta tese que os filtros biogeoquímicos edáficos representam o 

principal fator determinante de macro padrões espaciais e evolutivos de plantas nas florestas 

de terras baixas da Amazônia, tendo o clima um papel coadjuvante nesta história. 

No primeiro capítulo mostramos que os limites de distribuição das espécies são 

controlados tanto por variáveis edáficas quanto por variáveis climáticas. Porém os modelos 

baseados em variáveis de solo tiveram um desempenho melhor que os modelos puramente 

climáticos indicando que os filtros edáficos são os principais controladores da distribuição de 

espécies de plantas na Amazônia. Segundo nossas projeções espaciais, barreiras edáficas estão 

limitando a ocorrência de espécies na região central, noroeste e nordeste da Amazônia 

enquanto que barreiras climáticas estão limitando ocorrências na região sudoeste, leste e 

norte. A região sul da Amazônia apresentou tanto clima como solos inadequados para 

ocorrência de certas espécies. Mostramos, portanto, que as distribuições das espécies de 

plantas na Amazônia não estão em perfeito equilíbrio com condições climáticas e que é 

essencial a inclusão de variáveis edáficas em modelos de projeção de impactos climáticos 

sobre a diversidade de plantas na Amazônia. A baixa resolução espacial dos dados de solo 

disponíveis para Amazônia limita o uso destes dados para aplicações de alta resolução, como 

por exemplo, definição de potenciais rotas de migração num cenário de mudanças climáticas e 

mapeamento de potenciais áreas de refúgios. A produção de mapas de solo mais acurados 

para Amazônia é essencial e urgente.  

No segundo capítulo mostramos que as comunidades de plantas herbácea de sub-

bosque apresentaram convergência funcional ao longo de gradientes edáficos e hidro 

topográficos. Espécies com traços funcionais característicos de estratégias de rápido 

crescimento predominaram nos solos ricos em nutrientes e nas áreas próximas dos cursos 

d’água, mostrando a importância seletiva dos filtros geoquímicos e hidrológicos. No entanto, 

as relações mais fortes foram encontradas em nutrientes do solo e massa foliar específica. As 

áreas próximas aos igarapés também apresentaram maior divergência funcional que as áreas 

altas, tanto dentro como entre comunidades, principalmente para traços funcionais ligados a 

dispersão e captação de luz. Este resultado sugere a influência de processos estocásticos, 

como a dinâmica de perturbação e clareiras, estruturando uma parte da diversidade funcional 

de plantas herbáceas em florestas tropicais. Não constatamos nenhum efeito seletivo do 

gradiente de seca nas respostas funcionais entre as comunidades. Ao contrário do que 
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esperávamos encontramos divergência funcional significativa nas áreas secas e não nas áreas 

úmidas. Essa divergência funcional pode estar sendo gerada por desequilíbrios entre taxas de 

colonização e extinção local causados pela heterogeneidade do habitats e oscilações 

climáticas decorridas no Pleistoceno. Estes resultados mostram que ainda existem muitas 

incertezas sobre como as florestas Amazônicas responderão funcionalmente às alterações no 

regime de chuvas futuras, mas que a compreensão do seu funcionamento passa 

necessariamente pelo controle de filtros biogeoquímicos edáficos e filtros hidrológicos 

ligados às propriedades do terreno.   

No terceiro e último capítulo demonstramos a existência de uma clara relação entre 

características funcionais das linhagens, taxas de diversificação, riqueza de espécies e 

transformações geoquímicas da paisagem em decorrência do soerguimento dos Andes. 

Primeiro, demonstramos que existe uma relação linear positiva fortíssima entre taxa de 

diversificação e traços funcionais. Linhagens com traços indicadores de estratégias de rápido 

crescimento e ciclo de vida curto (estratégias aquisitivas) tiveram taxas de diversificação 

superiores que os clados com estratégias conservativas, sugerindo um efeito de tempo de 

geração dos organismos sobre taxas de evolução molecular e taxas de especiação na 

Amazônia. Os clados com estratégia aquisitiva foram no geral os clados que surgiram em 

épocas mais recentes e mesmo assim tenderam a apresentar maior riqueza de espécies, 

rejeitando a hipótese que o tempo de origem determina o número de espécies que se 

acumulam nas linhagens. Os clados com estratégia aquisitiva também estiveram mais 

associados com ambientes mais ricos em nutrientes e áreas próximas aos cursos de água, 

sugerindo que o surgimento destas linhagens esteve associado com o aparecimento de 

ambientes mais produtivos na Amazônia. De fato, os dados moleculares mostram que essas 

linhagens surgiram no fim do Oligoceno e início do Mioceno (~20 Ma), época que marca o 

início da primeira fase de transformações intensas na paisagem Amazônia, onde sistemas 

menos produtivos deram lugar a sistemas mais produtivos na parte oeste da bacia. As análises 

de dinâmica mostraram, no entanto que apenas há 10 Ma, houve uma aceleração nas taxas de 

diversificação dos clados com estratégia aquisitiva. Essa época marca a segunda fase de 

processos intensos de soerguimento dos Andes, onde grandes complexos de áreas alagáveis 

deram lugares a paisagens terrestres no Oeste, sugerindo que a disponibilidade de hábitats foi 

fundamental para disparar as taxas de especiação das linhagens com estratégias aquisitivas. 

Detectamos também uma queda brusca nas taxas de especiação dos clados aquisitivos ao 

longo da transição do Plio-Pleistoceno, época que marca a transição de climas globais mais 
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quentes e úmidos para climas mais frios e secos. Estes resultados mostram que 

transformações bioquímicas da passagem e oscilação climáticas tiveram um efeito contrário 

na diversidade de Marantaceae na Amazônia: o primeiro, acelerando as taxas de especiação, e 

o segundo freiando-as. Demonstramos, portanto, que o soerguimento dos Andes e suas 

decorrentes transformações geoquímicas e físicas impulsionaram a diversificação e 

contribuíram com a formação da diversidade Amazônica.  

Os resultados obtidos nos três capítulos desta tese mostraram que os filtros 

geoquímicos são o principal estruturador de padrões macroespaciais, funcionais e evolutivos 

de plantas na Amazônia. Embora as relações entre padrões eco evolutivos e condições 

climáticas não tenham sido tão previsíveis, não implica, no entanto, que a floresta Amazônia 

está imune aos efeitos das mudanças climáticas. Os nossos resultados sugerem que o 

entendimento dos efeitos das mudanças ambientais sobre a Amazônia passa por reconhecer e 

incluir os filtros biogeoquímicos em quaisquer modelos ecológicos e evolutivos que 

objetivem compreender os mecanismos geradores e mantenedores de sua biodiversidade.  
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