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Sinopse: 

Estudei a estrutura social e grau de parentesco de uma população de 

ariranhas, Pteronura brasiliensis, Pantanal Sul, Brasil. Obtive a maior parte 

das amostras de tecido através de dardos de biopsia, desenvolvi marcadores 

de microssatélites específicos para a espécie e estabeleci os graus de 

parentesco em 52 indivíduos de 13 grupos. 

 

Palavras- chave: dardos de biópsia, microssatélite, parentesco, 

estrutura social. 
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Resumo 

Análises moleculares têm revolucionado o conhecimento sobre os sistemas sociais das 

espécies. Ariranhas são animais sociais que apresentam uma forte cooperação entre os 

indivíduos dos grupos e observações de comportamento sugerem que são compostos por um 

par dominante reprodutivo e seus filhotes de anos subsequentes, que não reproduzem dentro 

do grupo de origem. Este trabalho teve como objetivos (1) estabelecer um método semi-

invasivo de retirada de amostra genética (tecido) para ariranhas em vida livre; (2) desenvolver 

marcadores de microssatélites específicos para Pteronura brasiliensis; e (3) acessar o grau de 

parentesco dentro e entre grupos de ariranhas, em uma população do Pantanal Sul, Brasil. 

Dardos de biópsia foram capazes de coletar amostras de tecido de alta qualidade de DNA, de 

um grande número de ariranhas (n=41), há um custo menor e de forma menos invasiva do que 

a captura, além de possibilitar a escolha do indivíduo a ser amostrado. Oportunisticamente, 

amostras genéticas de outras fontes, que não dardos de biópsia, foram coletadas. Doze loci 

polimórficos de microssatélites específicos para P. brasiliensis foram isolados. Todos os 50 

indivíduos de ariranhas genotipados pertenciam a uma única população, indicando substancial 

fluxo gênico na escala examinada. A variabilidade nuclear encontrada para a população do 

Pantanal estava na faixa observada para ariranhas em escalas geográficas maiores e para 

outras espécies de lontras. Os grupos de ariranhas foram geralmente compostos por um casal 

dominante não relacionado e seus parentes próximos. Entretanto, uma alta diversidade de 

graus de parentesco dentro dos grupos foi encontrada, contradizendo o conhecimento corrente 

de que grupos de ariranhas são exclusivamente formados por um casal dominante reprodutor e 

seus filhotes. Os mecanismos evolutivos que levam à alta variação de parentesco dentro dos 

grupos de ariranhas ainda não estão claros, mas alta taxa de migração de indivíduos entre os 

grupos, cópula extra-par e reprodução de subordinados podem desempenhar um papel 

importante, como acontece em outras espécies aparentemente monogâmicas.    
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Abstract 

Relatedness and social relation of giant otters (Pteronura brasiliensis) 

 

Molecular analysis has revolutionized knowledge of the social systems of species.  

Giant otters are social animals who demonstrate strong cooperation between individuals of the 

same group, and studies based on behavioral observation suggeste that the group is composed 

of a dominant reproductive pair and their offspring from subsequent years, which do not 

reproduce.  This study had as objectives (1) to establish a semi-invasive method of retrieving 

genetic samples (tissue) from wild giant otters; (2) to develop specific microsatellite markers 

from Pteronura brasiliensis; (3) to access the degree of relatedness within and between 

groups of giant otters in the southern Pantanal, Brazil.  Biopsy darts allowed us to collect 

tissue samples with high DNA quality from a large number of giant otters (n=41). This 

method cost less and was less invasive than capture, and allowed for the choice of individual 

to be sampled.  Twelve polymorphic loci of microsatellites specific to P. brasiliensis with 

high resolution for paternal analysis were isolated.  DNA samples were opportunistically 

collected by means other than biopsy darts, for a total of 50 genotyped giant otters.  All 

examined animals belonged to a unique population, indicating substantial gene flow on the 

scale examined.  The nuclear variability found in the population of the Pantanal was within 

the observed range for giant otters in larger geographic scales as well as for other otter 

species.  The giant otter groups were usually composed of an unrelated dominant pair and 

their close relatives. However, the degree of relatedness varied within the groups, 

contradicting the current knowledge that giant otter groups are formed exclusively by a 

dominant pair and their offspring.  The ecological mechanisms that lead to high relatedness 

variance within giant otters groups it is unclear, but we believe that high migration rate of 

individuals across groups, extra-pair copulation and subordinate reproduction can play 

important roles, as they do in other apparently monogamous species.  
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Introdução Geral 

As metodologias de estudo com animais silvestres têm se tornado cada vez mais 

dinâmicas e eficientes, evoluindo e aperfeiçoando-se junto às mudanças tecnológicas globais. 

Como consequência, questões antes nunca abordadas sobre a ecologia das espécies estão 

sendo respondidas, ampliando o conhecimento da vida silvestre e gerando bases mais seguras 

para o manejo destes recursos (Hughes, 1998; Worthington Wilmer et al., 1999; Ross, 2001; 

DeYoung e Honeycutt, 2005; De Woody, 2005).  

Talvez o avanço mais recente nas técnicas de estudo dos animais silvestres seja o uso 

das ferramentas moleculares (DeYoung e Honeycutt, 2005). Estas técnicas têm revolucionado 

o conhecimento acerca da estrutura populacional das espécies (i.e. filogeografia) e de como 

estas espécies se organizam socialmente (i.e. relações de parentesco, paternidade; Coltman et 

al., 2003; Haynie et al., 2003; Cant, 2000), vislumbrando informações além das aparências.   

Pesquisadores têm utilizado diferentes métodos de amostragem genética em 

mamíferos silvestres: a) não-invasivos através de fezes, pêlos e peles deixados no ambiente 

(e.g. Amos et al., 1992; Taberlet et al., 1997; Waits e Paetkau, 2005; Mowry et al., 2011), b) 

pouco-invasivos, através de dardos de biópsia, principalmente em cetáceos e grandes 

mamíferos terrestres africanos (e.g. Gemmel e Majluf, 1997; Spong et al., 2002; Muwanika et 

al., 2003), e c) invasivos, com a captura do animal, normalmente associada a estudos de 

telemetria (e.g. Girman et al., 1997; Griffin et al., 2003; Eizirik et al., 2008).  

Ariranhas (Pteronura brasiliensis) são grandes mustelídeos semi-aquáticos (sub-

família Lutrinae) e um dos poucos carnívoros sociais da América do Sul. Indivíduos podem 

ser reconhecidos através de padrões de pelagem individuais no pescoço e garganta (Duplaix, 

1980).  

A espécie é classificada como “Ameaçada” pela União Internacional para a 

Conservação da Natureza (IUCN, 2011) como consequência do histórico de caça (Carter e 

Rosas, 1997) e contínua destruição de habitat devido ao aumento da colonização das florestas 

tropicais e suas atividades econômicas, como mineração de ouro, hidrelétricas, desmatamento 

e pesca predatória (Schenck, 1999; IUCN, 2011; OSG IUCN, 2010). No Brasil, populações 

viáveis de ariranhas estão limitadas às bacias hidrográficas da Amazônia e Pantanal (Carter e 

Rosas, 1997). No Pantanal, grupos estão amplamente distribuídos ao longo dos rios e corixos 

da planície (Schweizer, 1992; Tomas et al., 2000; Ribas, 2004), e recentemente estão 
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ocupando ambientes marginais sub-ótimos, provavelmente por um aumento nas densidades 

populacionais nesta região (ver Apêndice).   

Grupos de ariranhas geralmente variam de três a nove indivíduos e observações de 

comportamento sugerem que os grupos são compostos por um par dominante reprodutivo e 

seus filhotes de anos subsequentes, que não reproduzem dentro do grupo de origem (Duplaix, 

1980; Schweizer, 1992; Kruuk, 2006). Indivíduos solitários são chamados de transeuntes e 

acredita-se que são jovens dispersores recentemente saídos do grupo familiar ou adultos que 

perderam o seu par (Duplaix, 1980; Schweizer, 1992).  

Membros do grupo exibem comportamento altamente cooperativo, incluindo 

reprodução cooperativa (Duplaix, 1980; Schweizer, 1992; Rosas et al., 2009) e defesa de 

território, através de marcação e vocalização, assim como contra predadores e intrusos co-

específicos (Duplaix, 1980; Schweizer, 1992; Ribas e Mourão, 2004). Por outro lado, grupos 

vizinhos claramente evitam-se (Duplaix, 1980; Kruuk, 2006), ocorrendo interações intra-

agonísticas, incluindo canibalismo e brigas territoriais (Mourão e Carvalho, 2001; Ribas e 

Mourão, 2004).  

A estrutura genética e a estrutura social estão indissociavelmente ligadas (DeWoody, 

2005). Sociabilidade e comportamento cooperativo devem apenas evoluir e permanecer 

estáveis se todos os indivíduos envolvidos obtiverem benefícios adaptativos maiores do que o 

custo de viver em grupo (Hamilton, 1964). A seleção de parentesco favorece interações 

cooperativas entre indivíduos relacionados, aumentando suas aptidões indiretas. O parentesco 

entre os membros dos grupos sociais pode dar forma à evolução dos sistemas sociais 

(Dugdale et al., 2008). 

Ariranhas defecam e urinam em latrinas comunais e as fezes de diferentes membros do 

grupo são misturadas durante o comportamento de marcação (Duplaix, 1980), impedindo a 

coletada de amostras de indivíduos específicos. Entretanto, algumas vezes as ariranhas 

depositam mucos isolados nas latrinas, o que permite a individualização da amostra (Garcia et 

al., 2007).  

Para estudar estrutura social em ariranhas, é preciso uma amostragem genética do 

maior número de indivíduos por grupo possível, de forma segura e eficiente. Assim, embora 

algumas vezes têm se coletado amostras de sangue de ariranhas capturadas para estudo de 

telemetria (Silveira et al., 2011), uma estratégia alternativa à captura oportunista é requerida. 

Dardos de biópsia são bons candidatos para uma amostragem seletiva de tecido fresco e não 

contaminado (Karesh et al., 1987; Gemmel e Majluf, 1997).   
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Em geral, microssatélites são os marcadores moleculares mais informativos para 

acessar estrutura populacional, paternidade e parentesco e vêm sendo amplamente utilizados 

no estudo da ecologia da vida animal (De Woody, 2005; Randall et al., 2007; Dugdale et al., 

2008). Microssatélites são sequências de nucleotídeos de DNA contendo de 1 a 6 repetições 

em tandem e estão amplamente distribuídos na maior parte do genoma dos eucariotos (Queller 

et al., 1993). Porque eles são encontrados milhares de vezes no genoma dos vertebrados e não 

são expressos, os microssatélites são considerados marcadores neutros, isto é, não estão sob a 

influência da seleção natural (De Woody, 2005). A diversidade genética é geralmente alta nos 

loci de microssatélites animais, sendo considerados muito mais polimórficos que outros 

marcadores moleculares (Moueix, 2006).  

Ainda que marcadores de microssatélites desenvolvidos para lontra Européia e Norte 

Americana (Lutra lutra e Lontra canadensis, respectivamente) tenham sido testados em 

ariranhas (Pickles et al., 2009), o uso de marcadores heterólogos pode subestimar a 

heterozigosidade  (Garner et al., 2005). Assim, é desejável o desenvolvimento de marcadores 

de microssatélites específicos para Pteronura brasiliensis, possibilitando o acesso a 

informações genéticas acuradas que possam lançar luz sobre o seu sistema social. 

Este trabalho teve como objetivos gerais: (1) estabelecer um método semi-invasivo de 

retirada de amostra genética (tecido) para ariranhas em vida livre; (2) desenvolver marcadores 

de microssatélites específicos para Pteronura brasiliensis; e (3) acessar o grau de parentesco 

dentro e entre grupos de ariranhas, em uma população do Pantanal Sul, Brasil. 

Sendo assim, a tese está organizada em três capítulos, cobrindo os objetivos descritos 

acima: Capítulo I- “Costs and benefits of semi-invasive genetic sampling of social aquatic 

carnivores (Pteronura brasiliensis)”, Capítulo II- “Polymorphic microsatellite loci from the 

endangered Giant Otter (Pteronura brasiliensis)” e Capítulo III- “More than meets the eye: 

kinship and social organization in giant otters (Pteronura brasiliensis)”.   
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Objetivos 

 

(1) estabelecer um método semi-invasivo de retirada de amostra genética (tecido) para 

ariranhas em vida livre;  

(2) desenvolver marcadores de microssatélites específicos para Pteronura brasiliensis;  

(3) acessar o grau de parentesco dentro e entre grupos de ariranhas, em uma população 

do Pantanal Sul, Brasil. 
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Abstract  

Molecular tools have enabled wildlife researchers to access accurate information on 

genetic structure of wild populations and different genetic sampling strategies have been 

adopted. Our objective was to evaluate a semi-invasive genetic sampling method for free-

ranging giant otters and evaluate the costs and benefits of acquisition of different biological 

samples, suitable for molecular genetic approaches. We used three CO2 biopsy dart projectors 

and attached a system of line and spinning reel to the end of the projector barrel to ensure 

biopsy dart recovery. We stalked the otters in areas with a clear view to a latrine or den 

entrance. Using biopsy darts in 105 days of fieldwork we obtained 45 skin samples from 41 

adults in 12 groups. No behavioral changes were noted in the animals that had been darted in 

the following days. We opportunistically captured three cubs and removed a sample from 

each, and collected blood samples from two adults captured to tag with intraperitonial 

implanted transmitters. We also took a tissue sample from a dead cub and collected 23 mucus 

(anal secretion) deposits from latrines. Mean field costs were US$524 for dart samples and 

US$3200 for adult-capture samples. All tissue and blood samples amplified all 14 loci, but 

none of the 23 mucus samples amplified all loci and 18 did not amplify any locus. The use of 

biopsy darts was the most effective method to retrieve tissue samples with high-quality DNA, 

from a large number of giant otters and was less expensive and invasive than capture. 

Moreover, this methodology allowed direct sampling of known individuals, which is essential 

for studies of social structure.  

 

KEY WORDS:  biopsy dart, giant otter, parentage, Pantanal, relatedness, social 

system. 
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Introduction 

Wildlife research has benefited from many technical advances. Molecular tools have 

enabled wildlife researchers to access accurate information on parentage, relatedness, mating 

system and dispersal of individuals, revolutionizing ideas about social structure, and 

providing critical information for the conservation and management of species (Hughes 1998, 

Worthington Wilmer et al. 1999, Ross 2001, DeYoung and Honeycutt 2005, De Woody 2005, 

Dugdale et al. 2007, Randall et al. 2007). 

Non-invasive genetic sampling strategies that have been adopted in wild ranging 

mammals include DNA extraction from feces, fur and sloughed skin (e.g., Amos et al. 1992, 

Taberlet et al. 1997, Waits and Paetkau 2005, Mowry et al. 2011). Semi-invasive biopsy 

darting has been increasingly applied to cetaceans and free-ranging terrestrial mammals (e.g., 

Gemmel and Majluf 1997, Spong et al. 2002, Muwanika et al. 2003). The most invasive 

sampling method involves capture, usually associated with telemetry studies (e.g., Girman et 

al. 1997, Griffin et al. 2003, Eizirik et al. 2008).  

Giant otters (Pteronura brasiliensis) are semi-aquatic mustelids (sub-family Lutrinae) 

that can reach a total length of 1.8meters and weigh 28-32kilos (Duplaix 1980).  Endemic to 

South America, the species is classified as “Endangered" by the IUCN (2011) due to 

population decline in the historical range as a consequence of over-harvesting for the 

international pelt trade and habitat destruction (OSG IUCN 2010).  Giant otters are social 

carnivores. Observational data suggest that the groups are formed by a dominant reproductive 

pair, and their offspring of previous years, which do not breed inside the original group 

(Duplaix 1980, Carter and Rosas 1997). Individuals frequently show cooperative behavior 

between members of the group (Duplaix 1980, Schweizer 1992, Davenport 2010) and marked 

agonistic interactions with neighboring groups (Mourão and Carvalho 2001, Ribas and 

Mourão 2004).  

Giant otters that are members of groups defecate and urinate in communal latrines, and 

feces are mixed due to territorial marking behavior (Duplaix 1980), preventing collection of 

feces of known individuals. However, the individuals can also deposit isolated anal jelly 

secretions (mucus), containing intestine epithelial cells, which allow for individual sampling 

(Garcia et al. 2007). Most sources of samples for molecular genetic studies have been blood 

and tissue samples from captive or dead animals, mucus from latrines and museum samples 

(Franco-de-Sá et al. 2007, Garcia et al. 2007, Pickles et al. 2009, Pickles et al. 2011), though 
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samples have been collected opportunistically from giant otters captured for radio-telemetry 

studies (Silveira et al. 2011).  Alternative strategies to opportunistic capture are required to 

sample the majority of animals in a group safely and effectively, and biopsy darting is a 

promising candidate for selective sampling of fresh and uncontaminated tissue (Karesh et al. 

1987, Gemmel and Majluf 1997).   

Here we present information on an adaptation of a semi-invasive method of genetic 

sampling for giant otters and evaluate the cost and benefits of different techniques for the 

acquisition of biological samples suitable for molecular-genetic studies of wild giant otters. 

Material and Methods 

Study Population  

We studied giant otters in the Miranda and Vermelho rivers (UTM 21k 501897 

7831480), in southern Brazilian Pantanal, and in water bodies around the Estrada-Parque 

Pantanal (EPP) highway (UTM 21k 0451800 7873700 to 21k 0496300 7831500), a 120km 

dirt road constructed 1-2m above the surrounding plains.  The Miranda and Vermelho Rivers 

are considered to be favorable habitats long inhabited by giant otters, whereas the water 

bodies around the EPP road are considered sub-optimal habitats for this species (Ribas et al. 

2012). 

We conducted one field campaign in December 2008 and twelve campaigns in the dry 

seasons (June-December) of 2009 and 2010 to collect genetic samples from wild giant otters 

(license no. 12794-4/2012, granted by the Brazilian Federal Wildlife Agency - ICMBio), with 

the main goal of determining genetic relatedness within and among groups from this 

population. We surveyed the rivers for the giant otter groups, using a small boat with a 

15horsepower outboard engine, and mapped their territories by locating tracks, active dens, 

and latrines on the river banks. Along the EPP highway, we sought animals and their tracks 

around the water bodies close to the road. Animals were filmed with a digital video recorder 

to identified individual otters through their throat and chest patterns before sampling.  

We classified individuals as adults or cubs of the year, identified the alpha male and 

female in each group based on morphological characteristics, such as testicles and the larger 

width of the neck for males, and the presence of lactation in females and behaviors, such as 

greater activity in marking and defending territory by the dominants.    
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Semi-invasive genetic sampling 

We used three types of CO2 biopsy-dart projectors: Dist-inject model 35 dart gun 

(Zurich, Switzerland), Pneu-Dart 176b rifle and Pneu-Dart X-Caliber gauged rifle (Pneu-Dart, 

Inc. Williamsport, PA 17703 USA). To facilitate aiming, we attached a Professional 25 mW 

Green Military Astronomy Grade Laser Pointer to the 176b rifle. As the X-Caliber came 

equipped with a 3x9 adjustable scope, no laser was required to improve aim.  

We attached a system of line and spinning reel (Apollo Spincast Reel) to the end of the 

projector barrel to ensure biopsy-dart recovery. The Power Pro-Red Multifilament (100% 

Spectra Fiber) 10 lb was more effective than the nylon lines, which, when stretched, wrapped 

around sticks and branches underwater. However, nylon lines seemed to have less friction 

leaving the reel.  

Most of the darts used were Pneu-dart
TM

 2cc biopsy darts w/.400 cutter/.670 barb 

(Pneu-Dart, Inc. Williamsport, PA 17703 USA). A hole was drilled through the side of the 

rear of the biopsy-dart shaft to secure the line. However, as the line clearly affected flight 

trajectory and accuracy, we also tested floating darts (Pneu-Dart
TM

 5cc floating biopsy darts 

w/.400 cuter/.670barb). Besides being larger and heavier, the darts without the line were 

easily lost in the undergrowth or swept away by the current. The floating dart was apparently 

regarded as potential prey by grey-necked wood-rails (Aramides cajanea), kingfishers (Ceryle 

torquata) and caimans (Caiman yacare), as well as the giant otters, obliging us to leave the 

blind to recover them after every shot.  

Only animals with their body totally above the water line were considered for 

sampling; only body parts posterior to the mid-shoulders were targeted, sampling was not 

attempted in the presence of cubs, and lactating females were only sampled when the rump 

could be targeted. Dart heads were sterilized with NaOH 1M and rinsed with distilled water 

before use, to avoid sample contamination and reduce the risk of infection. 

Approximation was one of the most difficult aspects of the method, and our strategy 

changed through time. Before biopsy samples could be taken, each otter had to be identified, 

and the choice of individual to be sampled depended on its position and if it had been sampled 

before. Initially, we stalked otters in rivers from a boat in areas of heaviest use and anchored 

about 10 m from dens, or waited on the other side of the river. We approached animals by 

motor or rowing as soon as they appeared to be intent on climbing onto dry land, and on one 

occasion, two individuals were chased by boat to induce them to leave the water. 



7 

 

 

 

Subsequently, we changed our strategy. An observer and a camouflaged sniper hid on 

the bank, with a clear view to a latrine or den entrance, 5-10 m away. For such distances, the 

dart-gun pressure was adjusted to between 3.5 and 5.5 bar. We tried to sample the largest 

possible number from each social group, giving priority to the dominant pair and their 

putative sub-adult offspring. 

Invasive genetic sampling 

Capture of cubs for tissue samples 

We captured cubs found at den entrances opportunistically by hand, and removed a 

layer of skin, 2-5mm in diameter from the tip of their tail with a sterile scalpel. We treated the 

small wound with “propolis” before returning the cub to its den. Latex gloves were used 

during the whole procedure to avoid contamination of the sample and to avoid leaving our 

scent on the animal. We waited in the vicinity until the adults returned to the den and we were 

sure that the cubs were safe.  

Capture of adults  

Concomitantly with our genetic survey, we conducted three capture campaigns in the 

area to install radio transmitters in adults (C. Leuchtenberger 'unpublished data'). These 

captures followed the method described in Silveira et al. (2011), and we collected whole-

blood samples from two of animals, as one of them had already been dart-sampled. 

Noninvasive genetic sampling 

Every time we sighted solitary individuals excreting mucus, we collected it with a 

syringe without needle, as previously described by Garcia et al. (2007). Also, we often 

checked active latrines for fresh and individualized mucus.  

DNA storage, extraction and analyses  

Tissue and mucus samples were stored in 100% ethanol. Blood was stored in 1.5-mL 

microcentrifuge tubes. All samples were kept at -20
o
C until DNA extraction. Hair samples 

were placed in paper envelopes and preserved dry, until the DNA extraction. DNA from 

tissue was first extracted using a phenol–chloroform protocol (Sambrook et al. 1989). 

Subsequently, DNA from both tissue and blood samples was isolated using the DNeasy Blood 
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& Tissue Kit (Qiagen®). DNA from mucus was recovered using the QIAamp DNA Stool 

Mini Kit (Qiagen®). We used DNeasy Blood & Tissue Kit (Qiagen®) and a CTAB protocol 

(Gusmão and Solé-Cava 2002) to extract DNA from hair samples. Samples with high 

concentration of DNA were normalized to final concentration of 30-50 ng·µl
-1

.  

Twelve microsatellite loci, specifically developed from giant otters, were amplified 

and genotypes were determined following the protocol described by Ribas et al. (2011) and 

molecular sexing was used to determine the gender of the individuals that were not sexed in 

the field.  The SRY gene was PCR amplified using the primers developed by Dallas et al. 

(2000), and the microsatellite loci were used as positive controls. Amplifications were carried 

out in 15µL reactions containing 60-100 ng of template DNA, 200µM dNTP, 2.5mM MgCl2, 

15µg BSA and 0.5µM of each primer. Thermal cycling was as follows: 3 min at 93
o
C, 30 

cycles of 1 min at 92
o
C, 1 min at 50

o
C, and 1 min at 72

o
C, and 5 min of final extension at 

72
o
C.  PCR products were visualized after electrophoresis in 2% agarose gels. 

Since none of the hair samples amplified more than a single microsatellite locus using 

the CTAB protocol, a whole genome amplification kit (Repli-g UltraFast Mini Kit - Qiagen®) 

was used prior to PCR of the microsatellite loci.  

Results  

Semi-invasive genetic sampling 

In 105 days of fieldwork, we attempted to dart giant otters on 92 occasions, hitting the 

animals 59 times (64%). We recovered the dart on all occasions, except in one case, when the 

line broke and the dart sank. Most (76%, n=45) recovered darts retained a visible skin tissue 

sample of approximately 0.13 cm
3
, 17% (n=10) retained only fur, and 7% (n=4) were empty. 

Fat tissue was also found in 86% of the darts with skin tissue.  

We counted a total of 97 adult otters inhabiting the area during our study, and most 

animals were seen repeatedly.  The 45 skin samples came from 41 adults (25 males and 16 

females). Therefore we estimate that we sampled about 42% of the adult population. Sampled 

animals were from 12 different groups and 16 were considered dominant at the time of 

sampling. We darted animals after approaching by boat on 11 occasions, and 34 animals were 

darted from a camouflaged ambush point on the bank. Two individuals were sampled during 

boat chases, but we could not see their throats long enough to provide unambiguous 

identification. The average distance for shots was 9m (range from 5-23m). On 12 occasions 
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animals were in our sights, but their natural marks were not visible or recognized in time for a 

shot.  

Animals were startled when punctured by the dart and the group reacted by growling 

and looking around for a few minutes, before returning to normal activities. Groups tracked 

by boat normally leave the area after the first shot on target, while sampled individuals from 

groups stalked by camouflage strategy remained at the local, with little reaction to the 

sampling, since they don’t associate the “sting” with the projector.  Animals that had been 

darted acted normally in the following days (Figure 1). Often the groups were sampled on 

different occasions, and no behavioral changes were noted. 

The price of the dart projectors ranged from US$280 to US$1950, depending on the 

model. The total cost of the biopsy darts used during the study was US$114. The combined 

costs of fuel, scholarship for a field researcher (doctoral student), the salaries of a shooter and 

a field assistant plus living cost totaled US$21,637 for the 105 field days. The mean cost of 

dart samples was US$487 or US$524, depending on the projector (Table 1-1). 

Capture of adults, opportunistic capture of cubs and mucus collection 

Each adult capture campaign lasted for 10 days and resulted in one animal caught. For 

logistical and safety reasons, two boats were involved during capture attempts and at least two 

researchers and two field assistants were present. The cost of manufacturing the two traps 

used to capture the otters was US$749. Therefore the cost of each adult sample was about 

US$3200, including the trap, fuel, 10 days living costs, and 10 days scholarship for two field 

researchers (doctoral students) and salaries for two field assistants (Table 1-1).  

We found cubs momentarily in absence of adults on three occasions and we caught 

them to collect small samples of skin tissue from their tails. On one occasion we found a dead 

cub partially buried in the den entrance and took a tissue sample from its remains. 

We collected 23 isolated patches of mucus, but only on two occasions did we sight the 

individuals that had produced it, both solitary males. 

Genetic analyses 

Average DNA concentrations were 57 ng.µL
-1

 (range from 12-350 ng.µL
-1

, n=49), 22 

ng.µL
-1

 (n=2), and 21 ng.µL
-1

 (5-47, n=12), from tissue, blood and mucus samples, 

respectively. The average DNA extract purity was 260/280 nm = 1.95; 260/230 nm = 1.15, 
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from tissue; 260/280 nm = 1.56; 260/230 nm = 1.08 from blood and 260/280 nm = 1.4; 

260/230 nm = 0.85 from mucus. 

All tissue (n=45) and blood samples (n=2) amplified all 12 loci, but none of the 23 

mucus samples amplified all loci and 17 did not amplify any. None of the six hair samples 

amplified, probably because of the absence of hair follicles. Two of the six mucus samples 

that amplified were from the same male, which had already been sampled with a biopsy dart, 

and one mucus sample was excluded from analyses because less than half of the loci could be 

genotyped.  

The cost for chemicals and kits for each molecular analysis of tissue or blood sample 

was US$16 and US$33 for each mucus sample, not including cost of permanent equipment.   

Twenty eight of thirty-one adult individuals of known sex were correctly assigned to 

gender and 14 animals of previously unknown gender were sexed, for a total of nine males 

and five females.  

Discussion 

Efficacy of biopsy darting  

Adult giant otters are good candidates for biopsy-dart sampling, since they are large, 

diurnal and conspicuous. Furthermore, they spend long periods of the day on land, in 

campsites, latrines, or dens, which facilitates setting ambushes. Giant otters are visually 

oriented (Duplaix 1980), and the use of camouflage allowed shots from shorter distances, 

improving the success rate of shots and minimizing the chance of hitting the animal in 

undesired body sections. Proximity to the animals allowed collection of detailed behavioral 

data. However, some concern with respect to the wind direction is advisable, as the otters 

apparently reacted to strong scents, such as deodorant, insect repellent and human food, and 

sometimes left before a shot could be taken.  

Waiting in a boat for the otters to return to their den or latrine was only partially 

successful.  The boat close to the den seemed to disturb the group and frequently the otter fled 

before the shooter got a clear shot.  Boat chases were the worst strategy, because they 

appeared to severely stress the animals and made identification from throat markings difficult. 

In addition quickly identifying the animals proved to be difficult, because their throat 

markings can be hard to see depending on their position and are often similar to others within 
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the group. Therefore communication between the observer and the shooter must be precise, 

since the shot often must be taken within seconds of identifying the animal.  

Success in acquiring skin samples depended on location and angle of impact of the 

dart. Shots perpendicular to the rump yielded best results. The pressure with which the dart is 

shot is also important, because it affects the chance of hitting the animal at the proper angle at 

longer distances, as well as the impact of the dart.  

The use of a silent projector and camouflage strategy helped to minimize behavioral 

effects and allow multiple shots in the same event, showing itself to be the most efficient. The 

animals showed no adverse effects to sampling and we believe that the individuals are 

unlikely to be seriously harmed by the impact of a well-aimed biopsy dart. 

Costs and Benefits of different sample types  

The only published method to capture giant otters is the use of a funnel-shaped net 

fixed on an oval metal hoop with a door that opens into the net. The trap is installed before 

dawn, at the entrance of the den, while the giant otters are sleeping inside (Silveira et al. 

2011). The animals leaving the den are captured, and it is not possible for the researcher to 

choose which one will be trapped. This method is invasive and requires sedation of the 

animal. It is also at least six times more costly than the use of biopsy darts and demands more 

complicated logistics. Furthermore, the Brazilian Institute of the Environment (IBAMA) 

currently prohibits capture of lactating females.  

It is important to sample the maximum number of cubs of each litter for paternity 

analyses. Taking them from within dens is invasive and difficult since at least one adult 

usually remains with the cubs (Duplaix 1980, Rosas et al. 2009), and dens are deep and full of 

tree branches. We suggest identifying cubs from throat patterns, and sampling with biopsy 

darts months after, when they are larger.  

Although opportunistic mucus collection during our study was inexpensive, DNA was 

amplified only from mucus collected within a few minutes after deposition, indicating that, 

mucus quality depends on the age of the sample, as also reported by Garcia et al. (2011). In 

our study, only 22% of mucus samples were suitable for DNA analysis. Moreover, non-

invasive genetic samples are prone to genotyping errors and accurate results can only be 

obtained if similar pairs of genotypes are confirmed through data replication (Waits and 

Paetkau 2005, Hansen et al. 2008), making the laboratory costs far more expensive than those 

of tissue and blood samples. However, two of the six successfully genotyped mucus samples 
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were from solitary males, which were not sampled by the other methods. Solitary giant otters 

are known to be especially shy (Duplaix 1980) and it is uncommon to sight them on land or 

showing their throats markings above the water. Therefore, collection of mucus could supply 

genetic information about these difficult-to-sample individuals.     

Although Pickles et al. (2009) concluded that non-invasive samples from giant otters 

could be used to reveal patterns of relatedness, it is unusual to find individual feces isolated in 

latrines, and only rarely can the researcher associate the sample to the animal, which is 

paramount for studies based on paternity and kinship. If an active latrine is found, with 

animals close by, we recommend an ambush to obtain tissue samples with a dart gun. 

The most effective method to retrieve biological samples from wild giant otters, so far, 

is by using biopsy darts projected by a CO2 rifle. Biopsy darting is capable of collecting tissue 

samples with high-quality DNA, from a large number of giant otters and is less expensive and 

invasive than capture. Moreover, this method allows direct sampling of known individuals, 

which is essential for studies of social structure.  

Management Implications 

Although biopsy darting seemed ideal for the selective, minimally invasive sampling 

of tissue for genetic analyses, there was little previous published information on the potential 

of remote biopsy systems in medium-sized mammals. To our knowledge, the only mammal of 

similar size to giant otters that had been biopsy darted was the African wild dog, Lycaon 

pictus (Moueix 2006).  We believe that the adoption of biopsy darting may bolster studies on 

medium neotropical social mammals, especially in open areas, such as ungulates (i.e. 

Blastoceros dichotomus, Ozotoceros bezoarticus and Tayassu pecari), and large rodents 

(Hydrochoerus hydrochaeris).  

Due to their aquatic and elusive behavior, giant otters demanded adaptations of biopsy 

gear and strategy, before successful sampling was achieved. For animals with a history of a 

drastically reduced area of occurrence and a complex social structure, the molecular tools may 

be the only sure way to access information about molecular ecology, sociability and 

population structure of the remaining populations. 

The combination of methods and field strategies described here can have significant 

impacts, contributing in unique ways to the advancement of knowledge of the species; helping 

to support decisions on species management and conservation strategies, as well as the 
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delineation of protected areas, wildlife corridors, and reintroduction of this endangered otter 

species. 
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Table  

Table 1-1- Summary of different potential methods to collect genetic samples from free-ranging giant otters, and some of its characteristics and recommended use. 

 n Average DNA 

Concentration 

(ng·µl-1) 

Amplification 

success (%) 

Cost (US$) of each sample Disturbance Potential use  

field laboratory 

Mucus 23 21 22 . 57.5 negligible Opportunistic to assess solitary individuals 

difficult to sample with other methods* 

Carcass Tissue 1 57 100 . 27.8 negligible Opportunistic to complement relatedness or 

paternity studies  

Skin of Pups  3 57 100 . 27.8 medium Opportunistic to complement relatedness or 

paternity studies 

Tissue biopsy darts 45 57 100 524 27.8 low Feasible as the main method to collect high quality 

samples  

Blood of adults  2 22 100 3200 27.8 high Too expensive as the main method for studies of 

relatedness or paternity, opportunistic, in case of 

the capture was demanded by other studies (e.g. 

telemetry)  

Hair samples 6 xxt** 0  Undetermined negligible Although none of the hair samples could be 

analyzed, this method may work if hair traps 

collect hair with follicle. 

* See text. 

** No DNA determined
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Abstract 

We describe the first microsatellite loci isolated from the giant otter (Pteronura 

brasiliensis), an endangered mustelid endemic to South America. Fourteen di- and 

trinucleotide polymorphic loci were characterised in fourteen individuals from the Pantanal 

wetlands, Central Brazil. Number of alleles per locus ranged from 2 to 5, and average 

observed heterozygosity was 0.577. Two loci were in linkage disequilibrium, and one further 

locus deviated from Hardy Weinberg equilibrium, probably due to the presence of null alleles. 

The transferability of these markers to two other mustelids (Lontra longicaudis and Eira 

barbara) and to the mephitid Conepatus semistriatus was also evaluated. These loci are useful 

to study the ecology and evolution of these species.       

 

Keywords: Lutrinae, Mustelidae, Mephitidae, Kinship, Social system, Population 

structure.  
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Giant otters (Pteronura brasiliensis) are large semi-aquatic mustelids (sub-family 

Lutrinae) and one of the few social carnivores endemic to South America. They are 

considered the most threatened otter species in the world (IUCN 2010) as a consequence of 

historical hunting (Carter and Rosas 1997), and past and present anthropogenic habitat 

destruction (e.g. mining and hydroelectric dams, river and land pollution, and over-fishing) 

(Schenck 1999; OSG IUCN 2010).  

Microsatellites are ideal markers to address population structure and kinship issues, 

thus they are able to provide crucial information for the elaboration of conservation plans for 

this endangered species. Although microsatellite primers developed for Eurasian and North 

American River otters (Lutra lutra and Lontra canadensis, respectively) have been tested in 

giant otters (Pickles et al. 2009), the use of heterologous primers may lead to underestimation 

of heterozygosity (“ascertainment bias”, Garner et al. 2005). Therefore, we isolated 

microsatellite loci for P. brasiliensis (which are the first microsatellites characterised in otters 

from Latin America). We also tested their applicability in the mustelids Lontra longicaudis 

(neotropical river otter) and Eira barbara (tayra), and in the mephitid Conepatus semistriatus 

(striped hog-nosed skunk). 

Genomic DNA was extracted from giant otter skin samples collected with biopsy darts 

(Ribas et al., in prep.), using a phenol–chloroform protocol (Sambrook et al. 1989). 

Microsatellites were isolated from an enriched partial genomic library, following the protocol 

of Bloor et al. (2001). A pool of high-quality genomic DNA (4µg) was digested with SauIIIA, 

ligated to phosphorylated double-stranded linker oligonucleotides and size selected (between 

500 and 1000 bp). DNA fragments were hybridised with biotinylated (CA)12, (CAA)8 and 

(GATA)5 probes, and isolated using streptavidin-coated magnetic beads. The forward linker 

oligo was used as a primer for enrichment of DNA containing microsatellites. Enriched 

fragments were then cloned using pGEM-T vectors (Promega) and OneShot TOP10 

competent cells (Invitrogen). Recombinant clones were screened for the presence of 

microsatellite inserts, which was confirmed by two or more amplified products after a PCR 

primed with the forward linker oligo and (non-biotinylated) microsatellite oligos. Forty-eight 

positive clones were sequenced in both directions in an ABI3500 sequencer. Sequences were 

edited using SeqMan (DNAStar). 

Twenty-five primer pairs flanking microsatellite regions were designed using WebSat 

(Martins et al. 2009). We used the tailed primer method (Schuelke 2000), hence, PCR 

reactions contained three primers: tailed (forward with M13 tail), labelled (M13 with either 
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VIC, NED, PET or 6-FAM fluorescent dyes), and reverse. PCR consisted of 1U GoTaq 

(Promega), 0.20 mM dNTPs, 2.5 mM MgCl2, 15µg BSA, 0.2µM of tailed primer, 0.4µM of 

labelled primer, and 0.8µM of reverse primer, in 15 µL reactions with approximately 20ng of 

DNA template. Cycling conditions were: 94
o
C, 4 min, 30X (92

o
C, 45 seg; Ta, 45 seg; 72

o
C, 

45 seg), 8X (92
o
C, 45 seg; 53

o
C, 45 seg; 72

o
C, 45 seg), 72

o
C, 30 min. Ta for all primer pairs 

was 60
o
C, except for Pbra01, which was 52

o
C. PCR products were pooled, separated in an 

ABI3500 sequencer and sized using GeneMapper and GS500-LIZ (Applied Biosystems). 

During optimisation attempts, five primer pairs were discarded due to PCR failure. 

The remaining 20 were evaluated for polymorphisms in fourteen giant otters from the 

Miranda/Vermelho River (UTM- 21K 502060, 7831592), Pantanal wetlands, Brazil. Six loci 

were monomorphic, while 14 loci resolved between 2 and 5 alleles and had observed and 

expected heterozygosities varying between 0-0.857, and 0.138-0.775, respectively (Table 

2-1). Deviations from Hardy-Weinberg and linkage equilibrium conditions were tested using 

FSTAT (Goudet et al. 1995) and the online version of Genepop (Raymond and Rousset 

1995). Locus Pbra16 presented a clear heterozygote deficiency, possibly caused by the 

presence of null alleles, as suggested by the high null allele frequency estimated by the 

software Cervus (Kalinowski et al. 2007). All loci pairs were in linkage equilibrium, except 

for markers Pbra21 and Pbra23, which were strongly linked (P<0.00055, which remains 

significant after sequential Bonferroni correction - Rice 1989). The probability of non-

exclusion of a false parent was estimated for each locus (Table 2-1) and also combining the 

twelve selected markers (i.e. excluding Pbra16 and Pbra21). The estimated proportions of 

type II errors were small (5.7% without knowing the parents and 0.4% knowing one of them), 

indicating that the selected loci provide sufficient power for paternity analyses in the species.  

All 14 markers were tested for cross-amplification in two individuals each of 

neotropical otter and tayra, and in one striped hog-nosed skunk, using the optimized 

conditions detailed in Table 2. Five loci could not be amplified in any of these species 

(Pbra01, Pbra10, Pbra20, Pbra23 and Pbra24), but seven of them were successfully 

amplified in the two other mustelids (Table 2-2). 

These markers will contribute to elucidate the giant otter social system and population 

structure, providing information that will be useful in the elaboration of management and 

conservation plans for this endangered species. 
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Tables  

Table 2-1. Levels of variability of 14 polymorphic microsatellite loci in the giant otter (Pteronura 

brasiliensis) from Pantanal, Brazil (n=14).  Na indicates number of alleles observed; Ho, observed 

heterozygosity; He, expected heterozygosity; Null freq., estimated null allele frequency; PExcl1 and 2, 

probability of non-exclusion of a parent, unknowing both or one of them, respectively. 

  

Table 2-2. Results of cross-amplification tests. Failure of amplification is indicated by a minus. Loci 

that were successfully amplified are indicated by the corresponding annealing temperature (oC). 
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Table 2.1. 

Locus 

GenBank 

Acession no. Primer sequence(5'-3') Motif 

Size 

range*(bp) Na 

HO  

HE 

Null 

freq. PExcl1 PExcl2 

Pbra01 JF712852 F:  ACCACAAGGGGTTCACTCTAAA AC (18) 219-225 4 0.357 0.1875 0.871 0.749 

  R: TGACCTACTGTCCATTCTGCTG    0.521    

Pbra02 JF712853 F: TCTCCCCATTTTCACTCTGG AC(9)_AC(16) 401-413 5 0.714 0.0034 0.687 0.509 

  R: ACTTTCAGCCTTTGGTGCTC    0.746    

Pbra05 JF712854 F: GGAAAGGGTTGCTGAATGAA CA(18) 363-375 4 0.714 -0.0159 0.743 0.578 

  R: GAGGGTCCTGATGATGGAAG    0.706    

Pbra08 JF712855 F: TACTCTTTTCAGATGCCCCACT GT(16) 181-191 3 0.571 -0.0051 0.843 0.734 

  R: AATATGATGTCTCCCGCACG    0.582    

Pbra09 JF712856 F: CACCTTTCCCTCACTTTTGC CA(20) 394-400 3 0.429 0.0769 0.899 0.763 

  R: TCATCCTTCAGTTATGCCGA    0.466    

Pbra10 JF712857 F: GCCTGACAAGTGATTGCGTA TG(14) 319-327 3 0.500 -0.1328 0.92 0.798 

  R: CCGAACCAGAGGCATAAGAA    0.415    

Pbra11 JF712858 F: GGTTGCCTATGGCTGAGAGA  (TG)(GA) 339-343 3 0.714 -0.1355 0.831 0.685 

  R: GGAGCATGTCTTCCGTGATT    0.603    

Pbra14 JF712859 F: AGAAACACACACGGGACACA  AC(10)CA(11) 136-160 3 0.500 -0.1366 0.924 0.818 

  R: TTGCTAATGCTGTAGGGGCT    0.405    

Pbra16 JF712860 F: CAGTGCGGGTCATACAAAGA CTT(8) 327-336 2 0 0.8315 0.991 0.938 

  R: ACAGAACCAGTCCCTGTTGG    0.138    

Pbra17 JF712861 F: AACACCAAAGCAAACCCTTG  TG 336-350 4 0.643 0.0757 0.675 0.499 

  R: CCACCACAGAAAGCACAAAA    0.775    

Pbra20 JF712862 F: GCCAGACCATCCAACAAAGT CA 358-370 4 0.714 0.0144 0.701 0.526 
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*Allele sizes discounting the tailed extension of the primers. 

  R: TTTCCTTTCTCCATCCTCCA    0.749    

Pbra21a JF712863 F: GGAAACAACACAGCGGAACT AC(19) 195-205 4 0.857 -0.078 0.693 0.52 

  R: CTGAATGAGACACGCAGGAA    0.759    

Pbra23a JF712864 F: AGATGTTCAGAGAGGCGGAA TG(17) 171-181 4 0.857 -0.0735 0.686 0.512 

  R:  GGGTGAGTTGTCGGTTTGTT    0.765    

Pbra24 JF712865 F: GGTGTCTTTGAAGTGGTTAT TG(13) 313-335 4 0.786 -0.072 0.743 0.578 

  R: AGTGGCTTAACGGACTGAGC    0.706    
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Table 2.2 

Species N Pbra02 Pbra05 Pbra08 Pbra09 Pbra11 Pbra14 Pbra16 Pbra17 Pbra21 

Lontra longicaudis 2 60 54 - 60 60 58 58 60 52 

Eira barbara 2 - 54 54 58 60 60 58 54 52 

Conepatus semistriatus   1 - - - - - - - - 56 
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Abstract 

Behavioral observations suggest that groups of giant otters are composed of a 

dominant reproductive pair, and their offspring of previous years, which do not breed inside 

the original group. Our study combines genetic data and long-term behavioral information 

from two river systems to determine genetic relatedness within and between social groups and 

describe dispersal patterns of the species. We obtained the samples from 41 adults using 

biopsy darts projected by a CO2 rifle. Opportunistically, we also collected skin samples from 

cubs, blood from two individuals that were captured to implant radio transmitters, and mucus 

(anal secretions). We genotyped a total of 50 giant otters, distributed in 13 social groups or as 

transients individuals (n=2), for twelve polymorphic loci. Our genetic results show a single 

population throughout the study area, and the nuclear variability found was within the 

observed range for giant otters in larger geographic areas. The average relatedness within 

groups (r = 0.23) was high and the giant otter groups were generally composed of an 

unrelated alpha pair and their close relatives. However, the degree of relatedness varied within 

the groups, including groups of completely unrelated individuals, contradicting the current 

knowledge that giant otter groups are formed exclusively by a dominant pair and their 

offspring. Our data are conflicting in relation to sex-biased dispersal of giant otters. On one 

hand, sex ratio was biased toward males and males were more related within groups, 

suggesting that groups are retaining more males. On the other hand, the negative correlation 

between kinship and distance between territories were higher in females than males and 

solitary transients individuals were known to be males, suggesting that males were the 

disperser sex. The social system of giant otters is much more complex than anticipated.  The 

evolutionary mechanisms that lead to the high relatedness variance within giant otters groups 

it is unclear, but we believe that high migration rate of individuals across groups, extra-pair 

copulation and subordinate reproduction can play an important role, as they do in other 

apparently monogamous species.  
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Introduction 

Genetic and social structure are inextricably linked (DeWoody 2005). Sociality and 

cooperative behavior should only evolve and remain stable if all individuals involved obtain 

net fitness benefit relative to the costs (Hamilton 1964). The relative importance of indirect 

vs. direct fitness benefits of group living have been debated (Gompper 1997; Clutton-Brock 

2002). Although relatedness between group members will usually facilitate the evolution of 

cooperation (West et al. 2002), direct benefits derived from natal philopatry are probably 

important mechanisms influencing group formation within many groups, including the 

carnivores (Spong 2002; Van Horn et al. 2004).  

Philopatry may result in kin cooperation and lower mortality rate due to familiarity 

with the natal area, while dispersal offers the possibility of finding a new territory, reduces kin 

competition, and helps in avoiding inbreeding (Lawson Handley & Perrin 2007).  It has been 

suggested that male social mammals generally disperse to breed, whereas females remain in 

their natal group (Greenwood 1980), although genetic studies suggest a variety of dispersal 

strategies (Gompper & Wayne 1996), like female-biased dispersal in a background of 

predominantly philopatric males (Randall et al. 2007), dispersal systems independents of sex 

(Girman et al. 1997), and even philopatry of both sexes (Amos et al. 1993) (reviewed in 

Lawson Handley & Perrin 2007).  

Giant otters (Pteronura brasiliensis) are large social semi-aquatic carnivores 

(Mustelidae, sub-family Lutrinae) (Duplaix 1980) endemic to South America. This species 

was heavily hunted in the past due to a high demand for their fur on the international market. 

This has resulted in a drastic reduction in its populations (Carter & Rosas 1997). Currently, 

the species is threatened by multiple anthropogenic influences arising from increased human 

settling in tropical lowland rainforests, and is classified as “Endangered" by the IUCN (2011).  

Groups of giant otters generally vary in size from three to nine individuals and 

behavioral observations suggest that groups are composed of a dominant reproductive pair, 

and their offspring of previous years, which do not breed inside the original group (Duplaix 

1980; Schweizer 1992; Kruuk 2006). Solitary individuals are regarded as transients and are 

usually subadult animals dispersing from a family group or a member of a pair who has lost 

its mate (Duplaix 1980; Schweizer 1992).  Individuals within groups are highly cooperative, 

and show behaviors such as cooperative breeding (Duplaix 1980; Schweizer 1992; Rosas et 
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al. 2009), territory defense through scent marking and vocalizations, as well as active defense 

against predators and conspecific intruders (Duplaix 1980; Schweizer 1992; Ribas & Mourão 

2004), and long-term assistance of elderly family member (Davenport 2010). In contrast, 

neighboring groups of giant otters show mutual avoidance (Duplaix 1980; Kruuk 2006), 

exhibiting marked agonistic interactions, including cannibalism and territorial fights (Mourão 

& Carvalho 2001; Ribas & Mourão 2004).  

Dispersal strategies of giant otters are unknown. Factors such as age, sex, size and 

breeding structure of the group (i.e. presence of cubs and if the dominant female is pregnant), 

availability of territory or potential mates, and time of the year may influence dispersal in 

giant otters (Ribas 2004; Leuchtenberger & Mourão 2008).  Our study combines genetic data 

and long-term behavioral information to determine genetic relatedness within and between 

social groups and describe dispersal patterns of the species. Here, we examine if the most 

accepted social model for giant otters agreed with empirical data. The features of the 

hypothesized model include reproductive suppression (i.e. groups would be formed by a non-

promiscuous alpha couple and their brood) and a male-biased dispersion. Also we asked if 

kinship selection is enough to explain the evolution and maintenance of the sociability in 

giant otters.  The results indicate that giant otters have a very complex social structure, and 

that none of the present hypotheses as to how giant otter social systems evolved and are 

maintained is entirely satisfactory.  

Materials and methods 

Study population  

The Pantanal is a large Neotropical wetland, covers 160,000 km
2
 of lowland terrain in 

Bolivia, Paraguay and Brazil, and is characterized by low altitude plains subject to seasonally 

alternating periods of flood and drought (Alho et al. 1988; Harris et al. 2005).  

We have been using digital video to monitor the ecology and social relations of giant 

otter groups from Miranda and Vermelho Rivers (UTM 21k 501897 7831480), in the 

Southern Pantanal, since 2002 (Ribas 2004). In 2008, we also began monitoring giant otter 

groups in pools and water bodies around the Estrada-Parque Pantanal (EPP) highway (UTM 

21k 0451800 7873700 to 21k 0496300 7831500). The Miranda and Vermelho Rivers are 

considered to be favorable habitats long inhabited by giant otters (Schweizer 1992; Ribas 

2004), whereas the water bodies around the EPP road are considered sub-optimal habitats, 
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since the water gradually diminishes during the dry season (June to December), and the 

aquatic fauna that is the main prey of giant otters becomes scarce until the next rainy season 

(Ribas et al. 2012) (Figure 3-1).  

We mapped the territories of giant otters by locating tracks, active dens, and latrines 

on the banks of rivers and other water bodies. We identified individual otters through their 

throat and chest patterns and catalogued them in a photogram compiled in a database, 

including the general information of each individual (i.e. gender, hierarchy, social group, 

territory, behavior, geographic coordinates, etc.).  

We classified individuals as adults or cubs of the year, identified the alpha male and 

female in each group based on morphological characteristics, such as testicles and the larger 

width of the neck for males, and the indicators of lactation in females and behaviors, such as 

greater activity in marking and defending territory by the dominants.    

Sample collection 

We collected genetic samples (license no. 12794-4/2012, granted by the Brazilian 

Federal Wildlife Agency - ICMBio) during the dry seasons, from November 2008 to October 

2010. We obtained a 41 skin samples from different adults by using biopsy darts projected by 

a CO2 rifle. We also opportunistically, collected skin from the tails of three live cubs, and a 

dead cub found buried in a den. We collected blood from two individuals that were captured 

to implant radio transmitters.  We also collected 23 fresh mucus (anal jelly secretions) 

samples from active latrines.  

DNA extraction, amplification and genotyping 

DNA from tissue and blood samples was extracted using the DNeasy Blood & Tissue 

Kit (Qiagen®), and from mucus using the QIAamp DNA Stool Mini Kit (Qiagen®). Samples 

with high concentration of DNA were normalized to final concentration of 30-50 ng·µl
-1

. 

Twelve polymorphic loci, specifically developed from giant otters (Ribas et al. 2011), 

were PCR amplified in 15µL reactions containing approximately 1U GoTaq (Promega), 0.20 

mM dNTPs, 2.5 mM MgCl2, 15µg BSA, 0.2µM of forward, M13-tailed primer, 0.4µM of 

labelled M13-primer, and 0.8µM of reverse primer. Thermal cycling conditions were: 94
o
C, 4 

min; 30X (92
o
C, 45 seg; Ta, 45 seg; 72

o
C, 45 seg), 8X (92

o
C, 45 seg; 53

o
C, 45 seg; 72

o
C, 45 

seg); and 72
o
C, 30 min. Ta for all primer pairs was 60

o
C, except for Pbra01, which was 52

o
C. 
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PCR products were pooled in two panels, and sized in an ABI3500 sequencer using GS500-

LIZ and the software GeneMapper (Applied Biosystems). 

All tissue (n=45) and blood samples (n=2) amplified all 12 loci, but most (17 out 23) 

of the mucus samples completely failed to amplify. Two of the mucus samples that amplified 

were from the same male, which had already been sampled with a biopsy dart, and one mucus 

sample was excluded from analyses because less than half of the loci could be genotyped, 

leaving three mucus samples for analyses.  

Molecular sexing was used to confirm or determine the gender of the individuals.  The 

SRY gene was PCR amplified using the primers developed by Dallas et al. (2000), and the 

microsatellite loci were used as positive controls. Amplifications were carried out in 15µL 

reactions containing 60-100 ng of template DNA, 200µM dNTP, 2.5mM MgCl2, 15µg BSA 

and 0.5µM of each primer. Thermal cycles were as follows: 3 min at 93
o
C, 30 cycles of 1 min 

at 92
o
C, 1 min at 50

o
C, 1 min at 72

o
C, and 5 min of a final extension at 72

o
C.  PCR products 

were visualized after electrophoresis in 2% agarose gels. 

Population analyses 

Behavioral data collected during eight years of monitoring enabled the assignment of 

six cubs to two dominant unsampled females, each in a different group, which were the only 

possible mothers at the cubs’ time of birth in each group. Following the genetic confirmation 

that in both groups the alpha males were the fathers of the cubs (Ribas, unpublished data), the 

mothers’ genotypes were reconstructed using GERUD (Jones 2005) and used in the analyses.  

Deviations from Hardy-Weinberg and linkage equilibrium conditions were tested 

using FSTAT (Goudet 1995), and the existence of null alleles was evaluated using Micro-

Checker (van Oosterhout et al. 2004). The combined non-exclusion probability of the twelve 

loci was estimated using program Cervus (Kalinowski et al. 2007). 

Since samples were collected in two areas approximately 52 km apart (minimum 

straight-line distance), the Bayesian clustering analysis implemented in Structure (Pritchard et 

al. 2000) was used to investigate the existence of fine-scale geographic population structure. 

Analyses were run using the admixture and correlated allele frequencies model, and no 

information on individuals' geographic origin. Ten independent MCMC analyses for each K 

population scenarios (K = 1 and 2) were run, each with 500.000 steps following 100.000 

burn-in steps. 
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Due to the indication of severe population decline caused by hunting in the recent past, 

three analytical approaches were used to search for evidence of demographic bottlenecks in 

giant otters from the Pantanal. First, the occurrence of a recent bottleneck was investigated 

using the Bottleneck program (Piry et al. 1999). All three mutation models (Infinite Alleles 

Model, IAM; Two-Phase Model, TPM; and Stepwise Mutation Model, SMM) were used for 

coalescent simulations. The TPM model was set to accommodate 95% of single step 

mutations, and variance of 12 among multiple step mutations, as recommended by Piry et al. 

(1999). Significance of deviations from equilibrium heterozygosity was evaluated using the 

Wilcoxon signed rank test (Luikart & Cornuet 1998). The qualitative “mode-shift” test of 

Luikart et al. (1998) was also used. Finally, we tested whether the M-Ratio was significantly 

below the critical M-Ratio (Mc) of a stable population of similar size, using programs M_P-

Val and Critical M (Garza & Williamson 2001).  As recommended by Garza & Williamson 

(2001), pre-bottleneck theta was set to 10, the proportion of multi-step mutations was set to 

0.10, and the average number of repeats involved in non-stepwise mutations was set to 3.5.  In 

addition, the analysis was also run assuming a pre-bottleneck theta ten times smaller. 

The extent of inbreeding was estimated by computing the Internal Relatedness (IR) 

coefficient, a measure of how genetically related were the parents of each individual (Amos et 

al. 2001). IR was estimated using the R package Rhh (Alho et al. 2010). IR values usually 

follow a normal distribution with zero mean for individuals born to unrelated parents, outbred 

individuals with high negative values and inbred individuals with high positive values (Amos 

et al. 2001). Additionally, inbreeding was also evaluated by estimating FIS, using FSTAT 

(Goudet 1995). 

The program ONeSAMP (Tallmon et al. 2008) was used to estimate the effective 

population size (Ne) through approximate Bayesian computation. Three independent analyses 

were run, changing the priors on minimum and maximum Ne (2 and 200, 10 and 300, and 4 

and 100).     

Relatedness analyses 

The relatedness coefficient (r) for all pairs of individuals (dyads) was estimated using 

ML-Relate (Kalinowski et al. 2006). We use the Kolmogorov-Smirnov test to compare the 

distributions of relatedness of all possible dyads between and within groups.  
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Permutations were used to test if the mean relatedness within groups differed from that 

expected from random association. We compared the observed mean r within groups with 

those calculated from simulated groups, assigning at random one dominant male, one 

dominant female and subordinates to "groups". In each of 1000 simulations, we preserved the 

basic structure of the original groups (i.e. each group have at least one pair and its original 

size).  

To test predictions based on the null hypotheses concerning the giant otter social 

structure, differences in values of r were compared within and among groups, and within and 

among social strata. To minimize the lack of independence of data associated with the 

pairwise comparisons, we used a bootstrap procedure to resample data 1000 times, using 

sample sizes compatible with the objects being compared (i.e. n=50, for comparisons 

involving individuals, n=20 when stratified by sex, and n=10, when groups were compared).  

As the r distributions were non-normal, we used Kruskal-Wallis analyses associated 

with the bootstrap procedure. Probabilities were calculated as the proportion of calculated χ
2
< 

χ
2

critical with an alpha=0.05.   

We assessed if the relatedness in dyads were correlated with the distance between the 

animals being compared using the Mantel test (with 5000 permutations), using the R-package 

"ade4" (Dray & Dufour 2007). The distance was measured as the Euclidian distance between 

the center of the parental territory of the individuals in the comparison. The analyses were 

repeated after stratifying by sex, to test if relatedness in dyads within females and within 

males were correlated with distance. The probability (P) is presented as the proportion of 

simulated correlations higher than the observed value i.e., when the observed correlation is 

negative, high values of P means significant. 

Results 

The study population  

We counted a total of 97 adult otters inhabiting the area during our study, and most 

animals were seen repeatedly. Of these, 84 were distributed in 17 groups (mean=5, range 2 to 

12 individuals per group) and 13 were solitary. Twenty eight adult individuals of known sex 

were correctly assigned to gender, and 14 animals of previously unknown gender were 

genetically sexed. The sex ratio was 46:31 ≈1.5 males per female. The sex of 20 unsampled 

individuals sighted in the area could not be determined.  
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Genetic data set 

We genotyped 50 giant otters, distributed in either one of 13 social groups or as 

transients individuals (n=2). We also reconstructed the genotypes of two alpha females based 

on their known brood and used the reconstructed genotypes in analyses. Therefore, our 

sample totaled 32 male and 20 female giant otters. Nine of these were alpha males and eight 

were alpha females. Of the 31 subordinates, four were yearling cubs. The number of 

individuals sampled from each group varied from one to eight and we sampled about 70% of 

group members (Table 3-1). Considering all individuals seen, we estimate that we sampled 

about 54% of the adult population. 

The number of alleles per locus varied from 3 to 6, with expected and observed 

heterozygosities ranging between 0.312 and 0.766 (average 0.608), and 0.314 and 0.827 

(average 0.619), respectively. No loci showed Hardy-Weinberg and linkage disequilibrium. In 

addition, we did not find evidence for scoring error due to stuttering or large allele dropout. 

The combined non-exclusion probability for all loci was 5% without knowing the parents and 

0.3% knowing one of them (Table 3-2). 

Fine-scale geographic population structure 

The Structure analysis did not detect population differentiation between giant otters 

from the Vermelho and Miranda Rivers and the EPP (K=1, LnP(D)=-1355.13, SD=0.63; 

K=2, LnP(D)=-1357.98, SD=25.78). Therefore, all analyses assumed that the sampled 

individuals belong to a single population. 

Effective population size and investigation of bottlenecks 

All three independent analyses of Ne, each with different minimum and maximum 

thresholds as priors, yielded similar results: 24.7 (Ne between 2-200: 95% credible limits: 19.6 

– 34.9), 29.0 (Ne between 10-300: 95% credible limits: 24.8 – 41.8) and 24.7 (Ne between 4-

100: 95% credible limits: 20.7 – 34.6). 

The Wilcoxon test was only significant for the IAM model (P=0.001), which is more 

likely to indicate heterozygosity excess for microsatellite data (Luikart & Cornuet 1998). The 

two other models that conform better to microsatellite evolution failed to reveal any pattern 

consistent with a recent bottleneck (TPM, P=0.17; SMM, P=0.31). The “mode-shift” test also 
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suggested that the observed allele frequency distributions fit mutation-drift equilibrium 

expectations (having L-shaped distributions). 

Our estimate of the M value for giant otters in the Pantanal was 0.66 (P=0.004), 

irrespective of the pre-bottleneck theta assumed. The critical M (higher than 95% of 

equilibrium values) was 0.71 (theta = 10) or 0.79 (theta = 0.1). The M value was similar to 

values observed in mammalian species known to have undergone demographic declines 

(between 0.599 and 0.693, Table 2 in Garza & Williamson 2001). Therefore, the M-Ratio test 

indicated that the population has experienced a bottleneck. 

Relatedness  

The relatedness of giant otter dyads ranged from 0 to 0.739 and averaged 0.100 

(median=0.005) and its distribution was clearly non-normal (Figure 3-2a). The distribution of 

relatedness between and within groups differed in shape (D=0.373, P<0.001,Figure 3-2b,c). 

Although r between groups had an L-shaped distribution, the distribution of r within groups 

was bimodal, with values of r ≥0.25 being frequent. The average r within groups (0.229; 

n=10) was higher than the mean r of groups generated by random (mean=0.100 range 0.083-

0.124, P<0.001). Although six of 10 groups showed high overall relatedness (r >0.2), two had 

mean coefficients of relatedness equivalent to 3
rd

 order kin relationship categories (e.g. first 

cousins, r≈0.125, Blouin 2003) and two groups were formed by completely unrelated 

individuals (Table 3-1).    

Five of eight groups had unrelated alpha pairs, but two pairs were relatively closely 

related (r=0.160 and 0.192) and one pair was 1
st
 order kin related (r=0.5, Table 3-1). 

Subordinates fell equally into the three relationship categories: in two of six groups they were 

1
st
 kin relatives, in two they were 2

nd
 kin relatives (r≈0.25) and in two they were unrelated 

(r<0.09; Table 3-1). In three of seven groups, the alpha pairs were closely related on average 

to the subordinates (r>0.4), in one they were 2
nd

 kin related (r=0.283), in two were 3
rd

 kin 

related and in one group, the alpha pair was unrelated to the sampled subordinate (Table 3-1). 

Mean r of females within groups varied from unrelated (three of six groups), 2
nd

 order 

relatives (r≈0.3, two groups) and 3
rd

 order relatives (r=0.142, one group). In general, males 

were genetically more related than females within groups, with three groups having closely 

related males (r≈0.5), three groups with r equivalent to 2
nd

 order kin relationships, one with a 

3
rd

 kin relationship, and one with unrelated males (Table 3-1).  The mean differences between 
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sexes within groups tended to be different, although not significantly (t=1.926, df=12, 

P=0.078). Also, in eight of ten cases females were related with males within groups 

(0.45>r>0.15), although in two groups they were unrelated (Table 3-1). Average r between all 

possible male dyads (0.095, range 0-0.637, n=496) and between female dyads (0.106, range 

0-0.598, n=190) did not differ significantly (P=0.941). The average r between dominant males 

was 0.069 (range 0-0.5, n=36), and did not differ from that between dominant females (0.116 

range 0-0.5, n= 36, P=0.925).  

Mean relatedness (r) between all possible dyads were negatively correlated with the 

distances between the centers of the territories of the dyads (Mantel analyses, robs=-0.135, 

P=1), and females were more negatively related with distance (robs=-0.279, P=0.999) than 

males (robs= -0.124, P=0.996). However, when we excluded the dyads formed by animals of 

the same group (i.e. distance = 0), the slope of the regression line for males becomes 

negligible (-0.15*10
-3

) whereas the slope for females were still meaningful (-0.16*10
-2

); 

Figure 3-3).  

Dispersal and group dynamics  

During the eight-year study, we recorded the formation of five new pairs, which 

attempted to establish their own territories. Three were composed of individuals from 

neighboring groups and partially overlapped at least one of the parental territories. A fourth 

pair was of unknown origin, but the male was 1
st
 order related with at least one of the 

subordinates of a neighboring group. These new formed pairs moved 6-18 km trying to 

establish their territories and at least one (EXC, Table 3-1) successfully raised an offspring. 

One group (GD4) seems comprise a coalition of unrelated young dispersers of both sexes 

(Table 3-1). We also observed 13 solitary transient individuals, six of which were male and 

seven for which sex was not determined. Those that we observed more than once (n=5) 

moved an average of 12 km (4.5-30 km), overlapping territories occupied by groups. One of 

them was slightly related (r=0.159) to the individuals from the group with the overlapping 

territory. 

On two occasions dominant females were replaced by subordinates of the same group. 

In both cases, the subordinates were 1
st
 order relatives (r=0.5) to the alpha female, and shared 

in the nursing of the cubs for up to three reproductive cycles, before the matriarchs finally 
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disappeared.  The estimated minimum age of these matriarchs, at the time of the replacement, 

was eight and nine years, and the subordinates were at least six years old. 

In one case, after a territorial fight, the winning group incorporated a female and a 

male subordinate of the other group. These subordinates were unrelated to each other (r=0), 

but the female was related to the original group (r=0.433) and unrelated to the winner group. 

The male was unrelated to the original group (r=0.040) but 2
nd

 order related to the winner 

group (r=0.220).  

Evaluation of inbreeding 

The internal relatedness coefficient (IR) indicated that individuals were equally 

divided into those born to unrelated (IR = -0.08 to 0.08; N = 15), outbred (IR = -0.41 to -0.13; 

N = 20) and inbred (IR = 0.10 to 0.62; N = 17) parents. Therefore, 67% of the giant otters 

analyzed showed no sign of inbreeding. The inbreeding coefficient FIS was not significantly 

different from zero (FIS = - 0.02), also indicating that the population is not inbred. 

Discussion 

Population Structure 

Our genetic results show that giant otters comprised a single population throughout the 

study area, indicating substantial gene flow on the scale examined. In the wet season, almost 

the whole floodplain is connected by water pathways and giant otters can disperse long 

distances. The Rio Vermelho and Rio Negro, both known to support high numbers of giant 

otters (this study, Mourão & Carvalho 2001), become connected by a large swamp which 

would also facilitate the movements of the otters (Figure 3-1).  Total population size should 

be around 250 otters, as we our estimated effective population size of 25-30 individuals. We 

counted 97 adult otters in at least 17 groups, which would correspond to 38.8% of the census 

population.  

Microsatellite variability in the study population (He = 0.61) was within the range 

observed by Pickles et al. (2011b) in the three other giant otter phylogroups (He = 0.61-0.64). 

Those heterozygosity levels are similar to those seen in other otters species, such as the sea 

otter (Enhydra lutris, He=0.47-0.49, Larson et al. 2002, Aguilar et al. 2008), Eurasian otter 
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(Lutra lutra, He=0.66, Lanszki et al. 2010, He = 0.37-0.71, Mucci et al. 2010) and river otter 

(Lontra canadensis, He=0.65, Latch et al. 2008).    

Recent bottleneck 

Recent bottlenecks result in a faster decrease in allele numbers than in expected 

heterozygosity (He), due to the loss of rare alleles. An excess of heterozygosity (He) compared 

to the expected equilibrium heterozygosity (Heq) is therefore suggestive of a bottleneck, 

because Heq is calculated from allele numbers. For our data, the IAM model showed 

significant heterozygosity excess, but since the other two models had non-significant results, 

and the IAM is more likely to produce false positives when microsatellite data are used 

(Luikart & Cornuet 1998), we conclude that those analyses provide no evidence of a 

bottleneck effect on the study population. That conclusion is also supported by the mode-shift 

test. 

On the other hand, the M-Ratio test detected a bottleneck signal, as the estimated value 

of M (0.66) was below the critical threshold obtained from simulated equilibrium populations 

(Mc = 0.71 and 0.79). The M ratio test is expected to have a longer recovery time than 

heterozygosity excess and allele frequency (i.e. mode-shift) tests. Thus, those methods have 

different temporal detection windows (Cornuet & Luikart 1996; Garza & Williamson 2001). 

He-based analyses are able to detect severe demographic decline within the last 2Ne - 4Ne 

generations (Piry et al. 1999). Since the Ne of our population was estimated at 25 – 30, and 

considering that giant otters have generation lengths of seven years (Groenendijk et al. 2004), 

the detection window of Bottleneck for our data would be 350-815 years ago.  The bottleneck 

detected by the M Ratio test for our population would be more than 700 years ago, because 

simulations showed that this statistic takes about one hundred generations to recover after a 

demographic decline (Garza & Williamson 2001).  

Those estimates for the time of a bottleneck far predate the extensive hunting of the 

species during the 1950’s and 1960’s (Carter & Rosas 1997). By the end of the 1960’s, more 

than 50 thousands pelts were exported from Brazil (Harris et al. 2005) and giant otters were 

not recorded in the Miranda and Vermelho Rivers (Schweizer 1992). Sequence data from 

giant otters distributed among four drainage basins in South America found a high overall 

haplotype and nucleotide diversity (h=0.93, π=0.015), except for the Pantanal phylogroup 

(h=0.44, p=0.0015) (Pickles et al. 2011a). Those authors suggest that the reduced variability 



43 

 

 

 

could be a consequence of hunting, but a second alternative hypothesis is that Pantanal was 

colonized later than the other basins and the lower genetic diversity could reflect a founder 

effect. That scenario is supported by our data, as the historical bottleneck detected through the 

M ratio test reflects such a founding event. In that case, the colonization of the area by 

founders of the present day giant otter population could have happened even before this 

period, because simulations have suggested that the bottleneck signal may last thousands of 

generations if the population is not completely isolated (Swatdipong et al. 2010). A third non 

exclusive explanation is that the population experienced a bottleneck during past climatic 

changes, as the Pantanal had at least two dry events in the Holocene period: a 40,000-8000 BP 

cool and dry and  3500-1500 BP warm and dry period. (Junk et al. 2006). 

The social structure of giant otters 

The giant otter groups were generally composed of an unrelated alpha pair and their 

close relatives. Also, the average relatedness within groups was higher than the mean 

relatedness of randomly generated, and close genetic relatedness was more frequent for dyads 

within groups than in dyads between groups. Those data suggest that kin selection is an 

important mechanism structuring social cohesion and cooperation among giant otters. The 

average relatedness within groups (r = 0.23) was high and similar to other carnivores that 

have a social system based on one reproductively dominant pair, such as African wild dogs 

(Lycaon pictus) (r = 0.27, Girman et al. 1997), Ethiopian wolves (Canis simensis) (r = 0.30, 

Randall et al. 2007) and meerkats (Suricata suricatta) (r = 0.28, Dugdale et al. 2008).  

Despite the high average relatedness within groups, mean coefficient of relatedness of 

dyads of subordinates within groups was more variable. Groups averaging 1
st
, 2

nd
 and 3

rd 

degree relatives were evenly distributed in our sample, indicating that some groups were not 

composed of just one reproductive pair and their offspring. In two cases the subordinates were 

closely related to each other, but 3
rd

 degree related to the alpha pair (Table 3-1) indicating that 

the kin composition of groups is variable and does not always correspond to the parent-brood 

model of Duplaix (1980) and Schweizer (1992). One group composed of unrelated 

individuals was clearly formed by young dispersers, and none of their members could be 

assigned as dominant based on behavior. Moreover, we recorded individual members of this 

group performing different activities at the same time, suggesting lower cohesion, although 

they shared dens, latrines and most of the time swam and fished together. This type of social 
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structure resembles packs of young adult dispersers, found in mixed-sex groups of some 

social carnivores, such as Ethiopian wolves (Canis simensis, Randall et al. 2007), striped 

hyena (Hyaena hyaena) (Wagner et al. 2007), and in coalitions of male lions (Panthera leo, 

Packer et al. 1991, Spong et al. 2002). In those species, the coalitions are usually, but not 

always, composed by close relatives. Molecular genetic studies of carnivores indicate that 

cooperation between unrelated individuals may be common (Gompper & Wayne 1996) and 

high variance in within-group relatedness is found in other social carnivores, such as coastal 

river otters (Lontra canadensis, Blundell et al. 2009), white-nosed coatis (Nasua narica, 

Gompper et al. 1997), Ethiopian wolves (Randall et al. 2007) and lions (Spong et al. 2002).    

The existence of groups composed of unrelated giant otters suggests that in some 

instances group formation could be non-kin based and that kinship selection alone is not 

enough to explain the evolution and maintenance of the sociability in giant otter. (Clutton-

Brock 2002; West et al. 2006). The diversity of relatedness coefficients found within groups 

emphasizes that quantitative information from different categories of relatedness and 

cooperative behavior will be important to reveal different aspects of the evolution and 

maintenance of social behaviors in carnivores (Gompper & Wayne 1996) such as giant otters.  

Dispersal and group dynamics 

Mating system and competition for resources can explain sex-biased dispersal 

(Greenwood 1980) resulting in the philopatric sex being more related within groups (Dugdale 

2008). In our study, although males within groups tended to be genetically more related than 

females, the difference was not significant. Also, the average relatedness between dyads of 

males and between dyads of females did not differ, nor was there a significant difference in 

the relatedness of dyads of alpha males and dyads of alpha females. None of these results 

suggests strong asymmetry in dispersal between sexes. However, the relatedness of dyads 

within each sex decreased with distance between the individuals, for both sexes when dyads 

of animals within the same group were included in the analysis, but not for males when dyads 

within groups were excluded from the analysis. This suggests some asymmetry in distance 

dispersal between sexes with females being more philopatric or at least having more limited 

dispersal distances.  

On the few occasions when we witnessed new formed pairs trying to establish 

territories, it happened in the vicinity of the territory of at least one of the original groups. 
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However, these observations could be biased, by a focus on already monitored areas and 

probably does not reflect all possibilities for dispersal and foundation of new groups.  

We found a male-biased sex ratio of 40:31, considering just the individuals composing 

groups. However, previous studies carried out in the same area reported balanced (8:9, Ribas 

2004) or female biased (10:19, Leuchtenberger & Mourão 2008) sex ratios. A male-biased sex 

ratio suggests more retention of males than females within the groups. However, we observed 

at least 13 transient individuals in the study area. Transients are thought to represent 

dispersing males (Schweizer 1992), and the six transients otters for which we could determine 

sex were all males, which would support a male-biased dispersal model for giant otters. In 

monogamous systems, philopatric males can increase their chances of acquiring a high-

quality territory with which to maintain a female, especially those systems with parental care 

(Randall 2007), especially if they inherit the parental territory. However, in the two cases of 

replacement of dominants we witnessed, it was females that inherited the territory. Therefore, 

our data are conflicting in relation to philopatry and sex-biased dispersal of giant otters. 

Membership exchanges are known to happen among giant-otter groups (Evangelista 

2004; Ribas 2004; Leuchtenberger & Mourão 2008). Also, territorial agonism is common in 

the study area (e. g. Ribas & Mourão 2004; Leuchtenberger & Mourão 2009; this study) and 

they are frequently followed by major changes in group membership (this study). Those 

changes could have important implications. The advantages for the group receiving 

individuals may be related to the increase in the number of cooperative individuals vs. the 

cost of lowering the internal kinship (West et al. 2006). Another obvious advantage is to 

promote exogamous mating, thus reducing inbreeding and its deleterious consequences. For 

non-kin individuals, direct benefits may be related to increased probability of survival, mating 

success, successfully raising offspring, and successful dispersal (Clutton-Brock 2002). 

Inbreeding avoidance  

Our results suggest that giant otters have some inbreeding avoidance strategy, because 

inbreeding was not verified despite the indication of natal philopatry. It is unclear how giant 

otters avoid inbreeding., but some animals actively avoid mating with close kin via olfaction 

(DeWoody 2005) and the existence of female mate choice is suggested for giant otters 

(Schweizer 1992; Carter & Rosas 1997). Moreover, copulations outside the group apparently 
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allow outbreeding without dispersal (Keane et al. 1996) and short distance dispersal may be 

probably sufficient to avoid inbreeding (Lawson Handley & Perrin 2007). 

Except for one couple, all dominant pairs were unrelated or distantly related (two 

couples). The only dominant pair strongly related (r=0.5) was living in a marginal habitat and 

under stressful environmental conditions.  Additionally, cubs were not present during the time 

we monitored this group and therefore it is possible that they did not mated. 

The evolution of sociability in giant otters 

Most mustelids live alone or in pairs (Gittleman 1989). For giant otters the advantages 

of living in conspicuous and tight groups are unclear (Kruuk 2006). Assistance in hunting 

large prey and defense against predators are traditionally considered the main evolutionary 

constraints to explain sociality in carnivores (Macdonald 1983). Giant otters feed mainly on 

small prey (mainly fish) and participate in little cooperative feeding (Kruuk 2006). However, 

acquisition, inheritance, and/or defense of a high-quality territory could be an important 

evolutionary force selecting for group living in giant otters. Avoidance of predation by larger 

predators such as black caimans (Melanosuchus niger) and jaguar (Panthera onca), has been 

suggested to explain why giant otters form groups (Kruuk 2006; Brecht-Munn & Munn 

1988), and defense against aggression from adjacent groups and ⁄or solitary conspecifics has 

been proposed for giant otters in the Pantanal (Leuchtenberger & Mourão 2009).  

Alloparental care may also be a factor determining the giant otter social system. In 

cooperatively breeding vertebrates, nonbreeding helpers raise young produced by dominant 

breeders (Clutton-Brock 2002). This type of social system is characterized by reproductive 

suppression (Wilson 1980; Keane et al. 1994). Indirect fitness benefits have been posited as a 

primary reason for the evolution of cooperative behavior (Hamilton 1964), although there is 

increasing evidence that helpers can be unrelated to the young they are raising (Clutton-Brock 

2002). Moreover, subordinates can also breed, though at lower frequency, therefore obtaining 

some direct fitness benefits (e.g. Lycaon pictus, Girman et al. 1997; Suricata suricata, Griffin 

et al. 2003; Vulpes vulpes, Iossa et al. 2009). These conflicting studies suggest that different 

evolutionary mechanisms may be acting to maintain carnivore societies (Gompper & Wayne 

1996; Clutton-Brock 2002). 

For giant otters, the possibility of substituting an alpha individual and the benefits of 

inheriting a group with an established territory may compensate for periods of reproductive 
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suppression. Moreover, the presence of two lactating females in the same group does not 

seem to be uncommon (Rosas & Mattos 2003; Leuchtenberger & Mourão 2009; this study), 

and paternity studies are needed to confirm the degree of reproductive suppression in giant 

otters subordinate individuals.  

Finally, territory availability and quality probably affect giant otter social dynamics. 

For a giant otter, the decision to disperse and attempt to establish its own territory comes at 

the cost of increase in the likelihood of serious injuries or death, especially in environments 

where all potential territories are occupied. Kin cooperation is a selective pressure that may 

provide further competitive advantages to residents and thereby promote philopatry (Lawson 

Handley & Perrin 2007).  

The social system of giant otters is much more complex than anticipated. Groups are 

not formed exclusively by dominant pairs and their offspring, although they are mostly 

composed of relatives. The evolutionary mechanisms that lead to the high relatedness 

variance within giant otters groups is unclear, but we believe that high migration rate of 

individuals across groups, extra-pair copulation and subordinate reproduction can play an 

important role, as they do in other apparently monogamous species.  
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Figure 3-1 -Map of the study area showing the sites where genetic samples were collected (red dots), 

from November 2008 to October 2010. 
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Figure 3-2 (a) Relatedness (r) of all possible dyads for 52 giant otters in 13 groups; (b) r of dyads of 

otters from different groups; (c) r of 103 dyads within groups. Samples were collected from November 2008 to 

October 2010 in the Miranda-Vermelho Rivers and Estrada Parque Pantanal highway, in the southern Pantanal 

of Brazil. 
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Figure 3-3 - Pairwise relatedness estimates for (A) all sampled males and (B) all sampled females 

plotted against the distance between the centers of group territories of the compared giant otters. Mantel tests 

indicate that both sexes were negatively related with distance, but this effect is stronger in females (robs=-0.279, 

P=1) than in males (robs= -0.124, P= 0.998). Dashed lines are simple linear fits of all data, and continuous lines 

are simple linear fits after excluding the dyads within groups (i.e. distance=0). 
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Table 3-1 -Mean relatedness (r) within groups of giant otter, sex and social status, in stretches of the Miranda and Vermelho Rivers, in the Pantanal of Brazil, from 

November 2008 to October 2010. Numbers within parentheses indicate the number of individuals included in genetic analyses.  

Group1 size All members Alpha pair Subordinate 
Alpha-to-

subordinate 
Female Males Females-to-males 

BAB 10 0.304 (8) ≤ 0.033 (3)2 0.239 (6) 0.411 (8) 0.332 (5) 0.326 (3) 0.281 (8) 

NOV 9 0.187 (8) 0 0.251 (6) 0.124 (8) 0 (2) 0.154 (6) 0.245 (8) 

GEP 7 0.220 (6) 0.5 0.089 (4) 0.283 (6) 0 (2) 0.273 (4) 0.207 (6) 

BMi 6 0.217 (5) 0 0.470 (3) 0.127 (5) 0.354 (2) 0.307 (3) 0.149 (5) 

EXC 6 0.439 (4) 0 0.632 (2) 0.500 (4) -  0.544 (3) 0.333 (4) 

AAZ 6 0.402 (4) - - - 0.142 (2) 0.497 (2) 0.443 (4) 

BOT 8 0.357 (3) 0.192 -  0.439 (3) -  0.500 (2) 0.285 (3) 

GD4 4 0 (3) - 0 (3) - -  0 (2) 0 (3) 

PMA 4 0.001 (3) 0.003 -  0 (3) 0 (2) -  0.002 (3) 

EP1 2 0.160 (2) 0.160 - - -  -  0.160 (2) 

Mean  5.5 0.229 (46) 0.099 (17)2 0.280 (24) 0.269 (37) 0.138 (15) 0.325 (25) 0.211 (46) 

1Groups with only one sampled individual were not included. 

2One alpha female died and was replaced 
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Table 3-2. Variability levels in 52 giant otters from Pantanal. N indicates sample size, Na number of 

alleles observed, Ho observed heterozygosity, He expected heterozygosity, NE-1P and NE-2P probability of non-

exclusion of a parent, unknowing both or one of them, respectively, Null estimated null allele frequency. 

 

 N Na Ho He NE-1P NE-2P Null 

Pbra01  48 4 0.438 0.531 0.857 0.726 +0.1123 

Pbra02  52 5 0.827 0.766 0.640 0.459 -0.0457 

Pbra05  52 4 0.750 0.702 0.728 0.559 -0.0382 

Pbra08  46 3 0.500 0.519 0.868 0.762 +0.0212 

Pbra09  51 4 0.529 0.511 0.870 0.732 -0.0139 

Pbra10 51 4 0.314 0.312 0.951 0.834 +0.0151 

Pbra11 51 3 0.608 0.567 0.842 0.698 -0.0552 

Pbra14 52 4 0.500 0.464 0.893 0.772 -0.0415 

Pbra17 51 4 0.784 0.736 0.696 0.523 -0.0430 

Pbra20 51 4 0.706 0.757 0.673 0.497 +0.0297 

Pbra21 50 6 0.820 0.707 0.710 0.537 -0.0857 

Pbra24 51 5 0.647 0.728 0.690 0.512 +0.0469 
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Síntese 

Pesquisadores da vida animal têm se beneficiado de diversos avanços tecnológicos. 

Análises moleculares possibilitam o acesso à informação acurada sobre paternidade, 

parentesco, padrões de dispersão, entre outros, revolucionando o conhecimento sobre os 

sistemas sociais das espécies e embasando medidas de conservação e manejo para estes 

animais (DeYoung e Honeycutt, 2005; De Woody, 2005).  

Ariranhas são animais sociais que apresentam uma forte cooperação entre os 

indivíduos dos grupos (Duplaix, 1980) e interações agonísticas com grupos vizinhos (Mourão 

e Carvalho, 2001; Ribas e Mourão, 2004). Seu sistema social tem sido descrito como 

monogâmico e observações de comportamento sugerem que os grupos são compostos por um 

par dominante reprodutivo e seus filhotes de anos subseqüentes, que não reproduzem 

(Duplaix, 1980; Schweizer, 1992).  

Ariranhas defecam e urinam em latrinas comunais e misturam os dejetos durante o 

comportamento de marcação (Duplaix, 1980). Assim, mucos isolados são o único tipo de 

amostra não invasiva disponível para estudos sociais. Entretanto, raramente o pesquisador 

consegue associar a amostra ao animal excretor, o que é imprescindível para estudos de 

parentesco e paternidade. Neste estudo, análises de DNA de amostras de mucos tiveram uma 

baixa taxa de sucesso, e apenas 17% das amostras foram adequadas para as análises. Além 

disso, amostras genéticas não invasivas são propensas a erros de genotipagem, associados à 

pequena quantidade ou baixa qualidade de DNA disponível na amostra (Taberlet et al., 1997) 

e resultados acurados podem apenas ser obtidos através da confirmação dos pares dos 

genótipos através da replicação das análises (Waits e Paetkau, 2005; Hansen et al., 2008), 

tornando os custos de laboratório mais caros do que aqueles de amostras de tecido e sangue.  

Recentemente, ariranhas estão sendo capturadas para estudos de radiotelemetria e 

amostras genéticas têm sido coletadas oportunisticamente (Silveira et al., 2011). Nesta 

metodologia, os animais são capturados com redes na entrada da loca e não é possível para o 

pesquisador escolher o animal a ser amostrado. Este método é invasivo, com a necessidade de 

sedação dos animais, além de demandar uma logística complicada e cara.  

O método de retirada de tecido de animais silvestres através de dardos de biópsia 

lançados por um projetor de Co2 vem sendo utilizado em grandes vertebrados terrestres 

africanos (Spong et al., 2002; Muwanika et al., 2003; Moueix 2006), mas não há precedente 
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de seu uso em vertebrados terrestres Neotropicais. Ariranhas adultas são bons candidatos para 

amostragem com dardos de biópsias, uma vez que são animais grandes, diurnos e conspícuos. 

Além disso, ariranhas passam grandes períodos do dia em terra, utilizando latrinas, subidas 

para as locas ou pegando sol nos barrancos, o que facilita as emboscadas.  

Dardos de biópsia foram capazes de coletar amostras de tecido de alta qualidade de 

DNA, de um grande número de ariranhas (n=41), há um custo menor e de forma menos 

invasiva do que a captura. A outra grande vantagem do método foi à possibilidade de 

amostrar indivíduos específicos, imprescindível em estudos de parentesco. Os animais não 

mostraram efeito adverso à amostragem e dardos com pressão regulada e bem direcionados 

não são capazes de prejudicar seriamente os indivíduos. Eu estou convencida de que o método 

mais eficaz para obter amostras biológicas de ariranhas selvagens, até agora, é através de 

dardos de biópsia.  

Microssatélites são os marcadores ideais para acessar estrutura populacional e 

parentesco das populações selvagens (Queller et al., 1993). Neste trabalho, 14 loci 

polimórficos de microssatélites específicos para P. brasiliensis foram isolados, sendo 12 deles 

apropriados para as análises e todos com alta resolução para análises de paternidade (Ribas, et 

al., 2011).  

Todos os 50 indivíduos de ariranhas genotipados pertenciam a uma única população, 

indicando substancial fluxo gênico na escala examinada. A variabilidade nuclear encontrada 

neste estudo para a população do Pantanal estava na faixa observada para ariranhas em 

escalas geográficas maiores (Pickles et al., 2011b) e para outras lontras (Aguilar et al., 2008; 

Mucci et al. 2010; Latch et al. 2008).  

Os grupos de ariranhas foram geralmente compostos por um casal dominante não 

relacionado e seus parentes próximos. Entretanto, uma alta diversidade de graus de parentesco 

dentro dos grupos foi encontrada, desde grupos formados por pais e filhotes, passando por 

grupos de subordinados com diferentes graus de parentesco entre si e em relação aos 

dominantes, até grupos de indivíduos completamente não relacionados, sugerido neste 

trabalho como grupo de dispersores. Estes resultados contradizem o conhecimento corrente de 

que grupos de ariranhas são exclusivamente formados por um casal dominante reprodutor e 

seus filhotes de anos subseqüentes (Duplaix, 1980; Schweizer, 1992; Carter e Rosas, 1997).   

Nossos dados sobre dispersão em ariranhas foram conflitantes. A razão sexual 

encontrada foi enviesada para machos e o grau de parentesco foi maior entre machos dentro 

dos grupos, sugerindo a maior retenção deste sexo nos grupos. Ao mesmo tempo, todos os 
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solitários dispersores que tiveram o sexo conhecido (6 de 13) eram machos, sugerindo que os 

machos são os dispersores (Schweizer, 1992). Duas fêmeas subordinadas foram vistas 

substituindo as dominantes na hierarquia do grupo, e em ambos os casos as subordinadas 

eram parentes em primeiro grau das matriarcas, indicando que pode haver uma pressão para a 

filopatria entre as fêmeas. Além disso, houve uma correlação negativa entre parentesco e 

distância entre territórios mais forte entre as fêmeas do que entre os machos, sugerindo um 

maior grau de filopatria para fêmeas.  

O sistema social em ariranhas é mais complexo do que o previsto. Grupos não são 

formados exclusivamente por um casal reprodutor e seus filhotes, ainda que geralmente sejam 

compostos por parentes próximos. Os mecanismos evolutivos que levam à alta variação de 

parentesco dentro dos grupos de ariranhas ainda não estão claros, mas alta taxa de migração 

de indivíduos entre os grupos, cópula extra-par e reprodução de subordinados podem 

desempenhar um papel importante, como acontece em outras espécies aparentemente 

monogâmicas.    
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Apêndices 

Giant otters feeding on caiman: evidence for an expanded thophic niche of 

recovering populations 
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