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Sinopse    

 

Este estudo foi realizado em duas áreas na Amazônia Central, a Reserva Ducke ao norte de 

Manaus e o interflúvio Purus-Madeira, ao sul do Rio Amazonas. Ambas áreas apresentam 

lençol freático superficial mas propriedades físico-químicas do solo distintas e o regime de 

precipitação varia entre as áreas. Investigou-se a importância da profundidade do lençol 

freático para as variações de composição de espécies de plantas de diferentes formas de 

vida. A estrutura da floresta, foi caracterizadas pela densidade de caules, massa média das 

árvores e altura do dossel. Foi avaliada a relação desses componentes estruturais com 

fatores ambientais que interagem entre si, como a textura do solo, fertilidade, profundidade 

do lençol freático e chuva.  Além disso, foi investigada a contribuição dos fatores estruturais 

(densidade de caules e massa média individual) e de gradientes ambientais para as variações 

nos estoques de biomassa da floresta. 

Palavras-chave: Diversidade florística, estrutura da floresta, biomassa, floresta tropical, 

gradientes ambientais, água no solo. 
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Resumo 

 

A relação entre distribuição de espécies, estrutura da floresta e gradientes ambientais é um 

tema central em ecologia. No entanto, as relações de funcionamento da floresta considerando 

a grande variabilidade ambiental na Amazônia ainda são pouco conhecidas, especialmente em 

áreas onde o lençol freático é superficial. Nesta tese, investiguei o papel de gradientes de 

chuva, profundidade do lençol freático e características físicas do solo nas variações da 

composição florística, estrutura da floresta e estoques de biomassa na Amazônia Central. 

Avaliei se um novo indicador de profundidade de lençol freático obtido de sensoriamento 

remoto pode ser usado como preditor de variações na composição florística de diferentes 

formas de vida (capítulo 1), como componentes estruturais da floresta (densidade de 

indivíduos e massa média individual) e estoques de biomassa são influenciados por gradientes 

de precipitação e características do solo (capítulo 2), e se gradientes ambientais ligados ao 

suprimento de água no solo são fatores limitantes para a altura do dossel (capítulo 3). O 

primeiro estudo foi realizado na Reserva Ducke ao norte de Manaus, onde o relevo é 

dissecado e as áreas próximas dos cursos d’água tem lençol freático raso e são arenosas. Os 

estudos relatados nos capítulos 2 e 3 foram desenvolvidos ao longo do interflúvio Purus-

Madeira, onde o relevo é relativamente plano, o lençol freático é raso, mesmo distante dos 

cursos d’água, e o solo é predominantemente siltoso. A composição de espécies de plantas 

teve uma forte relação com o índice de profundidade do lençol freático na floresta de terra-

firme ao norte de Manaus, sugerindo que o acesso ao lençol freático tem um papel importante 

para o estabelecimento de espécies. As florestas em áreas com lençol freático raso 

apresentaram maior variação na composição de espécies. Esse padrão pode estar associado ao 

maior dinamismo da vegetação nessas áreas, onde o volume de solo aerado para o 

desenvolvimento de raízes é limitado, a ancoragem é baixa devido ao solo arenoso e os 

indivíduos estão mais suscetíveis a morte por desenraizamento. As áreas onde há maior 

variação na composição de espécies podem se estender por centenas de metros de distância do 

curso d’água e não são protegidas pelos critérios atuais da legislação ambiental brasileira, que 

leva em conta distâncias horizontais da drenagem (30 m para o caso do porte dos cursos 

d’água estudados). Os níveis de flutuação do lençol freático estão correlacionados com as 

características físicas do solo, como profundidade efetiva para o desenvolvimento de raízes, e 

condições anóxicas. Solos mais rasos e impeditivos sustentam florestas com indivíduos de 

menor massa e em maior adensamento, o que suporta a hipótese de que solos mais restritivos 
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estão associados a florestas mais dinâmicas. Solos rasos, siltosos e com lençol freático 

superficial também estiveram associados a florestas com dossel mais baixo, sugerindo que o 

excesso de água e o espaço reduzido para o desenvolvimento de raízes são limitantes para o 

crescimento da floresta. O efeito positivo de estações secas mais prolongadas sobre a massa 

média dos indivíduos também indica limitações ao acúmulo de biomassa relacionadas ao 

excesso de água em áreas de lençol freático superficial. Os resultados dos três estudos 

sugerem que florestas sobre lençol freático raso e solos com características físicas impeditivas 

têm estrutura mais raquítica e provavelmente são mais dinâmicas e com maior variação na 

composição de espécies. A limitação de crescimento por excesso de água no solo parece ser 

um mecanismo subestimado para entender a estrutura e funcionamento das florestas sobre 

lençol freático superficial na Amazônia Central, e isso implica que as expectativas atuais de 

repostas da floresta à mudanças climáticas devem ser revistas. 
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On the interactions between forests, rainfall and soil in shallow water-table 

areas in Central Amazonia 

 

Abstract 

 

A central issue in ecology is the relationship between environmental gradients, species 

composition and forest structure. However, there is large environmental variability in 

Amazonia and these relationships have been little studied, especially in areas where the water 

table is shallow. I investigated the role of rainfall, water-table depth and soil physical 

properties on the variation in floristic composition, forest structure and biomass stocks in 

Central Amazonia. I evaluated if a new proxy for water table depth derived from remote 

sensing can be used as a predictor of floristic composition in different life forms (chapter 1), 

how forest structure components (stem density and the average individual mass) and biomass 

stocks are affected by rainfall gradients and soil properties (chapter 2), and if environmental 

gradients linked to soil water supply are limiting factors to canopy height (chapter 3). The 

first study was conducted in Reserva Ducke, north of Manaus, where the relief is dissected 

and the areas close to the streams have shallow water tables and sandy soils. The studies 

presented in chapters 2 and 3 were conducted in the Purus-Madeira interfluve, where the 

relief is relatively flat, the soil is predominately silty, and the water table is shallow even far 

from streams. Plant-species composition was strongly related to the proxy for water-table 

depth in the terra-firme forest north of Manaus, suggesting that water-table access 

differentially affects species establishment. Forests over shallow water tables had larger 

variation in species composition. This pattern may be associated with more dynamic forests in 

areas where the aerated soil volume for root development is limited by the shallow water 

table, anchorage is low due to sandy soils and individuals are more susceptible to death by 

uprooting. The areas where with most variation in species composition extend to hundreds of 

meters from the streams. Brazilian environmental law does not fully protect these areas of 

shallow water table because it considers only short horizontal distances from streams (30 m 

for small streams).  Water table fluctuations are correlated with soil physical properties, such 

as the effective depth to which roots develop, and anoxic conditions. Shallower and more 

impeditive soils sustained forests with lower mean individual mass and higher stem density, 

supporting the hypothesis of a more dynamic forest over more restrictive soils. Shallow silty 
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soils and superficial water table were also associated with lower canopy heights, suggesting 

that water excess and reduced space for root development limit forest growth. The positive 

effect of longer dry seasons on mean individual mass also indicates limitations to biomass 

accumulation related to water excess in areas of shallow water table. The results of the three 

studies suggest that forests over shallow water table and impeditive soils to root development 

are more rachitic in structure, and probably are more dynamic, with larger variation in species 

composition. Growth limitation by water excess seems to be an underappreciated mechanism 

affecting the structure and functioning of forests over shallow water table in central 

Amazonia, implying that current expectations of forest responses to droughts should be 

reconsidered. 
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Capítulo 2 - Linking forest structure and stand biomass along natural 

disturbance gradients in central Amazonia 

Figure 1. Map of the study area showing the 600 km transect along the interfluve between the 

Purus and Madeira Rivers in central Amazonia. Eleven research sites (1 - 11) are located 

along the transect. Each site has 5 1ha plots where trees were measured. Boxplots show 

the variation in stand biomass, density of stems and average individual mass along the 

transect. Stand biomass and density of stems show higher values in the central region of 
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the interfluve and lower values in the north and southwestern extremes. The mean 

individual mass shows an opposite pattern. ......................................................................... 84 

Figure 2. Relationships between (left) mean individual mass and density of stems (r2 = 0.75, 

scaling factor, b = -0.67); and (right) stand biomass and the density of stems (r2 = 0.42, 

scaling factor, b = 0.33) for individuals with dbh ≥ 1 cm in 55-1ha plots in central 

Amazonia. Variables were log-transformed and both relationships were statistically 

significant (p < 0.001). The individual mass relationship agrees with self-thinning 

theory, while the relationship between total stand biomass and density does not—self-

thinning predicts a negative relationship. ............................................................................. 85 

Figure 3. Cumulative proportions of stand biomass in 2cm size classes over all 55 1-ha plots 

along the Purus-Madeira interfluve, in central Amazonia (upper). The lower graphs show 
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Figure 5. Partial relations from multiple regressions investigating the effects of dry-season 

length, frequency of storms, soil-available phosphorus and soil physical restrictions on 
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marginal = 0.52) 
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marginal = 0.57) in forests along the Purus-Madeira 

interfluve, in central Amazonia. Fitted lines indicate fixed effects probabilities  < 0.05 in 

the linear mixed-model analyses excluding outliers (open circles, see the main text for 
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Figure 6. Path analysis showing the magnitude of direct effects (top), given by standardized 
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biomass. Arrow width indicates the relative strength of the effects and the dashed line 

show no effect (p ≥ 0.05). Asterisks indicate significance levels (*** p ≤ 0.001 ,** p < 
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Introdução Geral  

 

Um tema central em ecologia é a relação entre fatores ambientais e variações na 

estrutura e composição de espécies da floresta. Diversos estudos em florestas tropicais 

investigaram às diferenças em diversidade florística e características estruturais das florestas 

em função da sazonalidade de chuvas, fertilidade e tipos de solo (Gentry 1988; Phillips et al. 

1994; Vormisto et al. 2000; ter Steege et al. 2003; Malhi et al. 2006; Castilho et al. 2006; 

Peña-Claros et al. 2012). No entanto, pouco se sabe sobre essas relações em florestas de terra-

firme em que o lençol freático é raso (Jirka et al. 2007; Ferry et al. 2010).  

O lençol freático raso parece ser uma característica comum em escala global (Fan, Li, 

& Miguez-Macho 2013) e também na Amazônia, onde estima-se que cerca de 36% da bacia 

tem lençol freático com profundidade < 5m e cerca de 60% tem o lençol com profundidade < 

10m (Fan & Miguez-Macho 2010). O lençol freático pouco profundo pode sustentar o 

funcionamento das florestas durante a estação seca pelo acesso direto das raízes à zona 

saturada ou à franja capilar (Miguez-Macho & Fan 2012), que é a água que sobe da zona 

saturada pelos poros do solo por capilaridade. Se por um lado o lençol freático superficial 

pode contribuir para manutenção da evapotranspiração e crescimento das plantas durante a 

estação seca, é provável que, nos períodos em que o nível do lençol é mais superficial, 

existam condições desfavoráveis na zona de raízes devido a depleção de oxigênio no solo. O 

lençol superficial portanto, pode ter efeitos negativos, como a limitação de processos 

fisiológicos ativos e restrição do desenvolvimento de raízes (Nicoll & Ray 1996), 

comprometendo a tomada de nutrientes, crescimento e ancoragem. 

As características físicas do solo, como densidade e textura, também exercem um 

papel importante no desenvolvimento das raízes, tanto pelo impedimento em caso de solos 

densos  (Taylor & Brar 1991) como pelo “estímulo” de busca de água em solos de textura 

grossa que têm baixa capacidade de retenção (Jackson, Sperry, & Dawson 2000). Solos com 

caraterísticas físicas mais restritivas ao desenvolvimento de raízes podem estar associados a 

florestas mais dinâmicas e de menor porte, sendo um provável iniciador de distúrbios 

endógenos na vegetação (Quesada et al. 2012a). Além disso, em casos de distúrbios naturais 

exógenos, como tempestades de vento, solos com características restritivas ao 

desenvolvimento de raízes podem deixar as árvores mais suscetíveis a derrubada e 

desenraizamento. A importância dessas variáveis para o entendimento de diversos aspectos da 
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floresta, como composição de espécies, dinâmica demográfica e acúmulo de biomassa, 

motivaram os estudos desenvolvidos nesta tese.  

Uma das restrições para o desenvolvimento de estudos considerando a flutuação do 

lençol freático ou outras medidas de água no solo são os custos (financeiros e de tempo) para 

monitorar as variações sazonais sobre uma escala espacial relevante aos processos ecológicos. 

No capítulo 1 da tese, investiguei um novo indicador (proxy) de profundidade do lençol 

freático (a distância vertical do terreno em relação a drenagem mais próxima) derivado de 

dados de sensoriamento remoto, como preditor das variações de composição florística em 6 

formas de vida: árvores, lianas, palmeiras, arbustos, ervas e samambaias. Esse estudo foi 

realizado na Reserva Ducke, um sítio de pesquisa ecológica de longa duração que cobre uma 

área de 64 km2 e possui um banco de dados que permitiu a compilação dos levantamentos de 

espécies de plantas em cerca de 70 parcelas permanentes distribuídas sobre um gradiente 

topográfico com variação na profundidade do lençol freático.  

A Reserva Ducke é uma área de floresta ombrófila densa de terra-firme localizada ao 

norte de Manaus. O relevo nessa região é bem dissecado pela rede de drenagem (com cursos 

d’água perenes) e apresenta platôs, áreas mais altas de solos argilosos e bem drenados, e 

baixios, áreas próximas dos cursos d’água com solos arenosos que ficam encharcadas pelo 

transbordamento do lençol freático durante a época chuvosa (Chauvel, Lucas, & Boulet 

1987). A região ao norte de Manaus têm importantes sítios de pesquisa e é uma das áreas mais 

bem estudadas da Amazônia. No entanto, os padrões de funcionamento da floresta e relações 

hidrológicas encontrados nesta região podem não se aplicar a outras partes da bacia (Malhi et 

al. 1998; Saleska et al. 2003; Huete et al. 2006). Existe uma grande variabilidade no clima e 

tipos solos na Amazônia (Sombroek 2000, 2001) e as diversas combinações edafo-climáticas 

podem resultar em padrões diferentes de estrutura e funcionamento da floresta.  

Nos capítulos 2 e 3 da tese, investiguei como a estrutura e estoques de biomassa da 

floresta variam em relação a gradientes de condições hídricas, solo e distúrbios naturais no 

interflúvio Purus-Madeira, uma região pouco estudada e de características ambientais bem 

distintas da região ao norte de Manaus. A região entre os rios Purus e Madeira, na calha sul do 

Rio Amazonas, tem solos predominantemente siltosos, mal drenados e com relevo plano 

(Sombroek 2000). Há uma considerável variação no regime de precipitação ao longo dessa 

área, muitos cursos d’água não são perenes, o lençol freático é raso (Fan & Miguez-Macho 

2010), e diversas áreas permanecem encharcadas durante o período chuvoso, mesmo estando 

afastadas dos corpos d’água. 
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No capítulo 2, investiguei como dois componentes estruturais da floresta (a densidade 

de indivíduos e a massa média individual) e os estoques de biomassa acima do solo 

comportam-se ao longo de gradientes de sazonalidade de chuvas, frequência de tempestades, 

fósforo disponível no solo e restrições físicas do solo. A densidade de indivíduos e a massa 

média individual são os componentes que determinam o estoque de biomassa de uma floresta. 

Existe controvérsia na literatura a respeito das relações entre estoques de biomassa e 

gradientes ambientais, como por exemplo, de características físicas e químicas do solo (Paoli, 

Curran, & Slik 2008; Baraloto et al. 2011). No entanto, não é conhecido se as diferentes 

conclusões resultam de variação espacial nas relações com biomassa, ou se é porque os 

gradientes ambientais podem ter efeitos distintos nos diferentes componentes da biomassa. 

Portanto, para entender as relações entre estoques de biomassa e gradientes ambientais, 

avaliei como esses gradientes atuam na biomassa de forma indireta, via densidade de 

indivíduos e massa média individual. 

No capítulo 3, avaliei métricas de um componente de estrutura vertical da floresta, a 

altura do dossel. Diversos estudos investigaram limitações biofísicas para entender a altura 

máxima das árvores (Yoder et al. 1994; Ryan & Yoder 1997; Niklas 2007), mas pouca 

atenção foi dada ao entendimento das limitações de altura causadas por propriedades 

hidráulicas do solo e suprimento de água (Jackson et al. 2000). Neste capítulo investiguei se 

as características físicas do solo, a profundidade do lençol freático e o regime de precipitação 

limitam a altura das florestas ao longo do interflúvio Purus-Madeira. Para estimar altura do 

dossel usei um sensor LiDAR (light detection and ranging) portátil que permite levantamentos 

rápidos da altura das árvores (Parker, Harding, & Berger 2004).   
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Objetivo geral 

 Esclarecer o papel de gradientes de chuva, profundidade do lençol freático e 

características físicas do solo nas variações da composição florística, estrutura da floresta e 

estoques de biomassa na Amazônia Central. 

 

Objetivos específicos 

1. Determinar se um novo indicador de profundidade de lençol freático obtido de 

sensoriamento remoto pode ser usado como preditor de variações na composição florística de 

diferentes formas de vida; 

 

2. Determinar como componentes estruturais da floresta (densidade de indivíduos e massa 

média individual) e estoques de biomassa são influenciados por gradientes de precipitação e 

características do solo; 

 

3. Determinar se gradientes ambientais ligados ao suprimento de água no solo são fatores 

limitantes para altura do dossel. 
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Abstract 

 

Background: Plant composition changes with topography and edaphic gradients that correlate 

with soil-water and nutrient availability. Data on soil water for the Amazon Basin are scarce, 

limiting the possibility of distinguishing between soil and soil-water influences on plant 

composition.  

Aim: We tested a new proxy for water table depth, the terrain height above nearest drainage 

(HAND), as a predictor of composition in trees, lianas, palms, shrubs, and herbs and 

compared HAND to conventional measures of height above sea level (HASL) and horizontal 

distances from nearest drainage (HDND). 

Methods: Plant-species composition in 72 plots distributed across 64 km2 of lowland 

evergreen ‘terra firme’ forest was summarised using Non-Metric Multidimensional Scaling 

(NMDS). NMDS scores were regressed against estimates of HAND, HASL and HDND.  

Results: Plant composition was highly correlated with the vertical distance from water table, 

capturing up to 82% of variation. All life forms showed highest turnover rates in the zone 

with seasonally water-saturated soils, which can extend 350 m from stream margins.   

Conclusions: Floristic composition is closely related to water table depth, and HAND appears 

to be the most robust available topographical metric of soil-water gradients. Brazilian 

conservation laws protecting 30 m-wide riparian buffers are likely to be too narrow to 

encompass the full zone of highest floristic turnover and may be ineffective in safeguarding 

riparian plant diversity.   

 

 

Keywords: beta diversity; HAND; distance from stream; plant species composition; soil 

hydrology; SRTM; terra firme forest; topography; tropical rain forest; water table. 
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Introduction  

 

Soil water controls many aspects of forest ecosystem dynamics, including forest 

structure (Jirka et al. 2007), vegetation-atmosphere interactions (Rodriguez-Iturbe 2000), tree 

growth and mortality (Phillips et al. 2009), and species distribution and composition (Pyke et 

al. 2001; Gibbons and Newbery 2002; Groom 2004; Engelbrecht et al. 2007; Jirka et al. 2007; 

Balvanera et al. 2011). However, few studies have investigated the direct relationship 

between the variability of soil water and plant species distribution (Engelbrecht et al. 2007; 

Comita & Engelbrecht 2009), so little is known about how assemblage composition changes 

along hydrological gradients. 

Direct measures of soil water are scarce and unevenly distributed across the Amazon 

Basin, restricting opportunities to directly relate changes in plant composition to soil-water 

gradients. It is costly and time consuming to monitor soil-water variables, such as soil 

moisture or water table fluctuations, at relevant spatial scales in the field and remote-sensing 

data that can be used to infer soil moisture have many restrictions in forested areas (Salas et 

al. 2002; Smith 2002). This seems to be the main reason that researchers often use 

topographical variables, such as slope and differences in height above sea level (HASL), to 

predict plant-composition changes instead of using soil-water variables, even when drainage 

or soil-water availability is likely to be one of the most important variables that affect species 

distributions (Tuomisto and Poulsen 2000; Costa et al. 2005; Costa et al. 2009). Therefore, 

the use of proxies for soil-water availability is a promising strategy to investigate species 

distribution and soil-water relationships in Amazonian forests (see Balvanera et al. 2011, 

Kanagaraj et al. 2011).  

Topographic position frequently controls soil-water gradients and soil properties 

(Daws et al. 2002; Brown et al. 2004), with water availability being lower in uplands and 

higher in valleys, where the water table is vertically closer to the surface. Also, areas 

horizontally far from streams tend to be more well-drained than areas horizontally close to 

streams (Campling et al. 2002; Kravchenko et al. 2002). Both vertical and horizontal 

distances from streams are useful proxies for plant-available water because soil draining 

potential is a function of vertical rise and horizontal flow (Marshall et al. 1996). It has been 

shown that plant composition changes along gradients of horizontal distance from a stream 

(Naiman et al. 1997; Sabo et al. 2005; Drucker et al. 2008; Costa et al. 2009), and horizontal 
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distances are currently used to define strips along stream margins for riparian-forest 

protection in Brazil. Horizontal and vertical distances are correlated in micro watershed 

because the terrain becomes higher with distance from the stream. Nevertheless, horizontal 

distances from stream may not represent a change in soil-water conditions in large flat areas 

connected to the drainage (Rennó et al. 2008). Such waterlogged areas may extend far from 

streams but they remain vertically close to water table. Therefore vertical distance from 

stream should be a better predictor of the hydrological condition experienced by plants, 

especially in predominantly flat topography. Silvertown et al. (1999) had shown that plant 

species segregated in water table gradients even in the absence of obvious topographic 

variation and argued that many types of plant communities may be structured by soil 

hydrology gradients. However, until now the potential of vertical distance from water table in 

driving plant composition differences has been overlooked in tropical forests since we found 

only one study addressing plant-composition changes related to water table depth in tropical 

forests (Jirka et al. 2007).  

Species distribution may be shaped by the topography-driven water gradient 

(Balvanera et al. 2011), based on distinct water requirements (Engelbrecht et al. 2007). 

Therefore, it is reasonable to expect that plant functional groups with distinctive 

morphologies, such as trees, lianas, palms, shrubs and herbs, will also respond differently to 

the gradient of topography-driven water availability. For many reasons, rooting depth may be 

a key factor that affects plant growth and survival (Groom 2004). Rooting depth is sensitive to 

water shortage or excess. Deep-rooting plants, such as trees (Nepstad et al. 1994) and lianas 

(Restom & Nepstad 2004; Schnitzer 2005) in higher topography, have more access to 

groundwater throughout the year than shallow rooted plants such as herbs. If maximum 

rooting depth plays an important role in plant water access, the distribution of shallow rooted 

plants is probably more strongly affected by topography-driven water gradients, such as 

vertical distances from water table, than deep-rooted plants. 

The test of spatially explicit proxies derived from remote sensing to predict plant composition 

changes is of great importance for extrapolations and production of regional diversity maps 

(Schulman et al. 2007; Albernaz et al. 2012). Maps of diversity are necessary for 

conservation planning and for estimates of diversity losses due to forest degradation and 

environmental changes. Detailed topographic data have become available since 2000 from the 

Shuttle Radar Topography Mission (SRTM). Even though it represents vegetation-canopy 

topography, rather than terrain topography, the SRTM digital elevation model (DEM) has 
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high vertical resolution (1 m) and free near-global coverage. As terrain topography usually 

varies much more than canopy topography, the SRTM DEM highlights geomorphological 

features and is useful as a surrogate for terrain topography and for hydrological modelling 

(Valeriano et al. 2006). Therefore, SRTM-HASL has been used as a predictive variable for 

plant species distribution (Prates-Clark et al. 2008; Raes et al. 2009) and for above-ground 

live biomass (Saatchi et al. 2007) in tropical forests. An algorithm to calculate the height 

above the nearest drainage (HAND), a proxy for vertical distance from the water table, based 

on SRTM-DEM was developed by Rennó et al. (2008). The height above the drainage was 

shown to be correlated with the water table level and hydrological conditions of the terrain 

(Rennó et al. 2008; Nobre et al. 2011), and therefore might be a better predictor of plant-

species distribution than traditional measures, such as HASL and horizontal distances from 

drainage (HDND).  

Predictors of species distributions are important to understand present distributions and 

likely distributions under climate change. Therefore, we tested the hypothesis that HAND is a 

better predictor of species composition than terrain topography or horizontal distance from 

streams for species in six plant life forms: trees, lianas, palms, shrubs, non-fern herbs and 

ferns. To test if life forms responded differently to vertical distance from water gradient, we 

compared the strength of the life-form relationships with HAND in a lowland evergreen terra 

firme forest in the Central Amazonia. We hypothesised that species composition in shallow-

rooted life forms should be better related to HAND than in deep-rooted life forms. 

 

Materials and methods 

 

Study area 

The study was conducted in the Reserva Ducke, or Ducke Forest Reserve of the 

Instituto Nacional de Pesquisas da Amazônia (INPA) in central Amazonia, located 26 km 

north-west of Manaus (2° 55' 47.80" S; 59° 58' 30.34" W). The Reserve covers 10,000 ha (10 

km × 10 km) of lowland evergreen terra-firme tropical rain forest, with a 30-37 m high closed 

canopy and emergent trees reaching 40-45 m (Ribeiro et al. 1999). Soils are derived from 

tertiary marine sediments from the Alter do Chão formation. The local relief is dissected by 

the hydrographic system, resulting in a landscape formed by plateaux and valleys, where the 
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clay fraction decreases as elevation decreases (Chauvel et al. 1987). The dominant soil type is 

clayey yellow latosol typic Haplorthox or Acrorthoxon the plateaux where the water table is 

deep, transitioning to less clayey red-yellow (Orthoxic Tropohumult or Palehumult) soils on 

slopes. Soils are sandy on the valley bottoms with hydromorphic podsols (Tropohumods–

Troporthods) (Chauvel et al. 1987) where the water table is close to surface and the soils are 

almost permanently waterlogged during the rainy season. Reserva Ducke is generally 

considered to contain relatively uniform dense forest and is not subject to flooding by large 

rivers.  

The mean annual temperature at Reserva Ducke between 1965 and 1980 was 26 oC 

and the annual rainfall ca. 2400 mm with monthly maximum in March (~330 mm) and 

minimum in August with < 100 mm (Marques-Filho et al. 1981). The dry season occurs 

between July and September, but on average only two months have rainfall lower than 100 

mm (Marques-Filho et al. 1981). The drainage system in Reserva Ducke is formed by streams 

of first to third order (Figure 1), ranging from less than a metre to ca. 10 m wide. The valley 

bottoms (flat areas along the streams, known locally as ‘baixios’) vary in size up to about 150 

m from stream margins (D. Drucker, unpublished data), and often contain swampy pools due 

to the proximity of the water table to the surface in these areas.  

Reserva Ducke has a grid of regularly spaced east-west and north-south trails covering 

64 km2. Trails allow access to 72 permanent plots regularly distributed across the landscape 

that were installed in 2000 (Costa & Magnusson 2010). The plots are separated from each 

other by a minimum distance of 1 km (Figure 1). In each plot, a 250 m long centre line 

follows the contour to minimise variation in depth to water table and soil variables within the 

plots. The width of the plot varies according to the taxa of interest (Magnusson et al. 2005; 

Costa & Magnusson 2010).  

 

Floristic datasets 

Reserva Ducke has been the site of numerous studies of plant assemblages in 

association with soil/topographical gradients (Costa et al. 2005; Kinupp and Magnusson 

2005; Costa 2006; Drucker et al. 2008; Costa et al. 2009; Nogueira et al. 2011) and an 

extensive floristic dataset exists for the area. We compiled six datasets of plants with different 

life forms frequently used in ecological studies: (1) trees, (2) lianas, (3) palms, (4) shrubs, (5) 

non-fern herbs and (6) ferns, and a combined dataset of (7) all species in the six groups 
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sampled in Reserva Ducke. These datasets include 741 plant species sampled over 72 plots 

(all life forms were sampled together in a sub-sample of 22 plots). All plants were recorded 

along the entire length of the 250 m long plot centre line in each plot. The width of the plot 

varied according to the relative abundance of groups, ranging from 1 m for ferns to 40 m for 

trees over 30 cm DBH (see Table 1). Details on the sampling protocols are available in the 

metadata associated with the data for each life form at 

http://ppbio.inpa.gov.br/repositorio/dados. 

 

Height above the nearest drainage - HAND  

HAND values were shown to be correlated with water table level categories within the 

same geological formation with dissected clayey-plateau and sandy-valley landscapes 

(Chauvel et al. 1987), about 60 km from Reserva Ducke (Rennó et al. 2008). Conceptually, 

HAND represents the relative water gravitational potential (or vertical relative draining 

potential), although no direct correlation of HAND values and soil-water potential or soil 

moisture has yet been made. The water gravitational potential is a component of the soil water 

potential, which reflects difficulty for plants to extract soil water or to avoid excess water. 

High HAND values mean large gravitational potential (high vertical draining potential) and 

low HAND values mean low gravitational potential (low vertical draining potential) and 

proximity to the water table, where lack of drainage leads to waterlogging (Nobre et al. 2011).  

The HAND algorithm developed by Rennó et al. (2008) calculates the vertical 

distance between points on the terrain and their nearest drainage, based on a digital elevation 

model (SRTM in this study). The nearest drainage for each terrain point is the stream to 

which the water from that point is drained. Therefore, the nearest drainage is not defined 

based on Euclidean distances but using flow-direction paths, which follow the topography 

(from one point to its steepest downslope neighbour) and has topological continuity. The most 

important step in the calculation of HAND values is the definition of the drainage network 

density because this is the base for the calculations of terrain vertical distances from drainage. 

This step needs field calibration for the establishment of the stream origins (the head-waters), 

which are defined by the minimum-contributing-area threshold. The lower this minimum-

contributing-area threshold the higher the drainage network density (more streams are taken 

into account). If this threshold is too low, the algorithm can create false small streams and low 

HAND values will be attributed to terrains close to these false streams. Conversely, if the 

http://ppbio.inpa.gov.br/repositorio/dados
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minimum-contributing-area threshold is too high, small streams will not be included in the 

drainage network and HAND values will be higher than the real vertical distance from the 

terrain and its nearest drainage. Different minimum-contributing-area thresholds can be used 

to represent differences in the drainage density from dry season to wet season for seasonal 

streams.  

We calculated HAND values for Reserva Ducke based on SRTM-DEM (90 m spatial 

resolution) using a 30 pixel minimum contribution area (= 0.41 km2) and validated several 

small streams and headwaters along the trail system in the field.  

Using GIS, we extracted (with bilinear interpolation) HAND values for 25 locations 

along the permanent-plot centre lines (Figure 1). Values of HAND obtained for each location 

where averaged per plot. The mean HAND values for the 72 plots ranged from 1 to 53 m 

(mean = 22 m). 

 

Horizontal distance from nearest drainage – HDND 

Horizontal distances from nearest drainage (HDND) are usually related to soil 

drainage classes (Campling et al. 2002; Kravchenko et al. 2002). Areas horizontally close to 

streams are also more likely to waterlog and to receive sediment deposits from streams. We 

calculated HDND from plots to nearest drainage using two types of distances: Euclidian 

distance (HDND-Euclidean) and water-flow direction distance (HDND-flowdir). The HDND-

Euclidean is the usual horizontal distance calculated with GIS tools in which the smallest 

distances are calculated between plots and nearest drainages, without regard to hydrological 

connection between plots and drainage. The HDND-flowdir is calculated using flow paths 

between plots and drainages, so the plots are always hydrologically connected to drainage. 

HDND-Euclidean and HDND-flowdir are highly correlated in Reserva Ducke (r = 0.95) and 

HAND is correlated with HDND-Euclidean (r = 0.80) and with HDND-flowdir (r = 0.86), 

based on data for the 72 plots of this study. 

Using GIS, we extracted (with bilinear interpolation) HDND values for 25 locations 

along the permanent-plot centre lines. Values of HDND obtained for each location where 

averaged per plot. The HDND-Euclidean values for the 72 plots ranged from 27 to 601 m 

(average = 234 m) and HDND-flowdir values ranged from 27 to 756 m (average = 250 m). 
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Height above sea level – HASL  

Height above sea level was obtained from radar data (SRTM-HASL) and from direct 

ground measurements (ground-HASL). Ground-HASL and SRTM-HASL were highly 

correlated (r = 0.94), and HAND was correlated with SRTM-HASL (r = 0.89) based on data 

for the 72 plots. SRTM-HASL was compared with HAND and HDND as a predictor of 

floristic composition changes. Ground-HASL was used only to estimate the accuracy of the 

SRTM-HASL measurements. 

SRTM-HASL data for Reserva Ducke was obtained from 

http://www2.jpl.nasa.gov/srtm/, with a horizontal resolution of 3 arc-second (90 m near the 

equator) and a vertical resolution of 1 m. The C Band of the Radar has a strong interaction 

with the vegetation canopy, so the SRTM data represents mostly the canopy surface in 

densely forested areas (Valeriano et al. 2006). We used the same procedure described for 

HAND and HDND to extract SRTM-HASL data for 25 locations along the central line of 

each plot. Values were average per plot and the SRTM-HASL ranged from 53 to 114 m. The 

average for all plots in Reserva Ducke was 82 m. 

  Ground-HASL for the centre lines in the 72 plots was accurately measured by a 

professional topographer (A. T. Cardoso e Silva) using a theodolite and the Brazilian High 

Precision Altimetric Network (http://www.ibge.gov.br). As the 250 m centre line of the plots 

follows the terrain contour, the elevation above the sea level is the same at all points along the 

centre line of the plots. Ground-HASL values are available from 

http://ppbio.inpa.gov.br/knb/style/skins/ppbio/. The values of ground-HASL ranged from 39 

to 110 m in the 72 plots. The average ground-HASL was 76 m. 

 

Data analyses 

Plant species composition matrices of each life form were reduced to one dimension 

using Non-Metric Multidimensional Scaling (NMDS). Ordinations were based on relative 

abundance (quantitative composition) and on presence-absence of species (qualitative 

composition). Ordinations of presence-absence data used the Sørensen dissimilarity index and 

quantitative ordinations were based on data standardised by total abundance per plot and used 

the Bray-Curtis dissimilarity index. The adjusted r2 of the dissimilarity matrices of original 

data regressed against the dissimilarity along the one-dimensional ordination was used to 

evaluate the adequacy of the ordinations for each life form (McCune & Grace 2002). Most 

http://www2.jpl.nasa.gov/srtm/
http://www.ibge.gov.br/
http://ppbio.inpa.gov.br/knb/style/skins/ppbio/
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variation in ordinations based on plant-species relative abundance and presence/absence was 

captured by one dimension in the NMDS. The percent of variance captured by one 

dimension-NMDS ranged from 57% for shrubs to 92% for palms (Table 2).  

To investigate if plant quantitative- and qualitative-composition changes were related 

to HAND, we tested this predictor for the six life forms and for all species using an 

exponential-decay function with three parameters (Species Composition = y0 + a exp - b* 

predictor, equation 1). We tested other non-linear functions (inverse polynomial of first and 

second order, quadratic and exponential decay with two parameters) but the exponential 

decay function with three parameters captured relationships as well or better than the other 

functions in all cases. Therefore, we only report the results of the exponential decay with 

three parameters. The delta Akaike information criterion (Δ AIC) was calculated to compare 

differences in model strength among life forms. Δ AIC > 2 indicates stronger support for a 

given model than other models in the comparison (Burnham & Anderson 2004). As the AIC 

values are sensitive to the number of sampling units (Burnham & Anderson 2004), we used 

only the plots where all life forms were sampled for model-fit comparisons among life forms. 

In order to locate positions along the HAND gradient where the rates of change in 

plant-species composition slowed along the exponential-decay gradient, we calculated HAND 

values corresponding to the part of the curve at which a change of 90% in species 

composition occurred. The same threshold (90%) was used for all plant groups to standardise 

the comparisons among groups. We identified this HAND threshold for the six life forms and 

for all species combined. 

To compare the predictive power, related to plant composition changes, of HAND 

with that of HDND and SRTM-HASL, we tested these three predictors together in multiple 

linear regressions where we selected the minimum adequate model (Calcagno & de 

Mazancourt 2010). The automated model selection, implemented by the package glmulti 

(Calcagno and de Mazancourt 2010) finds the best model among all possible models based on 

their AIC ranking. The variables were log-transformed prior to analysis to meet the 

assumptions of linear regression models. All analyses were carried out in the R-environment, 

version 2.15.1 (R Core Team 2011).  

 

 



 36 

Results 

 

Patterns of floristic composition changes 

Changes in plant-species composition were closely related to the height above the 

nearest drainage. HAND alone explained between 26% and 82% of variance in the ordination 

using quantitative species composition and all life forms had the same pattern of change in 

species composition along the HAND gradient. Higher rates of change in species composition 

occurred close to the drainage, with a decrease to almost no change as the vertical distance 

from the nearest drainage increased (Figure 2). However, the strength of this relationship 

differed among life forms (Δ AIC > 2 for all groups, Table 2). Major changes in plant species 

composition (90% of the changes) occurred within vertical distances from drainage of 8-18 m 

(corresponding horizontal distances of about 60 to 350 m), indicating that a strong change in 

composition takes place in the transition between the valley bottoms and higher elevations 

(Figure 3). This threshold of plant-species composition change varied among life forms, from 

a HAND value of 8 m in shrubs to 18 m above the nearest drainage in trees and herbs (Figure 

2).   

Qualitative-composition changes were consistent with the results of quantitative 

changes, with similar relative rates of change along the HAND gradient. However, the 

explanatory power of HAND for lianas, palms and all life forms combined was lower for 

qualitative-composition compared to quantitative-composition changes (Table 2). The 

strengths of relationships with HAND were similar between palms and shrubs (Δ AIC < 2) 

but differed among other plant groups. The distance above the nearest drainage below which 

90% of the changes in plant composition occurred for qualitative data was 8 m for shrubs, 10 

m for lianas, 11 m for palms, 13 m for ferns, 14 m for trees and 18 m for herbs.  

 

 

Predictors of floristic-composition changes: HAND versus HASL and HDND 

Changes in species composition of the plant life-form types examined and all species 

combined were more closely related to HAND than to HASL and HDND. HAND was the 

best single predictor of floristic composition and the addition of HASL and HDND to models 

did not increase model support (Δ AIC < 2, Table S1). There was no support (Δ AIC < 2 in all 
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cases) for differences between Euclidean distance and flow-direction paths for predicting 

floristic-composition changes (Δ AIC < 2), so we report only results for HDND-flowdir 

(Table 2).  

We used SRTM-HASL as the altitudinal predictor in the model selection procedures 

because SRTM data are spatially explicit, similarly to HAND and HDND, allowing 

extrapolations, while ground-HASL data are available for few locations in Amazonia, 

restricting extrapolation to other areas. The comparison between SRTM-HASL and ground-

HASL however, showed different supports for models of floristic composition. When only 

HASL predictors were considered, SRTM-HASL had more support for predictions of tree, 

palm and shrub species composition changes than ground-HASL (Δ AIC > 2 in all cases). The 

other plant life forms (lianas, herbs and ferns) were better predicted by ground-HASL than 

SRTM-HASL (Δ AIC > 2 in all cases). 

 

Discussion  

 

Changes in floristic composition along the HAND gradient 

In this study, plant-composition changes at the mesoscale were closely related to 

vertical distance from the nearest drainage (HAND), with an exponential decay of changes in 

species composition as HAND increased. About 90% of the changes in species composition 

took place below a HAND threshold of 8 to 18 m, depending of plant life form (13 m for all 

life forms combined), suggesting that soil hydrology, probably in combination with other 

edaphic features, plays an important role in determining plant-assemblage composition. 

That 90% of changes in species composition occur up to 8 to 18 m above the drainage, 

depending on life form, indicates that most changes in composition take place in areas 

affected by seasonal water table fluctuations. The upper limit of the water table in a well-

studied micro-catchment close to the Reserva Ducke has been estimated as 16 m above the 

drainage (Tomasella et al. 2008). This zone of water table fluctuation encompasses the valley 

bottom and the lower parts of slopes, and the water table level in the valley ranges from water 

at the ground surface (waterlogged) to less than 1 m below the surface at the end of dry 

season in average years (Hodnett et al. 1997; Drucker et al. 2008). This suggests that the 

seasonal water table fluctuations leading to frequent waterlogging in valleys may promote a 
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distinct plant-species composition in these areas, possibly related to higher stem mortality and 

recruitment (see Phillips et al. 1994). In the Reserva Ducke, the mortality of small trees (4 ≥ 

dbh < 30 cm) in the valleys and on the slopes was 40% higher (between 2003-2008) than on 

plateaux and uprooting was an important mode of death (Toledo et al. 2012). Uprooting may 

be caused by low anchorage due to limited production and establishment of roots in 

waterlogged anoxic conditions in valleys, by poor anchorage in the sandy soils of valley 

bottoms, and by the higher phosphorus availability in valleys and lower-slope soils that may 

reduce the investment in roots (see Toledo et al. 2012). The high stem mortality may create 

greater recruitment opportunities than on the plateaux, and that, combined with diverse seed 

rain (Harms 1997), could lead to higher species turnover through space and time in riparian 

areas. Conversely, the lower soil-water availability on the plateaux, especially in the dry 

season (Hodnett et al. 1997), associated with lower mortality (Toledo et al. 2012), could be 

selecting for establishment of a more drought-tolerant assemblage composition on the upper 

slopes and  higher lands (Newbery et al 1996; Gibbons and Newbery 2002). This could 

explain the lesser differences in plant species composition found in areas with higher vertical 

distances to the drainage.  

Other processes that may affect the pattern of compositional changes along a HAND 

gradient are differential tolerance to anoxic conditions (Joly & Crawfordf 1982; Junk 1997; 

Scarano et al. 1997; Svenning 2001; Parolin 2002), differential root : shoot biomass ratios 

(Joslin, Wolfe, & Hanson 2000) and dispersal patterns and limitations (Dalling et al. 1998; 

Ozinga et al. 2005; Parmentier and Hardy 2009). Most of these processes affect seed 

germination, individual establishment, survivorship and recruitment, and may contribute to 

the higher rates of change in species composition with distance from stream in areas vertically 

close to the drainage.  

Other factors, such as soil physical and chemical properties, are correlated with 

HAND in the Reserva Ducke and should also be considered as possible determinants of 

patterns of changes in composition. Soil texture affects water retention (Hodnett & Tomasella 

2002) in soil surface layers and in some circumstances this could counter balance the effects 

of higher vertical distances. Clay content is highly correlated with HAND in the Reserva 

Ducke (r = 0.88) and clay content can affect soil water availability for plants (Hodnett & 

Tomasella 2002). Nutrient availability is linked to soil physical properties and water 

availability (Baldwin & Mitchell 2000) and should also interact with the HAND gradient. 

Further studies in sites with distinct correlations between topography and soil characteristics, 
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e.g. Iquitos region (Western Amazonia) where clayey and nutrient rich soils are at higher 

elevations and sandy, nutrient poor soils are at lower elevations (Vormisto et al. 2000), are 

necessary to disentangling the effects of soil nutrients, soil physical properties and HAND on 

plant-composition changes. 

 

Plant life forms  

The strength of the relationship between plant composition and HAND varied among 

life forms. The six life forms differed in mean maximum plant size, resource use and 

reproductive patterns, but soil-water gradients should play an important role in establishment 

and maintenance for all plants. Tropical rainforest herbs, ferns, shrubs and palms have 

shallow root systems (Becker and Castillo 1990; Ramos et al. 2009) and our expectation was 

that compositional changes in these plant groups would be more closely related to the HAND 

gradient due to their limited access to ground water. However, contrary to this expectation, 

deep-rooted plants, such as lianas and trees, had more variation explained by HAND than 

ferns, shrubs and herbs. A possible reason is that the life forms, with shallow roots and 

smaller sizes, may depend more than the other life-history types on the small-scale and 

seasonal variation in soil water in the surface layers (see Marthews et al. 2008), rather than  

on access to deep water. Drucker et al. (2008) documented fine-scale changes in herb species 

composition along a gradient of horizontal distance from streams in the Reserva Ducke and 

ferns life cycle are highly dependent on free-water (Page 2002). The weaker relationships 

with HAND for herbs, shrubs and ferns may be due to the fact that HAND is a proxy with 

stationary measurements of vertical distances to the water table, and with relatively coarse 

spatial resolution in this study (90 m x 90 m pixels).   

Given the differences in rooting depth of the life forms, changes in turnover rates 

would be expected to occur at higher HAND thresholds for deep rooting plants and at lower 

HAND thresholds for shallow rooted-plants. Deep-rooted plants, however, may have access 

to water even at higher vertical distances from the water table, and therefore not show 

changes in composition until well away from streams. To provide further understanding of the 

role of root depth for the turnover rates, we regressed the HAND thresholds for the major 

changes of the six life forms against their respective maximum rooting depth. We compiled 

data on rooting depth in tropical forests for the six plants groups from published papers and 

unpublished information. Root depth can reach up to 18 m for trees (Nepstad et al. 1994), 0.6 
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m for palms (Ramos et al. 2009), 0.7 m for shrubs (Becker & Castillo 1990), 0.7 m on herbs 

and 0.3 m for ferns (F.R.C. Costa, unpublished data). No published data was found for root 

depth of adult lianas, but  Restom and Nepstad (2004) reported 10 m for vine seedlings. 

Therefore, we used the same depth for lianas as for trees. Based on these data, there was no 

relation between HAND thresholds for major changes in composition and maximum rooting 

depth (r2 = 0.27; P = 0.29; n = 6), indicating that this trait might not be linked to the 

differences among life forms. There is a large variation in rooting depths within life forms and 

their ontogeny (Canadell et al. 1996; Jackson et al. 1996), but the lack of available 

information on species rooting depth presently restricts detailed analysis. 

Despite the large variation in rooting deep among plant life forms, Jackson et al. 

(1996) and Galbraith (in press) have shown that the majority of the roots in tropical forests are 

within the first 2 m of the soil surface, and that root biomass decrease exponentially with 

depth. Therefore, the deep roots of trees and lianas may not contribute greatly to water 

balance. There is surprisingly little literature on this subject and further detailed studies are 

needed to investigate the relationship between rooting depth, species turnover along edaphic 

gradients, and access to the water table. 

 

HAND versus HASL and HDND 

Earlier studies have shown that tree (Valencia et al. 2004), palm (Costa et al. 2009), 

shrub (Kinupp & Magnusson 2005) and herb, including fern (Costa et al. 2005) assemblage 

compositions are correlated with HASL in Amazonian forests. In this study, we showed that 

ordinations of all species, considering the life forms listed above and lianas together, also can 

be predicted by HASL and HDND. However, we found that, on its own, HAND was a better 

predictor of plant-composition changes at the mesoscale than HASL or HDND, even in the 

Reserva Ducke, where HASL is correlated with soil physical properties, nutrients and water 

availability (Chauvel et al. 1987; Hodnett et al. 1997). The main difference between HAND 

and HASL is that HAND values are relative to the local drainage (not to sea level), so it is a 

quantitative descriptor of the vertical distance from the saturated zone or the water table 

(Rennó et al. 2008; Nobre et al. 2011). For plants, access to ground water will be lower in 

areas with high HAND values, independent of HASL. Hydrologically similar terrains, such as 

valleys (or riparian areas), can be located at different HASL, but their HAND values will be 

near zero because they are vertically close to the saturated zone. As HAND measures distance 
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to the local drainage, it should be a robust proxy for comparisons between areas located at 

different HASL. 

HDND, together with HAND, is an important variable for determining soil draining 

because long horizontal distances from streams have higher draining potential and areas close 

to streams are usually poorly drained (Bell et al. 1994; Campling et al. 2002; Kravchenko et 

al. 2002). The finding that HAND was a better predictor of floristic composition than HDND 

indicates that changes in horizontal distance from drainage should be less important for plants 

than vertical distances from water table. It also indicates that HDND might be inappropriate 

to represent flat areas near streams (i.e. large bottom valleys), because these are waterlogged 

and poorly drained areas that sometimes can have relative high values of HDND. In the 

Reserva Ducke, there was a positive correlation between horizontal and vertical distances 

from drainage, even in large valley bottoms, but the shape and direction of this relation may 

vary across sites with distinct parent material and hydro-geological histories (e.g. in case of 

terrain depressions far from streams). The consistency of HAND being a better predictor than 

HDND of floristic composition should be tested on different geomorphologies, given the 

geological complexity of the Amazon Basin.  

 

Implications for conservation strategies and climate change 

The finding that the areas of higher species turnover and distinct floristic composition 

are also the areas directly affected by the water table fluctuation has implications for 

conservation planning and prediction of climate-change effects. In Brazil, environmental 

legislation protects the riparian zones that vary in width (horizontal distance from the stream 

margins) according to the stream size. Streams up to 10 m wide, such as those found in the 

Reserva Ducke, have protected zones that are 30 m wide on each margin. Our results indicate 

that zones of 30 m width along streams margins are insufficient for conservation of riparian 

areas because they do not include the areas of highest assemblage turnover (see Figure 3). In 

the Reserva Ducke, vertical distances from drainage of 8 to 18 m, where the composition 

changes slow down, correspond to horizontal distances of about 60 to 250 m (but one plot 15 

m above the drainage was horizontally 350 m distant from a stream). Vertical distance from 

drainage, rather than only the horizontal distance, should be considered in the defining 

riparian habitats for conservation of riparian ecosystems. The critical vertical distance from 

drainage for conservation purposes could be defined by the upper limits of the water table 
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fluctuation zone and this should vary across Amazonian landscapes due to variations in 

precipitation, topography and soil properties.  

Although the long-term climate variability in Amazonia is complex, with opposite 

trends in precipitation or no clear patterns over different regions of the basin (Marengo 2004), 

large-scale numerical models project significant Amazonian drying and shift in vegetation 

types in the twenty-first century (Cox et al. 2000, 2008, Oyama 2003 but see Malhi et al. 

2009). Evidence for a transition to a disturbance-dominated regime in some parts of the 

Amazon Basin was found recently (Davidson et al. 2012), and tree-ring chronology indicates 

increasing severity of El Niño events in the last two centuries (Schöngart et al. 2004). If 

climate becomes dryer, with more severe droughts, the soil-water storage and water table will 

decrease. A decrease in the water table level would narrow the areas of highest floristic 

turnover into smaller horizontal distances from streams. Further, this would cause shifts in 

species composition in riparian areas, because of differences in drought tolerance 

(Engelbrecht et al. 2007). Plants confined to plateaux areas could migrate downhill to track 

water table level changes. However, plants already confined to environments near drainages 

may not have many options to migrate to similar environments, because there are locally no 

similar environments and most species in tropical forests are not adapted for long-distance 

dispersal (Clark et al. 2005; Colwell et al. 2008; Terborgh et al. 2011). These species could 

become endangered by lack of suitable habitat.  

 

 

Conclusions  

This study has shown that changes in floristic composition are closely related to 

HAND in central Amazonia, suggesting an important role of soil hydrology for species 

composition and turnover in terra firme forests. The highest floristic turnover was found to 

occur in areas influenced by seasonal water table fluctuations and this finding has important 

implications for forest conservation. Brazilian environmental legislation protects riparian 

forests in strips of 30 m wide from small stream margins. Our results indicate that these 30 m 

strips are far too narrow to protect the areas of high species turnover close to the water table. 

In the Reserva Ducke, we found that these areas can reach 250 m from the streams. We 

recommend that vertical distances from the drainage (and seasonal water table fluctuation) 



 43 

rather than only horizontal distances should be used in the delimitation of riparian habitats for 

conservation of plant diversity and ecosystem functioning.  

The strong relationships found between plant composition and HAND opens a 

promising opportunity to investigate plant species distribution and assemblage composition 

changes over larger scales, since HAND is based on SRTM data, available for the entire 

Amazon Basin. 
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Table 1. Numbers of species and sampling design for the six life forms sampled in the 

permanent plots of the Reserva Ducke, Manaus, Brazil. D, diameter measured at 130 cm 

from the rooting point. H, height from the ground. 

Life form Taxon included Number   

of species 

Number 

of plots 

Plot area Inclusion limit 

Trees   

 

72 0.5-1 ha > 10-30 cm DBH 

 
Burseraceae 40 

   

 
Chrysobalanaceae 46 

   

 
Euphorbiaceae 31 

   

 
Fabaceae 139 

   

 
Lauraceae 100 

   

 
Lecythidaceae 42 

   

 
Moraceae 32 

   

 
Myristicaceae 21 

   

 
Sapotaceae 69 

   
Lianas Bignoniaceae 42 32 0.25-1 ha > 1-5 cm D 

Palms Arecaceae 44 72 0.1 ha > 100 cm H 

Shrubs Rubiaceae (Psychotria) 23 57 0.1 ha No limit 

  Piperaceae (Piper) 26 57 0.1 ha > 50 cm H 

Herbs   

 

56 0.05 ha > 5 cm H 

 
Poales 22 

 
  

 
Zingiberales 27 

  
 

 
Other 12 

   
Ferns   

 
54 0.025 ha > 5 cm H 

 
Pteridophyta 21 

   
  Lycophyta 4 

   
All species All above 741 22 All above All above 
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Table 2. Percent of variance captured by quantitative and qualitative Non-Metric Multidimensional Scaling (NMDS) ordination in one axis for 

six life forms individually and all six combined (All life forms), based on data from 72 permanent forest plots, Reserva Ducke, Manaus, Barzil. 

Probabilities (P), r2
adj (r

2) and parameters of the exponential decay model (equation 1) between life form/all life forms species composition, given 

by the NMDS axis, and the three predictors: height above the nearest drainage (HAND), horizontal distance from nearest drainage (HDND) and 

Shuttle Radar Topography Mission – height above sea level (SRTM-HASL). Delta Akaike Information Criterion (ΔAIC) values for a subset of 

18 plots are presented for comparisons among models of plant composition for the six life forms. ΔAIC was calculated in relation to tree species 

composition versus HAND model, which had the most support.  

Life form Predictor Quantitative Composition Changes   Qualitative Composition Changes 

Variance explained 

NMDS -1 dimension 

(Quantitative/qualitat

ive) 

  y0 a b r2       ΔAIC   y0 a b r2       ΔAIC     P 

Tree HAND -0.31 1.54 0.13 0.72 0.00 
 

-0.21 1.31 0.17 0.74 0.00 < 0.001 

(80% / 80%) HDND -0.32 1.41 0.01 0.48 
  

-0.21 1.29 0.01 0.48 
 

< 0.001 

 

SRTM-

HASL 
-0.47 15.35 0.05 0.57 

  
-0.41 8.72 0.04 0.56 

 
< 0.001 

Liana HAND -0.68 2.75 0.16 0.82 16.06 
 

-0.48 2.49 0.23 0.72 22.81 < 0.001 

(60% / 79%) HDND -0.75 3.30 0.01 0.77 
  

-0.48 3.12 0.02 0.64 
 

< 0.001 

 

SRTM-

HASL 
-0.85 78.88 0.06 0.77 

  
-0.49 347.67 0.10 0.61 

 
< 0.001 

Palm HAND -0.38 2.40 0.18 0.67 13.98 
 

-0.16 1.16 0.21 0.41 9.88 < 0.001 

(92% / 87%) HDND -0.31 2.96 0.02 0.42 
  

-0.13 1.36 0.02 0.22 
 

< 0.001 
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SRTM-

HASL 
-0.52 36.00 0.06 0.44 

  
-0.21 18.20 0.06 0.23 

 
< 0.001 

Shrubs HAND -0.23 2.30 0.28 0.49 24.83 
 

-0.19 2.10 0.31 0.63 9.81 < 0.001 

(57% / 72%) HDND -0.23 3.13 0.03 0.35 
  

-0.18 3.30 0.03 0.43 
 

< 0.001 

 

SRTM-

HASL 
-0.35 33.10 0.06 0.26 

  
-0.39 17.50 0.05 0.42 

 
< 0.001 

Herbs HAND -0.23 1.13 0.13 0.26 8.97 
 

-0.23 1.13 0.13 0.26 16.61 < 0.001 

(64% / 65%) HDND -0.20 1.45 0.17 0.20 
  

-0.20 1.43 0.68 0.21 
 

< 0.001 

 

SRTM-

HASL 
-0.25 46.71 0.07 0.16 

  
-0.25 49.64 0.07 0.17 

 
< 0.004 

Ferns HAND -0.49 3.63 0.20 0.58 44.73 
 

-0.27 1.75 0.17 0.56 33.51 < 0.001 

(75% / 86%) HDND 0.45 4.67 0.02 0.43 
  

-0.24 1.91 0.02 0.37 
 

< 0.002 

 

SRTM-

HASL 
-0.67 80.54 0.06 0.32 

  
0.32 -0.40 24.86 0.32 

 
< 0.001 

All life forms HAND -0.38 1.73 0.17 0.84 - 
 

-0.20 1.19 0.25 0.68 - < 0.001 

(83% / 84%)  HDND -0.39 2.00 0.01 0.76 
  

-0.19 1.63 0.02 0.62 
 

< 0.001 

  

SRTM-

HASL 
-0.48 123.92 0.08 0.72     -0.24 78.44 0.08 0.42   < 0.002 
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Figures  

 

 

Figure 1. The Reserva Ducke, Manaus, Brazil grid system with 72 uniformly-distributed 

permanent plots and HAND (height above the nearest drainage) data in the background. 

Centre lines of plots follow terrain contours. 
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Figure 2. Relationships between quantitative composition changes of six life forms and all 

species combined and HAND (height above the nearest drainage), Reserva Ducke, Manaus, 

Brazil. Dashed lines show the thresholds of vertical distance from drainage below which 90% 

of the changes in species composition take place: (a) Lianas, r2adj = 0.82 and threshold of 

15m; (b) trees, r2adj = 0.72 and threshold of 18 m; (c) palms, r2adj = 0.67 and threshold of 13 

m; (d) ferns, r2adj = 0.58 and threshold of 11 m; (e) shrubs, r2adj = 0.49 and threshold of 8 

m; (f) herbs, r2adj = 0.26 and threshold of 18 m and  (g) all life forms, r2adj = 0.84 and 

threshold of 13 m. Changes in species composition were reduced to one dimension, using 

Non-Metric Multidimensional Scaling (NMDS).  
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Figure 3. A schematic view of where the major part of floristic composition changes takes 

place along the vertical distances from nearest drainage (HAND) gradient. Horizontal dashed 

lines show HAND thresholds for 90% of composition changes in shrubs (8 m), all life forms 

combined (13 m) and trees (18 m). Water table fluctuation zone is shown in grey. Horizontal 

distance from drainage (HDND) that corresponds to 18 m HAND threshold in the Reserva 

Ducke, Manaus, Brazil extends 350 m and is highlighted by the black arrow in the schema. 
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Supplementary online material – Plant Ecology & Diversity 

 

Table S1. Candidate models for prediction of composition changes in five plant life history 

types and all species combined (Flora). Three predictors: height above the nearest drainage 

(HAND), horizontal distance from drainage (HDND) and height above sea level (HASL) 

were tested in simple and multiple linear regressions. All variables were log10 transformed to 

improve normality. Minimal adequate model was selected based on Akaike Information 

Criterion (AIC). Models with Δ AIC < 2 (in bold) support no differences between models. 

HDND was calculated using flow direction paths between plots and drainage and HASL was 

derived from Shuttle Radar Topography Mission SRTM) data.  

Plant History Type Model Δ AIC  

Trees  Species composition = 1 +  HAND +  HDND 0 

 

 Species composition = 1 +  HAND 0.31 

 

 Species composition = 1 +  HAND +  HDND +  HASL 1.78 

 

 Species composition = 1 +  HAND +  HASL 2.15 

 

 Species composition = 1 +  HDND +  HASL 25.98 

 

 Species composition = 1 +  HASL 30.17 

 

 Species composition = 1 +  HDND 39.72 

Lianas   Species composition = 1 +  HAND 0 

 

 Species composition = 1 +  HAND +  HASL 1.42 

 

 Species composition = 1 +  HDND +  HASL 1.72 

 

 Species composition = 1 +  HAND +  HDND 1.74 

 

 Species composition = 1 +  HAND +  HDND +  HASL 2.82 

 

 Species composition = 1 +  HDND 5.02 

 

 Species composition = 1 +  HASL 6.78 

Palms  Species composition = 1 +  HAND +  HDND 0 

 

 Species composition = 1 +  HAND 0.98 

 

 Species composition = 1 +  HAND +  HDND +  HASL 1.22 

 

 Species composition = 1 +  HAND +  HASL 2.11 

 

 Species composition = 1 +  HDND +  HASL 20.69 

 

 Species composition = 1 +  HASL 22.38 

 

 Species composition = 1 +  HDND 24.37 

Shrubs  Species composition = 1 +  HAND +  HASL 0 

 

 Species composition = 1 +  HAND 0.82 

 

 Species composition = 1 +  HAND +  HDND +  HASL 1.87 

 

 Species composition = 1 +  HAND +  HDND 2.61 

 

 Species composition = 1 +  HDND 11.52 

 

 Species composition = 1 +  HDND +  HASL 13.13 

 

 Species composition = 1 +  HASL 18.45 
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Herbs  Species composition = 1 +  HAND 0 

 

 Species composition = 1 +  HAND +  HASL 1.59 

 

 Species composition = 1 +  HAND +  HDND 1.91 

 

 Species composition = 1 +  HAND +  HDND +  HASL 3.52 

 

 Species composition = 1 +  HDND 5.25 

 

 Species composition = 1 +  HDND +  HASL 6.46 

 

 Species composition = 1 +  HASL 7.00 

Ferns  Species composition = 1 +  HAND 0 

 

 Species composition = 1 +  HAND +  HASL 0.27 

 

 Species composition = 1 +  HAND +  HDND 2.00 

 

 Species composition = 1 +  HAND +  HDND +  HASL 2.26 

 

 Species composition = 1 +  HDND 9.41 

 

 Species composition = 1 +  HDND +  HASL 10.79 

 

 Species composition = 1 +  HASL 17.08 

Flora  Species composition = 1 +  HAND 0 

 

 Species composition = 1 +  HAND +  HASL 1.73 

 

 Species composition = 1 +  HAND +  HDND 1.96 

 

 Species composition = 1 +  HAND +  HDND +  HASL 3.72 

 

 Species composition = 1 +  HDND +  HASL 7.34 

 

 Species composition = 1 +  HDND 7.98 

   Species composition = 1 +  HASL 14.46 
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Summary  

1. A negative relationship between stand biomass and the density of stems is expected to 

develop during the self-thinning process in resource-limited forests; this leads to a large 

proportion of the total biomass occurring in large trees. Nevertheless, frequent disturbance 

regimes can reduce self-thinning and the accumulation of large trees. 

2. We investigated size-density relationships and the contribution of large trees (dbh ≥ 70cm) 

to stand biomass in 55 1-ha plots along a 600 km transect in central Amazonia. The effects of 

seasonality and disturbance gradients on forest-structure components (density of stems and 

mean individual mass) and stand biomass were examined. 

3. Stand biomass increased in forests with higher density of stems. Forests in areas with 

longer dry seasons had a lower density of stems; however, individual mass (and wood 

density) was higher in these regions. These components of biomass seem to counterbalance 

each other and no effect of seasonality was detected on stand biomass. 

4. Contrary to expectation large trees contained a low percentage of stand biomass—on 

average 5%--while half of the stand biomass was represented by small trees with diameters < 

27 cm.  This likely indicates that persistent or strong disturbance plays a critical role in forest 

structure and biomass in the south-central Amazon.  Frequent storms and soil physical 

constraints were identified as sources of disturbance in the region. Forests with higher 

frequency of exogenous disturbances showed higher stand biomass due to the increase in stem 

packing. 

Synthesis: The effects of environmental gradients on specific structural components of stand 

biomass differ such that strong positive effects on one component can mitigate or reverse 

strong negative effects on other component. Future work on the determinants of stand 

biomass should investigate the contributions of individual components to biomass and must 

reevaluate the disturbance paradigm—disturbance may lead to high densities of intermediate 

sized individuals, enhancing stand biomass. 

 

 

Key-words: aboveground biomass, community ecology, large trees, self-thinning, stem 

density, storms, tropical lowland forest.  
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Introduction 

Biomass stocks and forest structure vary widely across forest ecosystems. Since stand 

biomass is mainly a product of the average plant size and the density of stems, these forest-

structure components largely determine stand biomass. Forest structure, and therefore stand 

biomass, responds to gradients of environmental conditions and disturbance regimes 

(Urquiza-Haas, Dolman, & Peres 2007; Slik et al. 2010). Despite the recognized importance 

of these gradients, a general principle linked to resource limitation that was initially observed 

in monospecific stands seems to determine the occupation of space and biomass 

accumulation. Over time or across different communities, the average individual size 

increases with the decrease in density of stems (Westoby 1984). As plants grow there is less 

space for individuals, resulting in a self-thinning process. The self-thinning rule (Yoda et al. 

1963) describes the density-dependent plant mortality due to competition in crowded even-

aged stems. Mortality in self-thinning stands is a function of biomass accumulation that 

results from individuals occupying more area and volume as they grow (Westoby 1984). 

Self-thinning has been demonstrated in many planted and natural stands and also in 

assemblages composed of mixed species and ages (White 1981; Westoby 1984; Niklas, 

Midgley, & Enquist 2003a; Luyssaert et al. 2008). The self-thinning relationship also can be 

expressed as the inverse relationship between stand biomass and maximum density of 

individuals (Weller 1987; Petraitis 1995). A general allometric scaling model for crowded 

tree-dominated assemblages (Niklas et al. 2003a) predicts that the average plant biomass (Bi) 

scales as the -4/3 exponent of stem density (Bi = Nstems
-4/3) and the total stand biomass (TB) 

scales as the  -1/3 exponent of stem density (TB = Nstems
-1/3). These negative relationships 

with stem density imply that greater biomass stocks should be found in forests with fewer 

stems and larger individuals (Midgley 2001), and that the major part of the stand biomass 

should be found in the larger individuals in the stand.  

Evidence suggests that large trees—specifically, those defined as diameter at breast 

height (dbh) > 70 cm—comprise the largest component of biomass in forests. Nearly half of 

the stand biomass can be attributed to large individuals in mixed-conifer forests in North 

America (Lutz et al 2012) and in tropical forests in Asia (Paoli et al 2007) and Africa (Slik et 

al. 2013). In Neotropical forests, a large but variable (14 to 45%) proportion of stand biomass 

is attributed to trees with dbh > 70cm (Brown et al. 1995; Brown, Schroeder, & Birdsey 1997; 

Clark & Clark 1996; Chave, Riéra, & Dubois 2001; Chave et al. 2003; Slik et al. 2013).  
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One explanation for the variable contribution of large trees to stand biomass across 

forests may be disturbance regimes. Frequent disturbances may prevent self-thinning and the 

development of large-statured high biomass stands. By causing density-independent mortality 

disturbance may alter the densities of individuals relative to expectations of thinning theory 

and prevent individuals from reaching larger diameters (Niklas, Midgley, & Rand 2003b). If 

the disturbance regime is more important than resource limitation, the relationship between 

stand biomass and number of stems will strongly deviate from the self-thinning rule and trees 

will not fully fill canopy space. In this case, stand biomass will increase with the density of 

stems and increasing space filling in the canopy, in contrast to the negative relationship 

predicted by the self-thinning rule. Furthermore, if disturbance preferentially impact larger 

trees as in the case of prolonged droughts (Phillips et al. 2010), stand biomass may be 

concentrated in small to midsize stems because large individuals should be rare.  

In the Amazon basin, there is an east-west gradient of forest dynamics and structure 

that has been attributed to soil conditions initiating endogenous disturbance (Phillips et al. 

2004; Quesada et al. 2012a) and storms causing large exogenous disturbances, such as blow-

downs (Espírito-Santo et al. 2010). Higher turnover rates (Phillips et al. 2004) and lower 

stand-biomass stocks were found in the more fertile and less structured soils in western 

Amazonia (Quesada et al. 2012a), contrasting to the less dynamic and higher biomass forests 

in poorer well-structured soils in eastern Amazonia. If these hypotheses are correct, forest-

structure components related to biomass (density of stems and average individual size) should 

vary in relation to the frequency of storms, soil physical restrictions and fertility gradients. 

Patterns postulated to be related to disturbances are superimposed on patterns associated with 

seasonality (dry-season length) that should result in a gradient of decrease in biomass where 

the climate is more seasonal (Malhi et al. 2006). 

We investigated the relationships between stand structural variables, stand biomass, 

seasonality and environmental gradients of endogenous and exogenous disturbance in 55 

permanent plots along a 600 km transect, from near Manaus in central Amazonia to Humaitá 

on the south-western frontier of the Amazon forest. This transect along the Madeira-Purus 

interfluve is topographically relatively homogeneous, but covers gradients in seasonality, 

frequency of storms, and soil physical structure and fertility. Although most of the hypotheses 

related to biomass accumulation make similar predictions about the spatial distribution of 

biomass, dissecting overall biomass into its components (density of stems and mean 



 66 

individual mass) and within size classes allowed us to gain insights into the most likely 

mechanisms causing geographical patterns. 

 

 

Methods 

 

Study area 

The study was conducted in 55 1ha plots along a 600 km transect in the Purus-

Madeira interfluve, south of the Amazon River in central Amazonia (Fig. 1). The plots were 

distributed in 11 research sites along the BR-319, a road that has been largely abandoned for 

regular traffic since the 1970s. In each site, 5 plots were regularly distributed along a 5 km 

trail and the plots were 1 km apart. Plots were established at least 1 km from the road to avoid 

secondary forests. The Purus-Madeira interfluvial region has a relatively recent geological 

origin with unstable sediments from Late Pleistocene or Early Eocene with predominantly flat 

topography (Sombroek 2000); elevation above sea level varies from 27 to 80 meters along the 

transect (Shuttle Radar Topography data). This region is part of the Amazon basin “Loamy 

plains” (Sombroek 2000), a landform covering around 11% of the Amazon basin, including 

the low interfluvial areas of Rio Negro-Amazonas and Juruá-Purus-Madeira.  

Soils are mainly Gleysols and Plinthosols with poor water drainage and the predominant 

texture is silt to fine sand (Sombroek 2000). The water table is shallow, within 7m of the 

surface throughout the year in most of the area (J. Schietti & T. Emilio unpublished data). The 

mean annual precipitation varied from 2000 to 2400 mm, with a number of consecutive 

months with less than a 100 mm of rainfall (a threshold generally considered an indicator of 

the dry season) ranging from 1 month to the north of the transect to 4 month per year in the 

south (Sombroek 2001). Large areas are waterlogged during the rainy season, and many of the 

small streams dry out during the dry season. The vegetation is classified as lowland dense 

rainforests in the north and lowland open rainforests dominated by palms in the south 

(BRASIL 1974). 

 

Vegetation data 
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Diameter at breast height of 30,239 stems including trees and palms was measured in 

the 55 plots. The plots had a 250 m central transect that follows the terrain elevation to 

minimize variation in soil characteristics and water-table depth in the plots. We followed a 

hierarchical system to measure the trees and palms along the 250 m plot central line 

(Magnusson et al. 2005). All stems with dbh ≥ 30 cm were measured in approximately 1 ha 

(250 x 40 m), stems with dbh ≥ 10 cm were measured in a subplot of approximately 0.5 ha 

(250 x 20 m) and stems with dbh ≥ 1 cm were measured in subplot of approximately 0.025 ha 

(250 x 1 m).  

Biomass of individual trees was calculated based on diameter (D), height (H) and 

wood density (ρw). We used equation (1) for moist-forest stands from Chave et al. (2005) 

with parameters adjusted for by Feldpausch et al. (2012). 

 

Biomass = exp (−2.9205 + 0.9894 x ln(D2 ρw H))  (1) 

 

Tree height was estimated using D-H allometric equations adjusted for each of the 11 

research sites along the transect. The diameter and height of 1544 trees (on average 129 trees 

per site) were measured in different diameter classes (D. Martins, unpublished data). Heights 

were estimated by a single observer using a Vertex hypsometer (Vertex Laser VL400 

Ultrasonic-Laser Hypsometer III, Haglöf of Sweden). We used a power model to fit the H-D 

allometric equations (Table S1, Supporting Information).   

Wood density was obtained from the global wood density database (Zanne et al. 2009; 

Chave et al. 2009) for 12 plots where plant identification was available. In the other 43 plots, 

we took a core sample from the trunk of 20 canopy trees randomly selected along the plot 

with dbh ≥ 30 cm to determine the wood density by the dry weight per fresh volume. The 

mean value per plot was used for the biomass calculations of the individuals that were not 

sampled. 

The density of stems and stand biomass were extrapolated to the area of 1ha per plot. 

The average individual mass was calculated by dividing the stand biomass per plot by the 

density of stems. 

Environmental gradients 

Seasonality was calculated based on daily precipitation data interpolated from a 

network of rain gauges in the region for the period from 1973 to 2011 (CPTEC/INPE). Dry-
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season length was indexed by the mean number of months per year with precipitation < 100 

mm for the 38-year period.  

The frequency of storms was indexed by the number of days with precipitation ≥ 20 

mm in 1999, which is strongly correlated with the occurrence of blow-downs in the Brazilian 

Amazon (Espírito-Santo et al. 2010). Daily precipitation was integrated from NOAA 

(National Oceanic and Atmospheric Administration) satellites images with 4 km resolution 

and 10.7 mm band from NOAA satellites 8 (see Espírito-Santo et al. 2010 for methods 

details). 

 As a proxy of soil fertility, we assessed the total and available phosphorus (extracted 

with Mehlich-1) in topsoil samples (EMBRAPA 2011). Phosphorus was identified as the 

most important nutrient for biomass production in Amazonian forests (Quesada et al. 2012a). 

Soil phosphorus was analyzed in a compound sample derived from 6 subsamples from the 

first 30 cm depth of soil collected along the central line in each of the 55 plots.  

Soil physical restrictions were scored based on effective soil depth, a qualitative 

structural index, anoxic conditions and topography following Quesada et al. (2010). The 

scores for soil physical limitations are semi-quantitative. Summing the scores of all soil-

constraint categories we calculated the index 1 of soil physical limitations, which can vary 

from 0 to 16 (Quesada et al. 2010). Higher scores denote more limited soil conditions for 

plants. The soil physical classification was made based on soil effective depth (presence of 

roots), soil structure (bulk density) and anoxic conditions (depth of soil saturation), (see Table 

S2, Supporting Information); all determined in 2m deep pits dug in each research site and in 

soil-profile samples from all plots (D. Martins unpublished data; J. Schietti & T. Emilio, 

unpublished data).  

 

Data analyses 

 To evaluate the extent of self-thinning relationships in the Purus-Madeira interfluvial 

region we investigated the direction of the relationships between the average individual mass 

per plot or stand biomass with the density of stems by simple linear regression. All variables 

were log10 transformed. We also investigated the importance of size classes to stand-biomass 

accumulation by determining (i) the diametric classes at which half of the stand biomass, 

starting from the smallest individuals, was accumulated at the plot scale and (ii) what was the 

percentage of the stand biomass accumulated in large trees (dbh ≥ 70 cm). For the first 
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analysis, we first calculated biomass in 2 cm diameter bins before finding the half-stand-

biomass value.  

 To investigate the variations in forest-structure components and stand biomass along 

environmental gradients we used linear mixed-effect models (LMM) of the density of stems, 

mean individual mass and stand biomass against dry-season length, frequency of storms, soil 

fertility and soil physical restrictions (fixed effects). The density of stems and the average 

individual mass were log 10-transformed. Site was included in the model as a random effect 

to account for the nested design (plots within sites) (Zuur et al. 2009). One variable of soil 

phosphorus was selected by the comparison of two candidate models for stand biomass 

prediction including as fixed factors the length of dry season, frequency of storms, soil 

physical restrictions given by the index 1 and one of the two pools of phosphorus (total and 

available).  The best model was selected using Akaike Information Criterion (AIC) following 

Burnham & Anderson (2004), Table S2 in Supporting Information.  

We used the standardized coefficients (beta coefficients) in a path analyses of the 

lowest AIC linear mixed-effect models to quantify the indirect effects of environment 

gradients on stand biomass via density of stems and individual mass (by multiplying beta 

coefficients along the paths). The magnitude of the contributions of the density of stems and 

the individual mass to stand biomass were given by the beta coefficients of a multiple linear 

regression with all variables log10-transformed. The net indirect effect of each environmental 

gradient on stand biomass was calculated by summing effects via density of stems and mean 

individual mass. 

Analyses were undertaken for minimum diameters of 1 and 10 cm. Results for all 

individuals above 1 cm dbh are presented in the manuscript. Results for 10 cm diameter 

analyses are given in Table S3, Fig. S1 and Fig. S2 in the Supporting Information. All 

analyses were undertaken in R 3.0.0. (R Core Team 2013). LMM analyses were conducted 

with the package lme4 (Bates, Maechler, & Bolker 2013). Significance levels for LMM 

parameters were calculated using the package languageR (Baayen 2011) and the marginal and 

conditional LMM R2 were calculated using the package MuMIn (Bartoń 2013).  

Results  

Stand biomass in the Purus-Madeira interfluve ranged from 140 to 324 Mg.ha-1 (mean 

= 245 Mg.ha-1). The number of individuals per ha varied from 2,192 to 11,475 considering all 

individuals with dbh ≥ 1 cm, and from 450 to 1,088 considering individuals with dbh ≥ 10 cm 
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(Table 1). Stand biomass was higher in the central area of the interfluve and lower in the 

north-eastern and south-western extremes. A similar spatial pattern was found for the density 

of stems and an opposite trend for the average individual mass, with higher average individual 

mass in forests at the extremes of the transect and lower average individual mass in the central 

area of the transect (Fig.1) 

 

Forest-structure components and stand biomass  

There was a negative relationship between mean individual mass and the density of 

stems; supporting self-thinning expectations for resource-limited forests. However, higher 

stand biomass was found in forests with more densely packed stems (Fig. 2), suggesting 

additional mechanisms, such as exogenous disturbances, might play a role in stand-biomass 

accumulation in the region. Large individuals (dbh ≥ 70 cm) were rare in the forests along the 

Purus-Madeira interfluve; on average there were 1.8 trees per ha (ranging from 0 - 11 trees.ha-

1) with dbh > 70 cm, and they accounted for only 5.36% of stand biomass (Fig. 4). Between 

50 and 60% of stand biomass was stored in small to midsize classes. On average, half of the 

stand biomass was accumulated in individuals with diameters up to 27 cm. This dbh threshold 

of 50% biomass accumulation ranged from 19 to 53 cm in individual plots (Fig. 3), but in 

70% of the plots more than 50% of the biomass was accumulated in individuals with 

diameters up to 27 cm (Fig. 4). The diameter at which half of stand biomass was accumulated 

was positively correlated with the mean individual mass (r = 0.62; p < 0.001) and with 

maximum diameter in the plot (r = 0.80; p < 0.001).   

Stand biomass was higher in forests with more stems and with higher mean individual 

mass per tree. However, the magnitude of contribution of the density of stems to stand 

biomass was higher than the contribution of the mean individual mass (beta coefficients were 

1.98 and 1.53, respectively), Fig. 6. 

 

Environmental-gradient effects 

 Forests with longer dry seasons had lower densities of stems, higher mean individual 

mass and no significant trend in stand biomass (Table 02). The frequency of storms positively 

affected the density of stems and stand biomass, and lower mean individual mass was found 

in sites with higher frequencies of storms. Soils with more available P had lower density of 
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stems and lower stand biomass, but no trend was found in the mean individual mass. Soils 

with more physical restrictions had lower mean individual mass and higher density of stems. 

No trend was found for stand biomass and soil physical restriction indices (Fig 5). Three plots 

were very different from the others in the combination between stand structure and biomass 

and the environmental characteristics. Two of these plots were along stream margins and one 

had notable abundance of a monocot called “sororoca” (Phenakosperma guyanensis). The 

leverage of these putative outlier plots appeared to mask relationships with stand biomass and 

create a spurious relationship with mean individual mass. Thus we excluded these plots from 

the linear mixed-model analyses, however, they are presented in the partial regression graphs 

on Fig. 5. 

 Path analysis indicated indirect effects of seasonality, frequency of storms and soil 

characteristics on stand biomass via forest-structure components (Fig 6). Dry-season length 

had strong and opposite effects on stand biomass by both decreasing the density of stems 

(standardized coefficient, bsd = -0.91) and increasing the mean individual mass (bsd = 0.78). 

These effects counterbalanced each other and resulted in a low negative net effect (bsd = -

0.13) of the dry-season gradient on stand biomass. The frequency of storms had a positive 

indirect effect on stand biomass, by increasing the density of stems (bsd = 0.93). This positive 

effect via density of stems was stronger than the negative effect of decreasing mean individual 

mass (bsd = -0.60). Therefore, there was a positive net effect of the frequency of storms on 

stand biomass (bsd = 0.34) due mainly to the increase in stem packing. Soil phosphorus 

availability limited stand biomass negatively affecting only the density of stems (bsd = -0.42). 

No indirect effect via mean individual mass was found. Soil physical restrictions had an 

extremely low net effect on stand biomass (bsd = -0.07) because of the opposite effects of 

increasing the density of stems and decreasing the mean individual mass. 

 

 

Discussion 

The relationship between stand biomass and density of stems was positive in the 

forests along the Purus-Madeira interfluve in central Amazonia. Large trees are rare in these 

forests, they contribute relatively little to stand biomass and most of the stand biomass is in 

small- to mid-size diameter classes. These results indicate that disturbance regimes may play 

a major role in regional variation in aboveground biomass and total carbon stocks. Another 
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prediction of self-thinning theory did hold up, however: mean individual mass scaled with 

stem density according to an inverse power law (though with a -2/3 scaling exponent). Thus, 

the resource limitation and density-dependent mortality dynamics associated with self 

thinning also appear to affect biomass and forest structure. Future work should seek to 

reconcile these patterns with additional research into the mechanisms of size structured 

dynamics and regional variation in forest biomass.  

 

Relationships between stand-biomass distribution and forest-structure components  

Static size distributions may reflect disturbance regimes (Brown et al. 1997; Williams, 

Hill, & Ryan 2013) and give insights into phenomena driving forest structure (Niklas et al. 

2003b). In most plots in the Purus-Madeira interfluve, half of the stand biomass occurs in 

trees below 27 cm dbh while only around 5% occurs in large trees (>70 cm dbh). A low 

proportion of biomass in large trees is considered a structural indicator of past disturbance and 

a present recovery stage in tropical forests (Brown & Lugo 1992; Brown et al. 1997). These 

findings suggest that forests along Purus-Madeira interfluve may be experiencing regimes of 

frequent disturbances, since these can prevent trees reaching large diameters or cause higher 

mortality in large trees (Niklas et al. 2003b; Coomes et al. 2003). However, future work will 

need to consider additional factors that may control maximum tree size. 

Gap formation by mortality of large trees increases light and space availability and 

initiates a stage of understory recovery in which competitive thinning is reduced due to the 

decrease in stem density (Brokaw 1985; Clark 1992). Later in the regeneration process, the 

density of stems increases and density-dependent mortality becomes more important. If 

disturbances are frequent, the positive relationship between stand biomass and density of 

individuals found in the forests of the Purus-Madeira interfluve could be a result of recovering 

states from past perturbations in the canopy. There appears to be a balance between biomass 

accumulation driven by density-dependent and disturbance-initiated mortality in which 

resource limitation does not offset biomass accumulation from recovery states in these forests.  

 

Seasonality and natural disturbances 

Dry-season length is considered a constraint for biomass accumulation (Chave et al. 

2004; Malhi et al. 2006). We found strong indirect and opposite effects of dry-season length 
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on stand biomass via stand structural components. Forests in sites with longer dry seasons 

along the Purus-Madeira interfluve had lower densities of stems but higher mean individual 

mass. Previous studies have also shown higher density of stems in more aseasonal forests (ter 

Steege et al. 2003; Phillips et al. 2004; Slik et al. 2010). This can be linked to higher 

germination and recruitment of new individuals in wet-season conditions (Lieberman & Li 

1992), with possibly more nutrient availability associated with the soil-water regime (Baldwin 

& Mitchell 2000). The opposite trend in mean individual mass with dry-season length may be 

essentially a self-thinning result of the variation in the density of stems, or an indication that 

wet-season conditions could be unfavorable for individual biomass accumulation in this 

region. The poor soil-water drainage (Sombroek 2000) and the shallow water table in the 

Purus-Madeira interfluve (Fan & Miguez-Macho 2010) is also associated with lower light 

availability due to higher cloud coverage during rainy season. These factors could limit tree 

growth during the wet season (Paoli et al. 2008; Ferry et al. 2010; Slik et al. 2010). Despite 

the relatively strong effects of dry-season length on stand structural components, no 

significant direct effect of seasonality was found on stand biomass. It is likely that opposite 

effects of stem density and mean individual biomass counterbalanced each other, resulting in 

an insignificant overall effect of dry-season length on stand biomass. 

The frequency of storms had a positive effect on stand biomass along the Purus-

Madeira interfluve. Forests with more frequent storms displayed greater stem density and had 

lower mean individual mass. The higher density of stems is expected in more recently 

disturbed forests, as a response to gap formation in the canopy and increased resource 

availability (Brokaw 1985; Denslow 1995). Wind disturbances, such as blowdowns, are 

associated with the occurrence of heavy storms (Nelson et al. 1994; Espírito-Santo et al. 

2010) and they can open large gaps in the forest, spread over kilometers. The size distribution 

of these gaps follows a power-law function (Nelson et al 1994; Fisher et al 2008) with many 

small gaps with less than 0.1 ha (Negrón-Juárez et al. 2011) to a few large gaps that can cover 

more than 3000 ha  (Nelson et al. 1994). Small and frequent gaps can produce a mosaic of 

mixed stages forests in the landscape (Fisher et al. 2008; Chambers et al. 2013). The mortality 

of stems due to windfalls is around 20%  and mid-sized trees seem to be more susceptible to 

mortality (D. M. Marra, unpublished data). The lower mean mass of individuals in forests 

experiencing more frequent storms is likely to be a result of the higher mortality rates 

associated with wind disturbances preventing trees reaching larger sizes.  
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More fertile soils in the western Amazon usually maintain lower stand biomass than 

forests in east of the basin on less-fertile soils. This large scale pattern has been associated 

with higher versus lower turnover rates (Phillips et al. 2004), with more fertile soils being 

also more physically restrictive (Quesada et al. 2010) and supporting fast-growing species 

that invest less in mass structure and have lower wood density and lower maximum heights 

(van Schaik & Mirmanto 1985; Baker, Phillips, & Malhi 2004; Quesada et al. 2012a). In the 

Purus-Madeira interfluve, soils with more available phosphorus had lower stand biomass in 

accordance with the pattern of more phosphorus-rich soils having lower stand biomass, but no 

tendency was found in the mean mass of individuals. Stand biomass was lower due to the 

decreasing number of stems per area in soils with more available phosphorus. We would 

expect higher stem packing in more fertile soils if this results from more disturbance initiated 

by soil conditions. More disturbance would increase space and light availability for new 

recruits. The influence of phosphorus on stand biomass is controversial (Paoli et al. 2008; 

Baraloto et al. 2011b) and the mechanisms explaining lower density of stems and stand 

biomass in more phosphorus-rich soils needs further investigations.  

Our results showed that the mean individual mass decreases with soil restrictions and 

the density of stems had a tendency to increase in more restrictive soil physical conditions. 

Although no effect on stand biomass was detected, the trends in forest-structure components 

are what are expected for forests with small-sized trees due to the positive feedback caused by 

soil-initiated disturbances (Quesada et al. 2012a). The mortality caused by exogenous 

disturbances, such as windstorms, appears to be magnified by restrictive soil physical 

conditions, with trees becoming more susceptible to uprooting in shallow soils that give low 

anchorage. This mechanism may be particularly important in the forests along the Purus-

Madeira interfluve due to the high frequency of storms (Espírito-Santo et al. 2010) and the 

relatively restrictive structure of the soils in the region (Martins et al., in press). 

Accumulation of stand biomass results from a multitude of effects operating at many 

different scales. However, the effects of these on stand biomass in an area must act through 

density of stems and/or mean mass of individual trees. We have shown that the effects of 

environmental gradients on these components are variable and that even strong positive 

effects on one component may be canceled out by strong negative effects on the other. It is 

also not known how these relationships may respond to future perturbations, such as climate 

change or human exploitation of the forest. Future studies of the determinants of plot-level 

biomass in tropical forests should investigate the individual components of biomass, and 
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perhaps even and perhaps even additional decomposition to contributions of height, diameter 

and wood density. To improve our understanding and predictions of stand biomass 

distribution it is necessary to investigate the effects of environmental gradients on all 

components of biomass.  
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Table 1. Forest structure properties and environmental gradients along the Purus-Madeira 

interfluve, in central-south Amazonia.  

Stand properties 
Mean (Minimum - maximum) 

dbh >= 1cm dbh >= 10 cm 

Stand biomass (Mg.ha-1) 245.09 (140.44 - 324.32) 219.71 (128.30 - 299.71) 

Basal area (m2.ha-1) 30.72 (19.90 - 38.90) 24.92 (15.89 - 30.51) 

Stem density (individuals.ha-1) 6705.67 (2,192 - 11,475) 731.85 (450 - 1,088) 

Average individual biomass (Mg) 0.040 (0.02 - 0.078) 0.310 (0.18 - 0.56) 

Percent of stand biomass in small 

size classes (1 <= dbh < 10 cm) 10.40 (3.10 - 15.51) - 

Number of trees per ha with dbh 

>= 70 1.8 (0 - 11)  -  

Percent of biomass in trees with 

dbh  >= 70 cm 5.36 (0 - 27)  -  

Maximum diameter (cm) 82.98 (48.4 - 184.9)  -  

Environmental gradients 
    

    

Annual precipitation (mm) 2263 (2124 - 2458) 

Dry season length (months.year-1) 2.95 (2 - 4) 

Frequency of storms (days.year-1) 51.38 (35 - 60) 

Soil available phosphorus (mg.Kg-

1) 2.24 (0.65 - 6.38) 

Soil total phosphorus (mg.Kg-1) 136.09 (97.40 - 197.39) 

Soil depth score 2 (0 - 4) 

Soil structure score 2.95 (1 - 4) 

Topography score 0.18 (0 - 1) 

Soil saturation score 2.12 (0 - 4) 

Soil index 1 7.23 (2- 11) 
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Table 2. Results of the linear mixed-effect models (LMM) for the density of stems, average individual mass and stand biomass of individuals 

with dbh ≥ 1 cm in function of dry season length, available phosphorus (available P) and soil physical restrictions represented by index 1, (fixed 

effects). Sites were considered as random effect in all models. The Akaike information criterion values (AIC) and the marginal (R2
marg) and 

conditional (R2
cond) coefficients of determination (R2) are presented. Marginal R2 shows the models adjusted only considering fixed effects and 

conditional R2 correspond to the full model, including the random effect. The relative contribution of predictors is given by the standardized 

coefficients of the LMMs. Probability for each predictor is shown in parentheses. Standardized coefficients in bold have p < 0.05. 

 

Dependent 

variables 
AIC 

R2 Relative contribution of predictors 

R2
mar

g 
R2

cond Dry season length 
Frequency of 

storms 
Available P Soil restrictions   

Density of stems -69.54 0.69 0.83  -0.46 (0.000)    0.47 (0.002)  -0.21 (0.020) 0.17 (0.038) 

Individual mass -70.79 0.51 0.71 0.51 (0.002)  -0.39 (0.030) 0.11 (0.445)  -0.27 (0.026) 

Stand biomass -103.4 0.57 0.57  -0.14 (0.218) 0.30 (0.048)  -0.50 (0.003) 0.05 (0.824) 
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Figures 

 

 

Figure 1. Map of the study area showing the 600 km transect along the interfluve between the 

Purus and Madeira Rivers in central Amazonia. Eleven research sites (1 - 11) are located 

along the transect. Each site has 5 1ha plots where trees were measured. Boxplots show the 

variation in stand biomass, density of stems and average individual mass along the transect. 

Stand biomass and density of stems show higher values in the central region of the interfluve 

and lower values in the north and southwestern extremes. The mean individual mass shows an 

opposite pattern. 
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Figure 2. Relationships between (left) mean individual mass and density of stems (r2 = 0.75, 

scaling factor, b = -0.67); and (right) stand biomass and the density of stems (r2 = 0.42, 

scaling factor, b = 0.33) for individuals with dbh ≥ 1 cm in 55-1ha plots in central Amazonia. 

Variables were log-transformed and both relationships were statistically significant (p < 

0.001). The individual mass relationship agrees with self-thinning theory, while the 

relationship between total stand biomass and density does not—self-thinning predicts a 

negative relationship. 
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Figure 3. Cumulative proportions of stand biomass in 2cm size classes over all 55 1-ha plots 

along the Purus-Madeira interfluve, in central Amazonia (upper). The lower graphs show data 

for three plots, exemplifying the extremes (19 – 53 cm) and mean diameter value (19 cm) at 

50% stand biomass accumulation (dashed lines). Red bars show the biomass per 2 cm DBH 

interval and the black points show the cumulative biomass curve. 
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Figure 4. Left - Density histograms showing that more than 60% percent of the plots in the 

Purus-Madeira interfluve hold less than 5% of the stand biomass in large trees (dbh ≥ 70 cm). 

Right - Approximately 75% of the plots contained half of the stand biomass in trees with 

diameter below 27 cm. Red dashed lines show the mean values for the x-axis. 
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Figure 5. Partial relations from multiple regressions investigating the effects of dry-season 

length, frequency of storms, soil-available phosphorus and soil physical restrictions on the 

(upper) density of stems (R2
marginal = 0.70), (center) individual mass (R2

marginal = 0.52) and 

(bottom) stand biomass (R2
marginal = 0.57) in forests along the Purus-Madeira interfluve, in 

central Amazonia. Fitted lines indicate fixed effects probabilities  < 0.05 in the linear mixed-

model analyses excluding outliers (open circles, see the main text for more details). 
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Figure 6. Path analysis showing the magnitude of direct effects (top), given by standardized 

coefficients of linear mixed-models, of environmental gradients on forest-structure 

components. The indirect effects of environmental gradients on stand biomass via forest 

structure components (bottom) show the multiplicand of the standardized coefficients along 

each path and the sum of these indirect effects (net indirect effects). Note that dry-season 

length and frequency of storms have strong and opposite effects on stand biomass via density 

of stems and mean individual mass. For dry-season length, the opposite effects were 

counterbalanced and no significant effect of seasonality was seen on stand biomass. Arrow 

width indicates the relative strength of the effects and the dashed line show no effect (p ≥ 

0.05). Asterisks indicate significance levels (*** p ≤ 0.001 ,** p < 0.005 and * p < 0.05).  
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Supporting Information 

 

Table S1. Scaling exponent (a), allometric constant (b), number of measured trees (n trees) 

and the coefficient of determination (r2) for the Height-Diameter  (H-D) allometric models 

adjusted for each of the 11 sites along the Purus-Madeira interfluve in central Amazonia. H-D 

models were adjusted using power functions, H = b * Da. 

 

Site b a n trees r2 

1 3.24 0.52 60 0.84 

2 4.85 0.42 161 0.74 

3 5.17 0.38 168 0.67 

4 4.76 0.40 160 0.66 

5 4.03 0.46 110 0.71 

6 4.88 0.41 163 0.72 

7 5.58 0.39 102 0.74 

8 5.12 0.40 164 0.83 

9 4.51 0.43 156 0.75 

10 6.23 0.36 58 0.69 

11 4.13 0.46 117 0.84 

 

 

 

 

 

 

 

  



 91 

Table S2. Components of the soil physical restriction index from (Quesada et al. 2010). The 

summation of all components gives the index 1. 

Soil physical restrictions rating categories Score 

Effective soil depth (soil depth, hardpans)   

Shallow soils (less than 20 cm) 4 

Less shallow (20 to 50 cm) 3 

Hardpan or rock that allows vertical root growth; other soils between 50 and 

100 cm deep. 2 

Hardpan, rocks or C horizon ≥ 100 cm deep 1 

Deep soils ≥ 150 cm 0 

Soil structure   

Very dense, very hard, very compact, without aggregation, root restrictive 4 

Dense, compact, little aggregation, lower root restriction 3 

Hard, medium to high density and/or with weak or block like structure  2 

Loose sand, slightly dense; well aggregated in sub angular blocks, 

discontinuous pans 1 

Good aggregation, friable, low density 0 

Topography   

Very steep > 45º 4 

Steep 20º to 44º 3 

Gentle undulating 8º to 19º 2 

Gentle sloping 1º to 8º 1 

Flat 0º 0 

Anoxic conditions   

Constantly flooded; patches of stagnated water 4 

Seasonally flooded; soils with high clay content and very low porosity and/or 

dominated by plinthite 3 

Deep saturated zone (maximum high of saturation 50 cm deep); redox features 2 

Deep saturated zone (maximum high of saturation > 100 cm deep); deep redox 

features 1 

Unsaturated conditions 0 
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Table S3. Comparison of two candidate models for explaining variations in stand biomass 

(Biomassst), one including available phosphorus (Pa) and the other including total phosphorus 

(Ptot) pool. Both models included site as a random factor. The model with available 

phosphorus had the best fit based on Akaike Information Criteria, AIC, values (best fitting-

model has the lowest AIC value).  Delta AIC gives the difference in relation to the AIC value 

of the best fitting-model and values higher than 2 have low support (Burnham & Anderson 

2004).  

Model 
AIC 

value 

Delta 

AIC 

Biomassst = a + b1* DSL + b2* freq. storms + b3* Pa + b4* index 1 + site -76.95 0 

Biomassst = a + b1* DSL + b2* freq. storms + b3* Ptot + b4* index 1 + site -69.87 7.09 
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Table S4. Results of the linear mixed-effect models (LMM) for the density of stems, average individual mass and stand biomass of individuals 

with dbh ≥ 10 cm in function of dry season length, available phosphorus (available P) and soil physical restrictions represented by index 1, (fixed 

effects). Sites were considered as random effect in all models. The Akaike information criterion values (AIC) and the marginal (R2
marg) and 

conditional (R2
cond) coefficients of determination (R2) are presented. Marginal R2 shows the models adjusted only considering fixed effects and 

conditional R2 correspond to the full model, including the random effect. The relative contribution of predictors is given by the standardized 

coefficients of the LMMs. Probability for each predictor is shown in parentheses. Standardized coefficients in bold have p < 0.05. 

 

Dependent 

variables 
AIC 

R2 Relative contribution of predictors 

R2
marg 

R2
con

d 
Dry season length 

Frequency 

of storms 
Available P Soil restrictions  

Density of stems -90.16 0.39 0.64  -0.45 (0.011) 0.33 (0.124)  -0.04 (0.350) 0.38 (0.004) 

Individual mass -69.56 0.30 0.54 0.35 (0.042) 0.01 (0.956)  -0.18 (0.281)  -0.42 (0.008) 

Stand biomass -98.60 0.54 0.54  -0.07 (0.534) 0.31 (0.046)  -0.49 (0.004) 0.02 (0.965) 
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Table S5. Plot level values of stem density, individual average basal area and biomass and 

total stand biomass for all stems above 1 cm diameter and for stems above 10 cm diameter. 

 

Site 
Plot 

identification 
Stem density 

(individuals/ha-1) 

Average 
basal area 

(m2) 

Basal area 
(m2.ha-1) 

Average 
biomass 

(Mg) 

Total biomass 
(Mg.ha-1) 

M01 M01_TN_0500 3861 - 661 0.01 - 0.03 25.32 - 20.61 0.05 - 0.25 187.62 - 166.94 

M01 M01_TN_1500 3562 - 482 0.01 - 0.04 22.92 - 18.26 0.05 - 0.3 163.44 - 143.4 

M01 M01_TN_2500 2192 - 472 0.01 - 0.04 19.9 - 16.81 0.06 - 0.27 140.44 - 128.3 

M01 M01_TN_3500 3129 - 569 0.01 - 0.04 25.44 - 21.54 0.06 - 0.28 176.49 - 160.08 

M01 M01_TN_4500 3573 - 493 0.01 - 0.03 20.85 - 15.89 0.04 - 0.27 155.07 - 133.4 

M02 M02_TN_0500 4197 - 717 0.01 - 0.03 28.13 - 24.28 0.05 - 0.27 211.3 - 195.88 

M02 M02_TN_1500 5923 - 683 0.01 - 0.04 30.98 - 24.75 0.04 - 0.3 230.36 - 203.56 

M02 M02_TN_2500 3874 - 714 0.01 - 0.03 26.39 - 22.94 0.06 - 0.29 225.86 - 209.34 

M02 M02_TN_3500 6139 - 699 0 - 0.03 27.94 - 23.46 0.04 - 0.32 240.86 - 221.4 

M02 M02_TN_4500 5112 - 632 0.01 - 0.05 33.12 - 28.66 0.06 - 0.47 315.29 - 294.42 

M03 M03_TN_4500 7920 - 840 0 - 0.03 31.97 - 24.59 0.03 - 0.26 257.44 - 222.54 

M03 M03_TS_0500 7726 - 686 0 - 0.03 28.65 - 23.07 0.03 - 0.33 251.89 - 226.56 

M03 M03_TS_1500 10434 - 834 0 - 0.04 36.71 - 29.72 0.03 - 0.35 324.32 - 292.65 

M03 M03_TS_2500 3505 - 545 0.01 - 0.03 22.05 - 17.13 0.06 - 0.32 203.22 - 176.11 

M03 M03_TS_3500 6773 - 693 0 - 0.03 27.4 - 21.87 0.03 - 0.27 211.92 - 187.51 

M04 
M04_TN_(-

)0500 7533 - 893 0 - 0.03 28.6 - 22.52 0.03 - 0.19 191.33 - 166.75 

M04 M04_TN_0500 9091 - 971 0 - 0.03 33.37 - 26.66 0.03 - 0.21 234.96 - 208.06 

M04 M04_TN_1500 7950 - 1030 0 - 0.02 32.4 - 25.73 0.03 - 0.21 243.91 - 213.1 

M04 M04_TN_2500 8408 - 1088 0 - 0.02 35.1 - 27.02 0.03 - 0.2 258.86 - 220.71 

M04 M04_TN_3500 9651 - 931 0 - 0.03 33.84 - 25.3 0.03 - 0.23 251.06 - 212.12 

M05 
M05_TN_(-

)0500 8478 - 678 0 - 0.03 27.95 - 22 0.02 - 0.27 202.84 - 179.75 

M05 M05_TN_0500 8257 - 977 0 - 0.03 37.19 - 30.18 0.03 - 0.23 252.21 - 224.68 

M05 M05_TN_1500 8507 - 827 0 - 0.03 34.9 - 27.04 0.03 - 0.27 259.8 - 226.52 

M05 M05_TN_2500 10506 - 986 0 - 0.03 37.28 - 28.72 0.03 - 0.25 290.25 - 250.81 

M05 M05_TN_3500 11475 - 995 0 - 0.03 38.9 - 30.51 0.03 - 0.28 311.12 - 274.1 

M06 
M06_TN_(-

)0500 6359 - 839 0.01 - 0.04 34.82 - 29.7 0.04 - 0.29 262.4 - 241.47 

M06 M06_TN_0500 8160 - 640 0 - 0.04 34.53 - 27.56 0.03 - 0.4 281.04 - 253.48 

M06 M06_TN_1500 6609 - 529 0 - 0.05 29.71 - 24.81 0.03 - 0.4 230.05 - 212.3 

M06 M06_TN_2500 7801 - 761 0 - 0.04 35.86 - 28.05 0.04 - 0.32 279.02 - 245.45 

M06 M06_TN_3500 8312 - 752 0 - 0.04 35.22 - 28.33 0.03 - 0.3 250.91 - 224.14 

M07 M07_TS_0500 5788 - 708 0.01 - 0.04 30.93 - 24.84 0.05 - 0.35 278.76 - 248 

M07 M07_TS_1500 7726 - 766 0 - 0.04 34.35 - 27.91 0.04 - 0.37 314.75 - 283.3 

M07 M07_TS_2500 8240 - 720 0 - 0.04 34.24 - 26.93 0.04 - 0.4 322.31 - 285.29 

M07 M07_TS_3500 8052 - 852 0 - 0.03 33.66 - 27.39 0.03 - 0.28 268.08 - 240.05 

M07 M07_TS_4500 8379 - 859 0 - 0.03 35.83 - 28.26 0.04 - 0.32 314.85 - 277.4 

M08 M08_TS_0500 5725 - 605 0.01 - 0.05 33.46 - 29.83 0.05 - 0.5 313.43 - 299.71 

M08 M08_TS_1500 7365 - 725 0 - 0.03 27.17 - 21.2 0.02 - 0.21 172.83 - 150.83 

M08 M08_TS_2500 6948 - 708 0 - 0.04 31.58 - 24.89 0.03 - 0.29 230.34 - 203.56 

M08 M08_TS_3500 5970 - 610 0 - 0.04 29.45 - 23.19 0.04 - 0.34 232.38 - 205.22 
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M08 M08_TS_4500 6828 - 868 0 - 0.03 33.51 - 28.29 0.03 - 0.24 229.96 - 210.3 

M09 M09_TS_0500 6945 - 905 0 - 0.03 32.53 - 27 0.04 - 0.25 250.36 - 226.48 

M09 M09_TS_1500 9149 - 869 0 - 0.03 31.61 - 26.15 0.03 - 0.29 273.15 - 248.41 

M09 M09_TS_2500 9609 - 769 0 - 0.03 30.88 - 24.1 0.03 - 0.29 250.61 - 220.74 

M09 M09_TS_3500 9997 - 757 0 - 0.03 32.77 - 26.27 0.03 - 0.37 312.11 - 279.06 

M09 M09_TS_4500 10096 - 776 0 - 0.03 31.36 - 23.37 0.03 - 0.31 282.75 - 241.06 

M10 M10_TS_0500 6980 - 620 0 - 0.04 32.3 - 25.52 0.04 - 0.36 250.53 - 222.94 

M10 M10_TS_1500 4766 - 606 0.01 - 0.05 32.53 - 27.78 0.06 - 0.42 273.96 - 254.1 

M10 M10_TS_2500 5882 - 522 0 - 0.04 27.8 - 22.85 0.04 - 0.38 219.25 - 200.35 

M10 M10_TS_3500 4432 - 512 0.01 - 0.05 28.44 - 24.55 0.06 - 0.48 260.18 - 243.78 

M10 M10_TS_4500 5011 - 571 0.01 - 0.04 30.63 - 24.85 0.05 - 0.38 238.34 - 214.49 

M11 M11_TN_0500 4676 - 716 0.01 - 0.03 28.02 - 22.39 0.04 - 0.25 204.61 - 180.42 

M11 M11_TN_1500 3330 - 450 0.01 - 0.06 29.82 - 27.53 0.08 - 0.56 260.84 - 252.74 

M11 M11_TN_2500 4180 - 620 0.01 - 0.04 26.77 - 22.87 0.05 - 0.31 211.39 - 194.37 

M11 M11_TN_3500 3631 - 751 0.01 - 0.03 27.83 - 24.18 0.06 - 0.27 218.62 - 202.82 

M11 M11_TN_4500 4090 - 770 0.01 - 0.03 24.65 - 20.97 0.05 - 0.24 200.22 - 182.89 
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Figure S1. Relationships between (left) mean individual mass and density of stems (r2 = 0.39, 

scaling factor, a = -0.68); and (right) stand biomass and the density of stems (r2 = 0.12, a = 

0.32) for individuals with dbh ≥ 10 cm in 55-1ha plots along the Purus-Madeira interfluve in 

central Amazonia. Variables were log-transformed and both relationships were statistically 

significant (p < 0.05). 
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Summary 

1. The heights of taller trees determine forest-canopy height, which affects many aspects of 

forest functioning. Based on studies of individual tree dimensions, maximum height is 

biophysically limited under optimal growth conditions. However, environmental conditions 

such as water supply and disturbance regimes seem to prevent trees achieving their potential 

heights in many forests, resulting in environmental limitation of canopy height at the stand 

level.  

3. We investigated water table depth, soil depth, soil texture, annual precipitation and 

frequency of storms as possible environmental drivers of mean and maximum canopy height 

in 51 plots in lowland rainforest along a 600 km transect in central Amazonia. Variation in 

canopy height due to between-site variation in canopy-species composition and average 

diameter were also investigated.  

4. Mean and maximum canopy height were estimated using a portable ground LiDAR device, 

which confers rapid and standardized canopy-height assessment. The direct and indirect (via 

species composition and average diameter) influences of environmental gradients on canopy 

height were examined using linear mixed-effect models and path analysis. 

5. Shallow water table, annual precipitation, silt content and shallow soils were the main 

factors limiting canopy height, suggesting that water excess, poor water drainage and low 

anchorage are important constraints for growth in height in these forests. Species composition 

explained part of the among-site variation in mean canopy height, but was unrelated to 

maximum canopy height.  

6. Direct relationships between canopy height and environmental gradients (not explained by 

changes in species composition) indicate that intraspecific among-site variation in tree stature 

may cause much of the variation in canopy height. Future studies should focus on linking 

species plasticity to canopy height-variation along environmental gradients. 
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Introduction   

Height confers advantages to taller forest trees, such as higher light availability, more 

exposure to pollinators and greater potential dispersal distances. However, biophysical 

constraints limit the maximum height trees can achieve. The maximum height at which trees 

can support their own weight without breaking may be reached when height scales to the 2/3 

power of diameter (McMahon 1973). Besides mechanical limitation, maximum height may 

also be limited in many cases by the higher resistance to water flow from roots to the canopy 

in taller trees. Taller trees should close their stomata earlier in the day to prevent cavitation. 

Therefore, as trees get older and taller, productivity decreases and less carbon is allocated for 

wood growth (Yoder et al. 1994; Ryan & Yoder 1997).  

These hypotheses of biophysical limitations to tree height have been debated in the 

literature (Friend 1993; Ryan & Yoder 1997; Becker, Meinzer, & Wullschleger 2000; Niklas 

& Spatz 2004; Ryan, Phillips, & Bond 2006; Niklas 2007), but less attention has been paid to 

the role of environmental gradients as factors limiting height. Tree growth in height seems to 

be frequently limited by environmental conditions and disturbance regimes since maximum 

heights found in many forest canopies are not close to the buckling limit (Mcmahon 1973; 

King et al. 2009). Moreover, increased hydraulic limitation, as a function of path length, 

seems not to be a universal mechanism of height limitation (Becker et al. 2000; Ryan et al. 

2006), since similar leaf water potentials can be found in trees of different heights within the 

same species (Koch et al. 2004). Increased resistance to water transport from roots to canopy 

leaves, ultimately resulting in stomata closure, is certainly an important mechanism of growth 

limitation. However, this mechanism may be more affected by water supply (Koch et al. 

2004), soil texture and water retention capacity (Jackson et al. 2000; Hacke et al. 2000) than 

by path length. 

Disturbance regimes, such as windstorms, when frequent, may prevent trees reaching 

their potential heights, producing forests with shorter canopies. Frequent disturbances 

increase mortality rates and change the tree size distribution, decreasing the density of large 

trees (Brown et al. 1997; Niklas et al. 2003b; Coomes et al. 2003). Forests with higher 

canopies are observed in low disturbance regimes, such as the sequoia or lowland wind-

protected dipterocarp forests, where trees are able to reach heights closer to their potential 

maximum (Koch et al. 2004; King et al. 2009). Soil depth can make trees more or less 

susceptible to uprooting during windstorms. Shallow soils imply limited root space and 
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generally lower anchorage for trees. Therefore, it is reasonable to expect forests with higher 

canopies in areas with deeper soils and lower frequency of disturbances. 

Species can achieve distinctive maximum heights and their plasticity to cope with 

environmental conditions is a result of their evolutionary histories. At the stand level, canopy 

height will be determined by the height of the tallest trees in the local area. Hence, among-site 

differences in canopy height may be determined either by changes in canopy species 

composition or plasticity to local environmental conditions. If environmental conditions play 

a major role in limiting canopy height it is expected that canopy-height variation will be more 

directly related to environmental gradients than to changes in species composition. 

 p 

 

Methods 

Study area  

The study was conducted in 51 plots along a 600 km transect in the Purus-Madeira 

interfluve, south of the Amazon River in central Amazonia (Fig. 1). The plots were 

distributed in 11 research sites along the BR-319, a road that has been largely abandoned for 

regular traffic since the 1980s (Fearnside & de Alencastro Graça 2006). In each site, 5 plots 

were regularly distributed along a 5 km trail at 1 km intervals. Plots were established at least 1 

km from the road to avoid secondary forests. The Purus-Madeira interfluve has a relatively 

recent geological origin resulting in unstable sediments from the Late Pleistocene or Early 

Eocene with predominantly flat topography (Sombroek 2000). Elevation above sea level 

varies from 27 to 80 meters along the transect (Shuttle Radar Topography data). This region is 

part of the Amazon basin “Loamy plains” (Sombroek 2000), a landform covering around 11% 

of the Amazon basin, including the low interfluvial areas of Rio Negro-Amazonas and Juruá-

Purus-Madeira.  

Soils are mainly Gleysols and Plinthosols with poor water drainage and the 

predominant texture is silt to fine sand. The mean annual precipitation varied from 2000 to 

2400 mm between 1960 and 1990, with the number of consecutive months with less than a 

100 mm of rainfall (a threshold generally considered an indicator of the dry season) ranging 

from 1 month in the north of the transect to 4 months per year in the south (Sombroek, 2001). 

Large areas are waterlogged during the rainy season, and many of the small streams dry out 
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during the dry season. The vegetation is classified as lowland dense rainforests in the north 

and lowland open rainforests dominated by palms in the south (BRASIL 1974). 

 

Canopy height and diameter measurements 

 Canopy height was estimated along the central line of the 51 plots in the Purus-

Madeira interfluve using a portable ground LiDAR (light detection and ranging), Riegl LD90-

3100VHS-FLP system (Horn, Austria). Ground LiDAR generates a vertical one-dimensional 

canopy profile along the transect (Parker & Russ 2004). From the canopy surface profile of 

each plot we calculated two canopy-height metrics, the mean canopy height, defined as the 

mean surface value, and the maximum canopy height, defined as the higher 99% quantile 

values (Fig. 2). 

The same canopy-height metrics were calculated from individual tree measurements. 

Thirty-three trees with diameter at breast height (dbh) ≥ 30 cm were selected in 27 plots (2-3 

plots per site). Ten trees in each diametric class of 30-40 cm, 40-50cm, 50-60cm and > 60cm 

were selected by chance in each plot. More trees were selected in smaller classes when not 

enough trees were found in the two largest classes. These trees had the total height estimated 

by a single observer using a Vertex hypsometer (Vertex Laser VL400 Ultrasonic-Laser 

Hypsometer III, Haglöf of Sweden) (D. Martins, unpublished data).  

Mean canopy height and maximum canopy height derived from ground LiDAR can be 

predicted by the same metrics calculated from individual-tree measurements within the plot 

area. Mean canopy height of the trees measured with the hypsometer explained 77% of the 

variance in mean height estimated by ground LiDAR, and maximum canopy height of the 

trees measured with the hypsometer explained 71% of the variance in maximum height 

estimated by ground LiDAR (Fig. 3). 

Variation in canopy height may be largely determined by stand mean diameter, based 

on the well-known height-diameter allometric relationship (Niklas 1994). Taller canopies may 

be a result of the area having larger trees. To account for the relationship between height and 

diameter in canopy-height variation, we included the average diameter of trees (dbh ≥ 30 cm) 

per plot as a co-variable in the following analyses. This allows us to ask whether trees are 

taller than expected for their overall size. Trees with diameter ≥ 30 cm at 1.30 m (or at higher 

location in cases of buttress or other deformations) were measured in all 51 of the 1 ha plots. 

According to field classification of canopy-strata position in these forests, 99% of trees with 
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dbh ≥ 30 cm had their canopies totally or partially exposed to direct solar radiation (J. 

Schietti, unpublished data).  Therefore, trees with dbh ≥ 30 cm were considered to be canopy 

trees in this study.  

 

Species composition 

In a subset of 21 plots where floristic identification of trees was available (P. Souza, 

unpublished data), we investigated if variation in mean and maximum canopy height were 

associated with species composition of trees with dbh ≥ 30 cm. If canopy height varied with 

species composition we also investigated which environmental gradients were affecting 

canopy height via species composition. Trees with dbh ≥ 30 cm were identified to species in 

plots with dimensions of 40 x 250 m (~ 1 ha), 20m to each side of the central line where the 

ground LiDAR survey was undertaken. 

The tree-species composition matrix was summarized in one dimension using non-

metric multidimensional scaling (NMDS). Species ordination was based on relative 

abundance (standardized by total abundance per plot) and on presence and absence of species. 

The Bray-Curtis dissimilarity index was used in both ordinations. To evaluate the adequacy of 

the species ordinations, we used the adjusted r2 of the dissimilarity matrices of original data 

regressed against the dissimilarity along the one-dimensional ordination (McCune & Grace 

2002). The percentage of variance captured by one-dimensional NMDS was 41%, for species 

relative abundance, and 34% for species presence-absence. 

 

Disturbance and environmental gradients 

As a measure of the exogenous-disturbance regime in the region, we used the 

frequency of storms in 1999 (Espírito-Santo et al. 2010). The geographical distribution of 

blowdowns has been shown to be correlated with the frequency of storms, indexed by the 

number of days with precipitation ≥ 20 mm, in the Brazilian Amazon in two different periods 

(Nelson et al. 1994; Espírito-Santo et al. 2010). To estimate the frequency of days with heavy 

rainfall (≥ 20 mm), daily precipitation in 1999 was integrated from NOAA (National Oceanic 

and Atmospheric Administration) satellite images with 4 km resolution and the 10.7 mm band 

from NOAA satellite 8 (see Espírito-Santo et al. 2010 for methods details). 
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Water table depth was manually monitored at frequencies varying from monthly to 

three times per year (at highest and lowest levels) in 7m-deep wells in all plots from Aug-

2010 to Mar-2013. The mean water table depth, and the highest and lowest levels were 

computed for all 51 plots over the monitored period. 

Soil texture was analysed in a compound sample derived from 6 subsamples from the 

first 30 cm depth of soil collected along the central line in each of the 51 plots. Fractions (%) 

of silt, sand and clay were determined and, because soils are predominantly silty in the region 

(Sombroek 2000), the fraction of silt was used as proxy for soil-water retention. 

Soils were scored for physical limitations for plants in all plots following Quesada et 

al. (2010).  Soil effective depth (presence of roots) was evaluated and scored from 0 to 5. 

Higher scores denote more limited soil conditions for plants. Score 0 indicates deep soils (≥ 

150 cm); score 1 indicates hardpan, rocks or C horizon ≥ 100 cm; score 2 indicates hardpan or 

rock that allows vertical root growth or other soils between 50 and 100 cm deep; score 3 

indicates relatively shallow soils (20 to 50 cm) and score 4 indicates shallow soils (less than 

20 cm deep). Soil-depth limitation scores were based on 2m deep pits dug in each research 

site and in soil-profile samples from all plots (D. Martins, unpublished data; J. Schietti & T. 

Emilio, unpublished data).  

 

Data analysis 

The direct and indirect effects (via species composition) of environmental gradients 

and exogenous disturbance on canopy height were evaluated using linear mixed-effect models 

(Zuur et al. 2009) and path analyses (McCune & Grace 2002). Site was included in the 

models as a random effect to account for the nested design (plots within sites) (Zuur et al. 

2009).  

We first evaluated if environmental gradients were associated with species-

composition changes and the average diameter of trees with dbh ≥ 30 cm. Gradients that were 

not related to species composition and the average diameter were evaluated as variables 

directly affecting canopy height, together with species composition and mean diameter.  

We used the standardized coefficients, or beta coefficients (bcoef), of the linear mixed-

effect models to quantify direct and indirect effects on canopy height metrics. We used path 

analysis to evaluate the indirect effects of environment gradients on canopy height via species 
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composition (by multiplying beta coefficients along the paths) and the net indirect effects by 

summing paths (McCune & Grace 2002). 

 

 

Results 

Canopy height along the Purus-Madeira interfluve 

Mean canopy height in the Purus-Madeira interfluve varied between 17 and 27 m 

(average = 22 m) and maximum heights were between 25 and 44 m (average = 32m) (Table 

1). Forest in the northeast of the transect generally had lower mean canopy height than forest 

in the southern portion of the study region (Fig. 4). 

 

Canopy height along environmental gradients 

 The water table was within 7m of the surface in most (82 %) of the plots. Mean water 

table depth in the plots was around 3m, the average annual depth varying from 5m to 1m 

depth  (Table 1). The soil-depth score varied between 0 and 4, but 73% of the plots scored 

between 2 and 3, indicating soil depths for root growth from 20 to 100 cm in most of the 

plots. Silt fraction varied between 13 to 72%. On average, soil texture in the plots was 52% 

silt, 28% sand and 19% clay. The frequency of storms, given by the number of days with 

heavy rain (≥ 20 mm) in 1999, ranged from 35 to 60 days. 

 The frequency of storms was higher is areas where the soil was deeper (r = 0.50), with 

larger sand fractions (r = 0.39) and with a lower water table level (r = 0.42). Therefore, the 

influence of the frequency of storms on canopy height metrics was evaluated in different 

models that included this variable instead of the water table level. 

Different models explained variation in mean and maximum canopy height along the 

forests in the Purus-Madeira interfluve (Table 2). Mean canopy height was directly influenced 

by the canopy-species composition, canopy mean diameter and by the mean water table level 

(Fig. 5 and 6), while maximum canopy height varied only in relation to environmental 

gradients and the mean diameter of canopy trees. There was no detectable influence of 

canopy-species composition on maximum canopy height (Fig. 5 and 7).  
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 Mean canopy height was lower in areas with higher minimum water table level and 

with larger soil silt fractions. The mean water table level had a direct and negative effect (bcoef 

= - 0.40) on canopy height while the silt fraction had an indirect effect, via species 

composition and mean diameter of canopy trees. Path analysis indicated that silt fraction had 

a weak negative effect on canopy height via species composition (bcoef = -0.09, given by the 

multiplication of paths in Fig. 6), and a stronger negative effect via mean diameter of canopy 

trees (bcoef = -0.24). Summing these indirect effects, silt fraction had a negative net effect on 

mean canopy height (bcoef = -0.30). In contrast, mean annual precipitation had opposite effects 

on mean canopy height, via canopy trees species composition (b= 0.25) and via mean 

diameter (b = -0.17). Because these effects cancelled each other out the net effect of annual 

precipitation on mean canopy height was low (bcoef = -0.08).  

 Maximum canopy height was lower in areas with higher mean water table level and 

shallower soils. Also, silt fraction and higher mean annual precipitation had negative indirect 

effects on maximum canopy height by limiting the mean diameter of canopy trees (Fig. 7).  

 Frequency of storms had a positive direct effect on both mean and maximum canopy 

height (Table S1 in Supporting Information). 

 

 

Discussion 

Canopy height in forests of the Purus-Madeira interfluve 

A previous study has shown that trees in forests around Manaus are taller for any 

given diameter than trees in forests of Brazilian south and southwest Amazonia (Nogueira et 

al. 2008). However, no study had so far estimated the height of the forests between these two 

regions. We showed that canopy height along Purus-Madeira transect does not simply 

decrease from the Manaus region to the south-western Brazilian Amazon. In fact, we found 

shorter forests in the north-eastern part of the transect, closer to Manaus, and taller forests in 

the south-western part of the transect (except for the last site that is located on an alluvial 

terrace). Intra-regional variation in canopy height emphasizes the importance of 

understanding environmental drivers of canopy height. 
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Environmental limits to canopy height 

Shallow water table level was an important factor limiting canopy height in the forests 

along the Purus-Madeira interfluve. A shallow water table may maintain water supply for 

plants during the dry season (Miguez-Macho & Fan 2012). However, high water-table levels 

may cause oxygen depletion in the root zone and limit tree growth. Sixty-seven percent of the 

plots had water table levels within the first meter of soil at some part of the year, and 45% 

within the first 50cm, where most part of the roots are usually found in tropical evergreen 

forests (Canadell et al. 1996). Oxygen depletion in the root zone causes mineral nutrition 

problems, such as decreased potassium content in the leaves and in the whole plant (Sojka 

1992; Sojka, Oosterhuis, & Scott 2005), because potassium uptake and maintenance are 

active processes (Kozlowski 1984). Potassium is fundamental for the maintenance of guard-

cell turgor and stomatal openness for leaf-gas exchanges with the atmosphere (Sojka 1992; 

Sojka et al. 2005). Stomatal closure or decrease in stomatal aperture initially caused by 

oxygen depletion in the root zone decreases photosynthetic activity and limits shoot growth in 

many plants (Kozlowski 1984, 1997; Sojka et al. 2005). If excess-water conditions persist, 

many species not able to maintain physiological activity, close their stomata, enter 

physiological dormancy, and limit stem growth until favourable soil-water conditions return 

(Worbes 1995; Schöngart et al. 2002). 

Soils with higher silt content were associated with forests where trees in the canopy 

strata had smaller mean diameters, resulting in lower mean and maximum canopy heights. 

Hydraulic and physical properties linked to silty texture might explain the negative effect of 

this soil fraction on canopy height. Soils with higher silt content have greater water-retention 

capacity compared to coarser-texture soils and, in the case of Purus-Madeira silty-loam soils, 

they also present poor water drainage (Sombroek 2000). The capillary fringe rising from the 

water table level can extend the zone of oxygen depletion closer to the ground surface where 

most part of the roots grow. The capillary fringe is the zone above the water table where the 

air-entry pressure is less than that required to penetrate the water table (Berkowitz, Silliman, 

& Dunn 2004). This layer in which water fills up soil pores through capillarity can extend to 

1.5 m above water table level in silty loam soils (Dingman 2002) and it can favor superficial 

soil saturation in shallow water-table conditions (within 1m deep) (Fan & Miguez-Macho 

2010). A third characteristic, not related to water excess, is that soils with higher silt content 

might be also more resistant to root penetration, impairing root development and nutrient 

absorption. All these characteristics associated with higher silt-content soils (low water 
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drainage, high water holding capacity, relatively thick capillary fringe accompanied by 

shallow water table and resistance to root penetration), indicate unfavourable conditions for 

stem growth.  

Forests in areas with higher mean annual precipitation had canopy trees with smaller 

mean diameters resulting in a negative effect of precipitation on canopy height.  Contrary to 

our findings, previous studies in Southeast Asia showed that forest stature accompanied the 

precipitation gradient in the region, with lower stature forests in drier and more seasonal 

climates (Kira 1974). Kira (1974) showed that trees with the same diameter were taller in 

forests with higher annual precipitation. Feldpausch et al. (2011) also found changes in 

height-diameter allometry along precipitation gradients in a pan tropical evaluation, with 

stouter trees in places with longer dry seasons. Our results indicate that variation in mean and 

maximum canopy height along the precipitation gradient is accompanied by variations in the 

diameter of canopy trees resulting in higher or lower canopy heights. The negative effect of 

mean annual precipitation on the average diameter of trees indicates again that stem growth 

might be limited by water excess in these forests. 

Besides the negative effect of mean annual precipitation on canopy-height metrics via 

average diameter, the net effect of precipitation (given by the sum of paths in the path 

analysis) had a very low contribution to variation in mean canopy height. Mean annual 

precipitation had a positive effect on mean canopy height via species composition, indicating 

a filter for taller canopy species where annual precipitation is higher. These opposite indirect 

effects, via diameter and species composition, had similar magnitude and cancelled out each 

other resulting in a weak effect of annual precipitation on mean canopy height. The opposite 

effects of annual precipitation did not occur for maximum canopy height. Silt fraction also 

had an indirect effect on mean canopy height via species composition, but it was in the same 

direction as the effect via average diameter, both limiting mean canopy height. These results 

indicate that soils with higher silt fractions are associated with lower-stature species.  

Higher frequency of wind disturbances associated with heavy rains (Nelson et al. 

1994; Espírito-Santo et al. 2010) was expected to prevent trees reaching taller statures and 

result in lower canopy heights.  However, contrary to our expectation, the frequency of storms 

(heavy rains) had a positive effect on canopy height. Soils were deeper, had higher sand 

content, and the mean water-table level tended to be deeper in areas where storms were more 

frequent. A possible explanation is that heavy rains, usually associated with the dry season 

(Nelson et al. 1994), could be a water source in areas of higher soil-water drainage due to 
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higher sand fraction and lower water table level. The lowest water table level in 42% of plots 

was below 6m. The indications that water excess in the wet season is the main limiting factor 

of canopy height in these forests may be compounded by lower water table levels associated 

with coarser surface-soil textures during the dry season, which may also limit canopy height. 

Deeper soils also allow better root development and anchorage, and this could lead to trees 

being less susceptible to uprooting during storm events, a hypothesis supported by the fact 

that maximum canopy height in forests along the Purus-Madeira interfluve increased with soil 

depth. 

 

Intraspecific variation in tree height 

The direct effect of water table level on canopy height, unrelated to species 

composition or average diameter of canopy trees, indicates that intraspecific variation in tree 

height along this gradient may explain much of the among-site variation in both mean and 

maximum canopy height. Variation in maximum canopy height seems to reflect intraspecific 

variation in tree stature along a soil-depth gradient rather than differences in species 

composition. Future studies should investigate height variation within species broadly spread 

along water table and soil-depth gradients for a more mechanistic understanding of 

environmental limits to tree height. 

 

Implications of shallow water table for the functioning of the amazon forest  

Shallow water table is a more common feature than previously thought on the global 

scale (Fan et al. 2013) and also in the Amazon basin (Fan & Miguez-Macho 2010). Shallow 

water-table depth,  < 5 m or < 10m is estimated for 36% and 60%, respectively, of the 

Amazon basin, based on a compilation of literature, data on wells in government archives and 

hydrological modelling (Fan & Miguez-Macho 2010). Our observations of shallow water 

table along approximately 600km of predominantly terra-firme forests in Central Amazonia 

corroborate the scenario in which water table should play an important role maintaining forest 

functioning during the dry season (Miguez‐ Macho & Fan 2012). However, our results also 

indicate that shallow water tables associated with fine-particle soils may limit tree growth and 

ultimately canopy height. Forests over shallow water tables should be viewed in a new 
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perspective for a better understanding of its seasonal functioning both in relation to responses 

to drought and in relation to waterlogging.   
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Table 1. Mean values and the range of variation (minimum – maximum) of canopy-height 

metrics derived from ground LiDAR and environmental gradients evaluated as drivers of 

canopy height in the Purus-Madeira interfluve, in Central Amazonia. Median value is 

presented for soil depth score. 

Variables Mean/Median (min - max) 

Mean canopy height (m) 22.12 (16.86 - 27.73) 

Maximum canopy height (m) 31.82 (25 - 44.16) 

Mean diameter (cm) 40.15 (34.6 - 47.39) 

Mean water-table level (m) -2.91 (< -7 - 0.43) 

Lowest water-table level (m) -5.17 (< -7 - -1.46) 

Highest water-table level (m) -1.05 (< -7 - 2.34) 

Soil depth score 2 (0 - 4) 

Silt fraction (%) 52.28 (13.25 - 74.25) 

Sand fraction (%) 28.81 (7.14 - 58.33) 

Clay fraction (%) 18.9 (7.08 - 38) 

Frequency of storms (days/year) 51.73 (35 - 60) 

Annual precipitation (mm) 2291 (2111 - 2489) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 02. Results of linear mixed-effect models (LMM) relating mean canopy height and maximum canopy height to species composition 

changes (summarized by a NMDS ordination) as a function of water-table level, canopy tree-species composition, canopy-tree mean diameter, 

soil-depth score, silt fraction and annual precipitation (fixed effects). Site was considered as a random effect in all models. Marginal R2 (R2
marg) 

shows the models adjusted only considering fixed effects, and conditional R2 (R2
cond) corresponds to the full model, including the random effect 

(site effect). The relative contribution of predictors is given by the standardized coefficients of the LMMs. Probability of independent 

contributions for each predictor is shown in parentheses.  

Dependent variables AIC R2marg R2cond 

Relative contribution of predictors (beta coefficients) 

Water table  
Species 

composition 

Mean 

diameter 
Soil depth 

Silt 

fraction 

Annual 

precipitation 

Mean canopy height 39.71 0.71 0.91 
 -0.40       

(0.009)  

 -0.43     

(0.001) 

0.54        

(< 

0.001) 

 --  --  -- 

Maximum canopy 

height 
118.5 0.61 0.72 

 -0.23                

(0.009) 
 -- 

0.63        

(< 

0.001) 

 -0.28              

(0.009) 
 --  -- 

Mean diameter 143.4 0.30 0.55  --  --  --  -- 
 -0.45              

(0.001) 

 -0.32              

(0.001) 

Species composition 48.81 0.36 0.88  --  --  --  -- 
0.20    

(0.018) 

 -0.58               

(0.002) 
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Figures 

 

 

 

Figure 1. Map of the study area showing the 600 km transect along the interfluve between the 

Purus and Madeira Rivers in central Amazonia. Eleven research sites (1 - 11) are located 

along the transect. 
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Figure 2. Canopy height surface (green line) derived from portable ground LiDAR in four 

selected transects (of the 55) surveyed along the Purus-Madeira interfluve, in Central 

Amazonia. Black continuous lines show values of mean canopy height and dashed lines show 

the values of maximum canopy height calculated as the higher 99% quantile values. 
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Figure 3. Relathionships between stand-level height metrics from portable ground LiDAR and 

from individual tree (dbh >= 30 cm) measurements. (a) Mean canopy height calculated from 

tree individual heights (MCHtree) predicts 77% of the variance in the same metric derived 

from portable ground LiDAR, MCHgLidar, (MCHgLidar = -5.46 + 1.2 MCHtree, p < 0.001). (b) 

Maximum canopy height (MaxCH), estimated from the high 99% quantile, from  tree 

individual heights predicts 71% of the variance in the same metric derived from portable 

LiDAR (MaxCHgLidar = 0.76 + 8.34 MCHtree, p < 0.001). 
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Figure 4. Spatial variation in mean and maximum canopy height in the 11 sites along the 

Purus-Madeira interfluve, south of the Amazonas River in central Amazonia. Forests in the 

northeastern part of the transect have lower canopy than in the southwestern, except for the 

last site (11) which is located on an alluvial terrace. 
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Figure 5.  Partial plots from two multiple regression models showing direct drivers of mean 

and maximum canopy height. Upper panel - Partial regressions between mean canopy height, 

lowest water-table level, species composition (one-dimensional solution to non-metric 

multidimensional scaling analysis) and the mean diameter of trees with dbh ≥ 30 cm (R2 

marginal = 0.71). Lower panel - Partial plots from a a multiple regression relating maximum 

canopy height to mean water-table level, soil depth score (higher scores denotes shallower 

soils) and the mean diameter of trees with dbh ≥ 30 cm (R2 marginal = 0.61). Fitted lines 

indicate fixed-effect probabilities  < 0.05 in the linear mixed-model analyses (see Table 2). 
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Figure 6. Path analysis showing the magnitude of direct and indirect effects, given by 

standardized coefficients from linear mixed-effect models (with probabilities < 0.005), of 

environmental gradients, species composition and the average diameter (dbh ≥ 30 cm) in 

relation to the stand mean canopy height. Arrow widths show the magnitude of the effects. 
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Figure 7. Path analysis showing the magnitude of direct and indirect effects, given by 

standardized coefficients from linear mixed-effect models (with probabilities < 0.005), of 

environmental gradients and mean tree diameter (dbh ≥ 30 cm) to stand maximum canopy 

height. 
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Supplementary Information 

 

Table S1. Results of linear mixed-effect models (LMM) relating mean canopy height and maximum canopy height, derived from portable ground 

LiDAR, to the frequency of storms per year, canopy trees species composition (given by NMDS axis) and canopy trees mean diameter (fixed 

effects). Site was considered as a random effect in all models. The marginal (R2
marg) and conditional (R2

cond) coefficients of determination (R2) 

are presented. Marginal R2 shows the models adjusted only considering fixed effects and conditional R2 corresponds to the full model, including 

the random effect (site effect). The relative contribution of predictors is given by the standardized coefficients of the LMMs. Probability of 

independent contributions for each predictor is shown in parentheses.  

 

Dependent variables AIC R2marg R2cond 

Relative contribution of predictors (beta 

coefficients) 

Frequency of 

storms 

Species 

composition 

Mean 

diameter 

Mean canopy height 45.28 0.69 0.81 
 -0.30           

(0.023)  

 -0.28           

(0.041) 

0.55               

(< 0.001) 

Maximum canopy height 116 0.51 0.74 
 -0.32                

(0.014) 
 -- 

0.73                

(< 0.001) 
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SÍNTESE 

Os resultados dos três capítulos desta tese permitem um avanço no entendimento de 

como as propriedades físicas do solo e profundidade do lençol freático afetam a estrutura, 

estoques de biomassa e composição de espécies de plantas em florestas da Amazônia Central. 

O lençol freático raso está presente tanto nas áreas de baixios e parte baixa das encostas nas 

florestas com relevo dissecado ao norte de Manaus, como em vastas extensões de áreas 

relativamente planas ao sul do rio Amazonas, no interflúvio Purus-Madeira. O lençol freático 

próximo da superfície associado às propriedades físicas do solo determinam condições de 

suprimento de água e aeração para as raízes que podem afetar o estabelecimento, crescimento 

e acúmulo de biomassa em plantas. 

A variação na composição de espécies de plantas de diferentes formas de vida na 

região ao norte de Manaus está fortemente relacionada com a distância vertical da drenagem 

mais próxima, sugerindo que o acesso ao lençol freático tem um papel importante no 

estabelecimento de espécies nessas florestas de terra-firme. Os resultados do capítulo 1 

mostraram que as florestas que estão na zona de flutuação do lençol freático (até 18 m acima 

da drenagem nessa região, Tomasella et al. 2008) são as florestas onde ocorre a maior parte 

(cerca de 90%) das variações em composição florística. As áreas altas em relação à drenagem 

têm baixa complementaridade de espécies em relação as áreas verticalmente próximas à 

drenagem. Um dos possíveis mecanismos para explicar a maior substituição (turnover) de 

espécies no espaço em áreas onde o lençol freático é raso, é que as florestas nessas áreas são 

mais dinâmicas. As limitações associadas ao lençol freático raso e aos solos arenosos 

presentes nessas áreas, como menor volume aerado de solo para desenvolvimento de raízes e 

baixa ancoragem, provavelmente causam maior mortalidade de árvores (Toledo et al. 2012)  

devido à queda por desenraizamento (Toledo, Magnusson, & Castilho 2013). Essas áreas de 

lençol freático raso podem ter maior chance de recrutamento de novas espécies, tanto pelo 

dinamismo da vegetação como pelo acesso à água durante a estação (K. Melgaço, dados não 

publicados), do que áreas com lençol freático mais profundo, que podem sofrer estresse 

hídrico durante a estação seca (Hodnett et al. 1997) e onde a demografia da vegetação é 

menos dinâmica.  

A relação entre composição florística e distância vertical da drenagem tem uma forte 

implicação para conservação de florestas ripárias. As áreas verticalmente próximas da 

drenagem, onde há maior variação na composição de espécies, podem se estender por 
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centenas de metros de distância do curso d’água (até 350 m na Reserva Ducke). A legislação 

florestal brasileira protege as florestas ripárias em faixas de somente 30m de largura ao longo 

de cursos d’água (para canais de até 10 metros de largura) e portanto, não protege as áreas 

úmidas de alta complementaridade de espécies de plantas.  

Características físicas do solo, como profundidade efetiva (onde há desenvolvimento 

de raízes) e condições anóxicas estão correlacionadas com os níveis de flutuação do lençol 

freático. Essas características, contabilizadas no índice de restrições físicas do solo de 

Quesada et al. (2010), indicam que solos mais impeditivos estão associados a florestas com 

maior densidade de indivíduos e menor massa média individual. Esses resultados (capítulo 2) 

suportam a hipótese de que as restrições físicas do solo promovem uma floresta mais 

dinâmica (Quesada et al. 2012a), com maior densidade de indivíduos de menor porte, apesar 

de não ter sido detectada variação nos estoques de biomassa em função do gradiente de 

restrição física do solo.  

Solos com maior conteúdo de fósforo disponível estiveram associados a florestas com 

menor biomassa, corroborando estudos anteriores que encontram menores estoques de 

biomassa associados a solos mais férteis (Baker et al. 2004; Malhi et al. 2006; Quesada et al. 

2012a). Um dos mecanismos que explicaria florestas com menor estoque de biomassa em solo 

mais férteis também está relacionado as características físicas do solo. Solos com estrutura 

física impeditiva ao desenvolvimento de raízes em geral são também mais férteis, devido a 

dependência de processos pedológicos comuns no desenvolvimento dos solos (Quesada et al. 

2012b). Por isso, florestas mais dinâmicas associadas a solos com características físicas mais 

restritivas também estariam associadas a solos mais férteis (Phillips et al. 2004), o que 

suportaria espécies de crescimento mais rápido, com menor densidade da madeira e menor 

porte, pois o tempo de residência nessas florestas é menor (Quesada et al. 2012b). No entanto, 

no interflúvio Purus-Madeira há um efeito negativo da disponibilidade de fósforo no solo 

sobre a densidade de caules,  sugerindo um mecanismo diferente do proposto por Quesada et 

al 2012, em que se esperaria encontrar maior densidade de caules de menor porte em florestas 

mais dinâmicas devido a maior mortalidade e recrutamento.  

Áreas com lençol freático mais raso parecem também estar associadas a florestas com 

dossel médio mais baixo e com menos emergentes, caracterizando menor altura máxima do 

dossel, como mostrado no capítulo 3. As variações de altura média do dossel são em parte 

determinadas por diferenças na composição de espécies presentes no dossel (árvores com dap 

≥ 30cm). A variação na composição de espécies de árvores de dossel não teve relação com a 
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profundidade do lençol freático. No entanto, outro estudo considerando todas as classes 

diamétricas acima de 10 cm nas mesmas áreas (P. Souza, dados não publicados) encontrou 

uma relação similar a encontrada na Reserva Ducke (capítulo 1). A relação direta entre 

profundidade do lençol freático e altura média e máxima do dossel, sem efeitos indiretos via 

composição de espécies, implica em variação intraespecífica de altura das árvores em função 

do gradiente de profundidade do lençol freático. Essa hipótese deve ser investigada em 

estudos futuros e pode trazer um avanço no entendimento dos mecanismos determinando 

variações na altura das florestas. 

Os resultados dos três capítulos indicam que a presença de lençol freático superficial, 

associada a características físicas do solo impeditivas ao desenvolvimento de raízes, mantém 

florestas de estrutura mais raquítica, com maior densidade de indivíduos de menor porte, 

árvores grandes raras e portanto, dossel mais baixo. Além disso, as florestas com lençol 

freático raso e solo arenoso podem apresentar maior variabilidade na composição de espécies 

do que florestas com lençol freático profundo, provavelmente devido ao maior dinamismo da 

vegetação nas áreas de lençol superficial e solo de textura grossa que confere baixa 

ancoragem.  

Os efeitos negativos do lençol freático raso sobre a estrutura e biomassa das florestas 

do interflúvio Purus-Madeira indicam que o excesso de água exerce uma importante limitação 

sobre o crescimento de árvores nessa região. Portanto, os modelos de funcionamento da 

floresta em resposta a eventos de seca ou chuva em excesso devem ser revistos, levando-se 

em conta não somente o regime de chuvas mas também a profundidade do lençol e as 

características físicas locais do solo que, em conjunto, determinam o suprimento sazonal de 

água da floresta.  
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