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Resumo

Este trabalho teve como objetivo avaliar questdes referentes a ecologia espacial e como as analises
espaciais podem ajudar os ecologos a entender os padrfes de distribuicdo de espécies. Inicialmente
fizemos uma revisdo da literatura mais atual sobre ecologia espacial e tentamos explicar alguns
conceitos bésicos através de simulagdo de dados para ilustrar diversas possibilidades com que os
ecllogos podem se deparar. Em uma segunda etapa nés avaliamos a importancia de definir bem as
variaveis espaciais para serem incluidas em modelos ecolégicos, avaliando a diferenca entre analises
usando uma matriz de distancia que define rotas de dispersdo pelo curso d"agua e rotas de dispersdo
em linha reta, sobre a terra. Uma das técnicas mais recentes e utilizadas da ecologia espacial, 0s
autovetores espaciais, podem ser tdo flexiveis na geracdo de padrdes espaciais que ndo importa qual
matriz de distancias é utilizada que os mesmos padrdes serdo gerados. Usando dados de peixes, de
insetos aquaticos (Trichoptera) e dados simulados nds mostramos que a técnica de autovetores nao é
tdo flexivel como esperado. Portanto, a definigcdo correta da matriz de distancias é muito importante
para que uma analise adequada seja feita. Em um préximo passo nos avaliamos duas abordagens para
analisar dados ecoldgicos. Uma delas, usando dados brutos e a outra usando matrizes de distancia.
Uma discussdo recente sobre o uso dessas duas abordagens se instalou na ecologia, porém ainda nao
h& um consenso sobre quando usar cada uma delas. Assim, nds usamos e comparamos as duas
abordagens para analisar dados de distribuicdo de Trichoptera em 89 riachos da Amazoénia central,
distribuidos em 3 regides distintas (Reserva Ducke, areas do PDBFF e no municipio de Presidente
Figueiredo). No6s avaliamos o efeito da extenséo espacial e da heterogeneidade ambiental nas analises
da distribuicdo das espécies de Trichoptera. Os fatores ambientais foram os mais relacionados com a
distribuicdo de Trichoptera em todas as escalas analisadas. Analisamos a distribuicdo de anuros em 72
parcelas amostrais da Reseva Ducke e observamos que o padréo de distribuicdo das espécies € muito
relacionado ao tipo de reproducéo das espécies. Espécies de anuros com reproducéo aquatica sdo mais
bem explicadas por padrfes ambientais enquanto as espécies com reproducdo terrestre sdo mais
explicadas por padrBes espaciais. Desta forma, anuros com reproducdo aquatica sao mais indicados
para estudos de monitoramento bioldgico e avaliagdo de efeitos de alteracfes ambientais do que o uso
de anuros com reproduc&o terrestre ou que o uso de ambos. Por fim, nos avaliamos a concordancia nos
padrdes de distribuicdo de 22 grupos taxondémicos (15 de plantas e 7 de animais) amostrados da
Reserva Ducke. Avaliamos também se é possivel reduzir a resolugdo taxonémica de espécies para
géneros e a resolucdo numérica, de abundancia para dados de presenga e auséncia sem a perda de
informacBes importantes. Observamos que 0 uso de dados de presenca e auséncia e que identificacdes
em nivel de género sdo suficientes para analisar o padrao de distribuicdo dos grupos analisados. Houve
grande concordancia no padrdo de distribuicdo das espécies de plantas, enquanto 0s grupos de animais
foram pouco concordantes. Os fatores ambientais foram os mais relacionados a alta concordancia entre
0s grupos, mostrando que o ambiente é o principal responsavel pela distribuicdo das plantas na
Reserva Ducke. Embora alguns grupos tenham apresentado forte padrdo espacial ndo houve relagéo
entre a concordancia entre 0s grupos e os fatores espaciais. Os grupos mais concordantes, e possiveis
candidatos a grupos substitutos, foram lianas da familia Bignoniaceae, ervas, samambaias e arvores
das familias Lecythidaceae e Fabaceae.
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Spatial and environmental relationships of biodiversity in tropical forests

Abstract:

This study aimed to evaluate issues related to spatial ecology and how spatial analysis can help
ecologists to understand patterns of species distribution. Initially, we reviewed the current literature on
spatial ecology and illustrated basic concepts with simulated data represented various situations that
ecologists frequently face. In a second step we evaluated the importance of clearly defining the spatial
variables to be included in ecological models, assessing the differences between analyses using a
matrix that defines dispersal routes through stream distance and routes of dispersal in a straight line
overland. One of most frequently used techniques spatial ecology, spatial eigenvector functions, is
generally considered to be so flexible in generating spatial patterns that it should generate the same
patterns no matter what distance matrix is used. Using data from fish, aquatic insects (Trichoptera) and
simulated data, we show that the technique of eigenvectors is not as flexible as expected. Therefore,
the correct definition of the matrix of distances is important for an effective analysis. In the next step,
we evaluated two approaches to analyze ecological data. One of them uses raw data and the other
using distance matrices. A recent discussion on the use of these two approaches has been polemical
and we try to clarify what types of questions each of these approaches is better able to analyze. To do
this we used data on the distribution of Trichoptera in 92 streams of central Amazonia, sampled in
three distinct regions (Ducke Reserve, at PDBFF areas, and at the municipality of Presidente
Figueiredo). We also evaluated the effect of spatial extent and environmental heterogeneity to on the
distribution of Trichoptera species. We found that environmental factors were more related to the
distribution of Trichoptera than undefined factors that caused spatial clumping at all scales examined.
We analyzed the distribution of anuran species at 72 sample plots in Ducke Reserve and observed that
the species distribution pattern is much related to the type of reproduction of the species. The
distribution of species with aquatic reproduction is better explained by environmental patterns, while
species with terrestrial reproduction are better explained by spatial patterns. We conclude that anurans
with aquatic reproduction are better indicated for biomonitoring and for studies evaluating the
consequences of environmental disturbances than the use of species with terrestrial reproduction or
than the use of both. Finally, we evaluated the congruence in the distribution patterns of 22 taxa (15
plants and 7 animal groups) sampled at Ducke reserve. We also evaluated if it is possible to reduce the
taxonomic resolution of species to genera and the numeric resolution from abundance data to
presence-absence data with little loss of information. Presence-absence data and genus-level
identification was sufficient to capture most of the spatial patterns of most groups. There was strong
congruence in the distribution pattern of plant groups, while animal groups were less concordant.
Measured environmental factors were closely related to the high congruence among the groups,
indicating that environment is primarily responsible for the distribution of plants in the Ducke
Reserve. Although some groups showed strong spatial patterns, there was no relationship between the
congruence among groups and spatial factors. The groups that were more concordant with other
groups, and possible candidates as surrogates, were the lianas of the family Bignoniaceae, herbs, ferns,
and trees of the families Fabaceae and Lecythidaceae.
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Introducdo geral

Geralmente, espécies diferentes requerem condi¢Ges ambientais diferentes para persistir. Estas
diferengas podem ter surgido em escalas evolucionérias em que os individuos de cada espécie se
especializaram em explorar otimamente certas condi¢des de habitats e recursos. O estudo da
distribuicdo de espécies e as relacdes espécie-ambiente € um tema central da ecologia. Estes estudos
formam a base para a conservacgdo e planos de manejo de espécies ameacadas, para prever impactos
das mudancas globais e impactos do uso da terra, bem como de outros estudos de impacto ambiental.

O estudo dos efeitos ambientais na distribuicdo de espécies, geralmente chamados de efeitos
do nicho, surgiram ha bastante tempo e formam os pilares da ecologia. Diversos conceitos de nicho ja
foram propostos (e.g. Krebs, 2008) e em geral os ecologos tentam explicar a distribuicdo das espécies
com base nas varidveis ambientais medidas em cada local. Desta forma, dados de comunidades séo
relacionados aos dados ambientais utilizando diversos tipos de analises, onde, em geral, tenta-se
avaliar quanto da distribuicdo das espécies é explicado pelas variaveis ambientais. Quando um
conjunto de dados de algum grupo biolégico é explicado por um conjunto de dados ambientais
presume-se que aquele grupo bioldgico é controlado por fatores referentes ao nicho das espécies.

Na tentativa de explicar a distribuicdo das espécies de outra forma, pensando mais nos fatores
espaciais, Hubbell (2001) unificou duas grandes teorias da ecologia, a teoria neutra e a teoria de
biogeografia de ilhas. Na teoria de Hubbell (2001), todos os individuos de todas as espécies sdo
equivalentes ecologicamente, mas limitac6es na capacidade de dispersao, iguais para todas as espécies,
geram os padrdo de distribuicdo de espécies que observamos na natureza. Neste modelo, as
distribuicdes e abundancias podem variar entre espécies, mas estas diferencas sdo somente devido a
fatores aleatorios e pouco afetadas por fatores ambientais (limitagcdes do nicho). A partir dessa teoria,
muitos pesquisadores passaram a avaliar se as comunidades estudadas eram mais afetadas por fatores
ecoldgicos relacionados aos nichos das espécies, ou se 0 padrdo se deve mais aos fatores neutros,
relacionados & dispersdo limitada das espécies (e.g. Gilbert e Lechowicz, 2004; Adler et al., 2007,
Smith e Lundholm, 2010; Diniz-Filho et al., 2011).

Um dos principais objetivos da ecologia é entender a distribui¢do das espécies, identificando
as escalas em que os processos ecoldgicos que controlam a distribuicdo. Os problemas associados a
presenca de autocorrelacdo espacial em conjuntos de dados foram apontados ha muito tempo (Cliff e
Ord, 1973; Sokal e Oden, 1978a,b). A autocorrelacdo espacial descreve a tendéncia de varidveis
assumirem valores, em pares de locais a certa distancia, mais similares (autocorrelagdo positiva) ou
menos similares (autocorrelagdo negativa) do que esperado ao acaso (Legendre, 1993; Legendre e
Legendre, 1998). Diversas discussdes sobre a possibilidade de possiveis erros na interpretacdo de

dados e conclusdes erroneamente tiradas de analises que nao consideram a autocorrelacdo espacial



surgiram na literatura ecolégica (Legendre, 1993; Lennon, 2000; Diniz-Filho et al., 2003; Hawkins et
al., 2007; Dormann et al., 2007).

Porém, até pouco tempo grande parte das pesquisas ecoldgicas ndo levava em consideracao 0s
componentes espaciais, considerando apenas o efeito de fatores ambientais. Uma nova oportunidade e
direcdo surgiram na ecologia com o inicio das discussdes sobre os efeitos da autocorrelagdo quando
Legendre (1993) trouxe o assunto novamente a tona em um dos artigos mais citados da literatura
ecoldgica recente (1219 citagBes no ISI em 28 de Julho 2011). A grande contribuicdo desse artigo foi
mostrar que a autocorrelacdo ndo deveria ser vista como um problema e sim como uma oportunidade
de desenvolvimento de novas perguntas ecoldgicas. Uma nova forma de se estudar ecologia. A partir
dali, diversos métodos tém sido propostos para incluir o espaco como um preditor na ecologia,
levando em consideracéo os efeitos da autocorrelagdo espacial (Dormann et al., 2007).

A autocorrelagdo em variaveis biologicas resulta de causas (fisicas ou bioldgicas) que agem
simultaneamente e aditivamente (Legendre e Legendre, 1998). Dois tipos de causas de autocorrelacdo
espacial podem ser observados, dependendo de se 0s processos que geram a estrutura espacial na
distribuicdo de espécies sdo endogenos ou exogenos (Kissling e Carl, 2008). Os processos endogenos
sdo propriedades inerentes a prépria variavel, no qual o valor da varidvel resposta em um local
depende dos valores de locais proximos. Os processos bioticos relacionados a distancia, como a
dispersdo e reproducdo sdo processos enddgenos (Legendre et al., 2002 nomearam apenas 0S
processos enddgenos como "autocorrelacdo espacial™). Ja os processos exdgenos geram autocorrelagdo
espacial por causas independentes das variaveis de interesse, na qual a variavel resposta é estruturada
espacialmente em funcédo de variaveis explanatorias que sao estruturadas espacialmente, como o vento
e condigdes climaticas (Legendre et al. 2002 trataram 0s processos exdgenos cOmMo Processos com
dependéncia espacial). A terminologia da literatura espacial é controversa, e comumente autores
apresentam glossarios de termos para evitar confusao (e.g. Peres-Neto e Legendre, 2010).

O problema da autocorrelagdo espacial ndo se limita a distancias lineares. As ligacdes entre
pontos de amostragem podem ser complexas, como ao longo do sistema de drenagem em bacias
hidrogréficas (Ganio et al., 2005; Peterson et al., 2007), onde a distancia pelo curso d"&gua pode
descrever melhor as relagcBes espaciais do que a distancia em linha reta. Diferentes grupos
taxondmicos podem se comportar de diferentes formas em relacdo a distancias aquéticas. Para peixes,
a distancia pelo curso d’agua pode ser mais importante, pois eles precisam percorrer esta distancia
para dispersar de um ponto a outro. Para lagartos, cobras, plantas e insetos aquaticos, a distancia linear
pode ser mais importante, j& que estes organismos ndo necessariamente migram percorrendo a
distancia pelo curso d’agua. Ha também casos em que os organismos séo dispersos pela agua (e.g.
anfibios, peixes, insetos) ou possuem dispersores associados a dgua (e.g. algumas plantas). Nestes
casos, ambas as distancias, linear e pela agua, podem ser relacionadas com as distribuicdes destas

especies.



E importante ter em mente que nenhum ec6logo deixa de reconhecer o nicho como um fator
importante na estruturacdo de comunidades (e.g. Rosindell et al., 2011). Os defensores dos modelos
espaciais e da teoria neutra apenas querem buscar uma forma de facilitar o entendimento de outros
processos que controlam a distribuicdo de espécies, bem como geram modelos preditivos da
distribuicdo de espécies. Em alguns casos, 0os modelos que contemplam a autocorrelacdo espacial
podem possuir maior poder preditivo que os modelos ndo-espaciais (Currie, 2007). Os modelos néo-
espaciais da dindmica de comunidades d@o apenas uma visdo simplificada do mundo real e podem
ajudar a entender grandes problemas de interacBes entre espécies. Porém, para muitas espécies em
muitas comunidades a localizacdo dos individuos no espaco importa e, portanto, € desejavel entender
as consequéncias disso na dindmica de comunidades (Law e Amarasekare, 2005).

Modelos espaciais partem de modelos simples, ndo espaciais. Uma linha de pensamento sobre
a dindmica de comunidades preconiza a existéncia de manchas com condigdes favordveis a certas
espécies inseridas em uma matriz de ambientes ndo adequados, onde a dispersdo é frequente entre
manchas. Os modelos de dindmica de manchas sdo similares, mas a dispersdo entre manchas € tida
como sendo rara e a dindmica dentro das manchas é mais importante. Outra linha preconiza que todos
ambientes sdo adequados, contudo, algumas manchas sdo mais favoraveis a algumas espécies, que
dominam essas manchas. Contrario a estes, a teoria neutra de Hubbell (2001) é baseada na
equivaléncia ecoldgica entre todas as espécies, e a variacdo na abundancia deve-se a fatores
estocasticos como deriva genética e dispersao aleatdria (Holyoak et al., 2005). Teorias a parte, a ideia
central é entender como os fatores que controlam a dindmica de comunidades muda com a mudanca de
uma escala mais restrita (individuos e comunidades locais) para escalas mais amplas
(metacomunidades) e aplicar este conhecimento em acgles praticas como delimitar reservas e criar
planos de manejo adequados a cada caso.

Atualmente existe uma grande quantidade de modelos e analises para lidar com o problema da
autocorrelacdo espacial (Dormann et al., 2007). Conforme discutido por alguns autores (Guisan e
Thuiller, 2005; Dormann et al., 2007), ndo existe um modelo exatamente certo para todos 0s casos.
Com isso, é necessario avaliar qual modelo melhor satisfaz os objetivos propostos. Dormann et al.
(2007) sugerem o uso de diferentes métodos, pois ndo existem informagdes mecanisticas suficientes
que suportem a escolha a priori de algum método, embora a escolha sempre esteja ligada as questdes e
escalas de interesse (Diniz-Filho et al., 2007).

Duas correntes principais surgiram na andlise de dados de comunidades que tentam fazer
inferéncias sobre a distribuicdo de espécies em relacdo aos fatores neutros e aos fatores relacionados
ao nicho das espécies. Uma dessas correntes analisa os dados em forma de matrizes de distancia
(Tuomisto e Ruokolainen, 2006) que definem a dissimilaridade ou a distancia entre pares de locais
amostrados. As dissimilaridades podem ser calculadas em relacdo a composicdo de espécies (mede
qudo diferentes dois locais sdo em relacdo as espécies presentes), ou em relacdo aos fatores ambientais

gue caracterizam cada local amostrado (mede a diferenca ambiental entre dois locais). Nestes casos a



distancia ou dissimilaridade na composicao de espécies é analisada em relagéo a distancia ambiental
(representando o nicho) e/ou em relagdo a matriz de distancias geograficas (representando o espago, ou
a dispersédo limitada). As analises mais comuns da abordagem utilizando matrizes de distancia sdo o
Mantel e 0 Mantel parcial (Mantel, 1967) e a regressdo de matrizes (Tuomisto e Ruokolainen, 2006).

A outra abordagem visa a utilizacdo dos dados brutos, ao invés de utilizar as matrizes de
distancia calculadas a partir dos dados brutos (Legendre et al., 2005). Nessa abordagem, a tabela de
dados das espécies € analisada em relacdo a tabela de dados ambientais e em relagdo a tabela de dados
geograficos (espaciais). A forma de gerar os dados espaciais é bastante variavel, mas em geral usa-se
os dados de latitude, longitude e seus polinbmios (Legendre e Fortin, 1989; Borcard et al., 1992;
Legendre e Legendre, 1998) ou autovetores que sdo gerados a partir da matriz de distancias
geograficas (Borcard e Legendre, 2002; Dray et al., 2006; Griffith e Peres-Neto, 2006; Blanchet et al.,
2008b). Os autovetores sdo considerados melhores, pois, além de serem ortogonais, 0s autovetores
podem representar uma gama maior de padrdes espaciais que os padrfes representados pelos
polindmios.

Muita confusdo existe entre essas duas abordagens, principalmente em relacdo a quais
questdes elas podem ser usadas para responder (Legendre et al., 2005, 2008; Tuomisto e Ruokolainen,
2006, 2008; Laliberté, 2008; Pélissier et al., 2008). De fato, o debate sobre qual dessas analises deve
ser utilizada ainda ndo terminou. Muito debate também tem sido criado em torno da particdo de
variancias em estudos de ecologia (Smith e Lundholm, 2010; Gilbert e Bennett, 2010; Landeiro e
Magnusson, 2011). Embora ndo haja um consenso sobre quais técnicas utilizar, a particdo de
variancias tanto para a abordagem de dados brutos quanto para matrizes de distancias continua a ser
bastante utilizada.

Em geral, discute-se cerca de trés hipoteses gerais sobre as forcas que controlam a distribuicdo
de espécies em florestas tropicais. A primeira diz que a diversidade alfa é alta, mas a diversidade beta
é baixa, 0 que faz com que a distribuicdo de espécies seja uniforme ao longo de grandes areas. A
segunda entra no escopo da teoria neutra de Hubbell (2001), na qual as espécies seriam distribuidas
aleatoriamente, porém espacialmente autocorrelacionadas devido a dispersdo limitada das espécies. A
terceira e mais difundida é a que sugere o controle ambiental na distribuigdo de espécies, segundo a
qual existiriam manchas com condi¢des ambientais homogéneas e adequadas a certas espécies
(Vormisto et al., 2000; Tuomisto et al., 2003; Hopkins, 2007; Schulman et al., 2007).

A hipdtese de uniformidade é a que possui menos suporte empirico até o0 momento, enquanto
as hipoteses de controle ambiental e de controle neutro sdo frequentemente apontadas como
responsaveis por partes relativamente iguais de explicagdo, mas dependendo dos autores uma pode ser
levemente maior que a outra (Condit et al., 2002; Tuomisto et al., 2003). Por exemplo, Tuomisto et al.
(2003) observaram que em florestas de terra firme as diferencas floristicas sdo mais bem explicadas
por fatores ambientais (diferencas de nicho), principalmente as caracteristicas edaficas. No entanto,

estas abordagens s6 perguntam o quanto das diferencas podem ser explicadas e ignoram o quanto das
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distribuicdes originais ndo € relacionado com os fatores ambientais. Isto é, s6 compartilham a
variancia e ndo podem explicar a grande similaridade entre todas as areas em véarios parametros da
comunidade. Apesar de ser 6bvio que fatores ambientais afetam a distribuicdo de espécies, eles ndo
sdo suficientes para explicar o grande nimero de espécies sintdpicas na floresta tropical (Rosindell et
al., 2011).

Em geral, a estrutura uniforme das florestas tropicais e a grande diversidade dificultam a
capacidade visual em distinguir "tipos de comunidades” (Vormisto et al., 2000). A Amazbnia é
caracterizada por uma condicdo climética e topografica que possui caracteristicas relativamente
distintas de outros locais onde se estudam os efeitos da autocorrelacdo espacial em modelos de
distribuicdo de espécies. A Amazdnia possui pouca variagdo topografica e climatica, mesmo em
grandes escalas, o que talvez faca com que fatores em pequena escala sejam mais importantes

(caracteristicas do solo, substrato).

Conteldo do Capitulo 1

No primeiro capitulo fizemos uma revisdo dos principais artigos cientificos que tratam do
assunto “autocorrelacdo espacial”. Discutimos quais os principais problemas relacionados a dados
autocorrelacionados e possiveis formas para resolver esses problemas e ainda utilizamos alguns dos
métodos mais utilizados em ecologia espacial para exemplificar alguns conceitos. Para exemplificar 0s
diversos casos possiveis nds usamos rotinas de simulacdo de dados para criar dados com distribuicdes
e padrBes conhecidos de antemdo, que posteriormente foram analisados usando diferentes métodos de
analise. Os dois tipos de problemas comumente associados a presenca de autocorrelacdo espacial sdo
relacionados a probabilidade de erro tipo 1 e as estimativas dos coeficientes em modelos de regressao.
Os problemas relacionados as probabilidades e testes de hip6teses sdo mais antigos e mais
reconhecidos pela comunidade cientifica (Legendre, 1993; Dormann et al., 2007). Ja os problemas
relacionados as estimativas de coeficientes de regressdo sdo mais recentes e tem gerado mais
polemicas (Lennon, 2000; Diniz-Filho et al., 2003; Hawkins et al., 2007; Beale et al., 2007).

Em geral, observamos que existem métodos que possuem grande precisdo, porém baixa
acurécia, assim como métodos com grande acuracia e baixa precisdo. Nenhum método sozinho foi
considerado melhor que os outros, mas, dependendo dos objetivos, alguns desses métodos podem ser
mais indicados (Landeiro e Magnusson, 2011). Embora ainda ndo seja possivel tomar uma decisdo
facil e objetiva, ¢ importante saber que algo precisa ser feito em relacdo a autocorrelacdo espacial
(Dormann et al., 2007), principalmente em estudos que testam hipdteses e avaliam niveis de

significancia.



Conteldo do Capitulo 2

No segundo capitulo nds avaliamos duas questdes relativamente recentes na ecologia. Uma
mais metodolégica e uma mais bioldgica. A questdo metodolégica consistiu em analisar uma
caracteristica comumente atribuida as analises baseadas em autovetores espaciais, sua grande
flexibilidade em gerar padrbes espaciais (Borcard e Legendre, 2002; Dray et al., 2006; Griffith e
Peres-Neto, 2006). Os autovetores espaciais sdo variaveis espaciais criadas a partir de uma matriz de
distancias geograficas que representam padrfes espaciais em diversas escalas, desde as escalas locais
até as escalas mais amplas, global/regional. A questdo bioldgica constituiu na avaliacdo de rotas de
dispersdo de organismos aquaticos (seguindo o curso dagua, ou em linha reta por terra). Para isso
utilizamos dados de peixes, que se dispersam principalmente pelo curso d"agua, e dados de insetos
aquaticos da ordem Trichoptera, que dispersam a longas distancias principalmente através do voo dos
adultos. Para avaliar o efeito das rotas de dispersdo noés utilizamos duas matrizes de distancia entre os
pontos amostrados, uma quantificando a distancia pelo curso d"agua de um ponto ao outro e a outra
quantificando a distancia em linha reta (distancia pela terra ou Euclideana).

O objetivo foi analisar qual dessas duas distancias melhor descreve a variacdo na composicao
de espécies, esperando que os tricopteros fossem mais bem explicados pelas distancias em linha reta
enquanto os peixes pela distancia pelo curso d’agua. Em relacdo a questdo metodol6gica, nos
esperavamos que, devido a grande flexibilidade atribuida aos autovetores espaciais, a distancia
utilizada néo faria diferenca na hora de analisar os dados. Ou seja, 0s autovetores criados a partir da
distancia Euclideana gerariam padrbes similares aos criados usando a distancia pelo curso d"agua,
fornecendo resultados similares. Testamos isso usando os dados de peixes, de tricopteros e dados
simulados (geramos dados de comunidades artificiais que se dispersam essencialmente pelo curso
d agua).

Em geral, observamos que as varidveis espaciais criadas com cada tipo de distancia
representavam padrdes espaciais diferentes. Desta forma, a distancia pelo curso d"agua é muito mais
adequada para ser utilizada com grupos que dispersam principalmente pelo curso d"agua, como
observamos para 0s dados de peixes e para os dados simulados. Ao contrario, a distancia Euclideana é
mais adequada para 0s casos em que se espera que a principal rota de dispersdo seja feita em todas as
dire¢des. Outras formas de gerar matrizes de distancias representando rotas de dispersdo também
podem ser geradas (e.g. Blanchet et al., 2008b), e provavelmente far&o diferenca ao serem utilizadas

para gerar variaveis espaciais.



Conteudo do Capitulo 3

No terceiro capitulo nds usamos dados de uma ordem de insetos aquéticos bastante diversa na
Amazonia central. A ordem Trichoptera esta entre as mais bem conhecidas ordens de insetos aquéaticos
da Amazdnia (Pes et al., 2005; Pes, 2005) e suas espécies sdo bastante utilizadas como indicadoras da
qualidade de &gua (Stuijfzand et al., 1999; Couceiro et al., 2006; Couceiro et al., 2007). Como visto
no segundo capitulo, os tricdpteros sdo capazes de migrar em todas as dire¢Oes, portanto a distancia
Euclideana € um bom descritor espacial desse grupo. NOs avaliamos neste capitulo os fatores
ambientais e espaciais que controlam a distribuicdo de tricépteros em 92 riachos distribuidos em trés
regibes da Amazodnia central. Os dados utilizados foram retirados da tese de Doutorado de Ana Maria
Oliveira Pes (Pes, 2005), que permitiu o uso destes dados para a producdo do terceiro capitulo. A
maioria dos riachos foi amostrada na reserva Ducke (39 riachos), em uma extensdo espacial de
aproximadamente 10 km. Nas areas do PDBFF (Projeto Dindmica Biologica de Fragmentos
Florestais) foram amostrados 21 riachos em uma extensdo de aproximadamente 60 km. A outra regido
amostrada foi a de Presidente Figueiredo, onde 32 riachos foram amostrados em uma extensdo de
aproximadamente 110 km.

Dada as diferentes extensfes espaciais amostradas nds esperavamos que a area com maior
extensdo, Presidente Figueiredo, apresentasse a maior heterogeneidade ambiental, bem como a maior
diversidade beta. Portanto, esperdvamos que em Presidente Figueiredo as varidveis ambientas e a
diferenciagdo ambiental explicassem bem as diferencas na composicdo de espécies e a diversidade
beta na regido, respectivamente. Além disso, esperavamos que, devido a maior extensdo espacial, as
variaveis espaciais, bem como a distancia geografica, fossem bons preditores da comunidade e da
diversidade beta, respectivamente.

Neste capitulo n6s também discutimos as diferencas no uso das anélises com abordagem em
dados brutos e as analises com abordagem em matrizes de distancia (Legendre et al., 2005; Tuomisto e
Ruokolainen, 2006; Legendre et al., 2008; Tuomisto e Ruokolainen, 2008). Em geral, observamos que
0 ambiente foi o melhor preditor da composi¢do de espécies de tricopteros analisando os dados de
cada regido separadamente, bem como analisando os dados de todas as regiGes em apenas uma analise.
N&o observamos nenhum padrdo espacial ao analisarmos cada area separadamente, indicando que o
ambiente € o mais importante nas trés escalas espaciais analisadas, confirmando a qualidade do
tricopteros como bons indicadores ambientais. Quando analisamos os dados de todas as regibes em
conjunto nds observamos um forte efeito espacial, porém esse efeito praticamente desaparece ao
removermos 0s efeitos ambientais, indicando a grande diferenca ambiental e na composicdo de
espécies entre as areas. As analises feitas com as abordagens em dados brutos e em matrizes de
distancia forneceram respostas bastante similares, embora seja extremamente importante notar que

elas avaliam e respondem questdes diferentes (Legendre et al., 2008; Tuomisto e Ruokolainen, 2008).



Conteldo do Capitulo 4

No quarto capitulo nés avaliamos o padrdo de distribuicdo de espécies de anuros em 72
parcelas amostrais da Reseva Ducke. Neste estudo foram realizadas oito amostragens, cinco no
periodo noturno e trés no periodo diurno. Foram encontradas 29 espécies, das quais 20 possuem
reproducdo aquéatica e 9 possuem reproducdo terrestre. Sete espécies com reproducdo aquatica foram
encontradas apenas esporadicamente e por isso foram retiradas das analises. Mais detalhes sobre a
coleta podem ser encontrados em Menin et al., (2007). Nés avaliamos o padrdo de distribuicdo das
espécies em relacdo aos principais fatores ambientais conhecidos por afetar a distribuicdo de anuros e
em relac&o as varidveis espaciais que descrevem padrdes espaciais em diferentes escalas. Os dados das
assembleias de anuros foram divididos em trés, um contendo todas as espécies, um contendo apenas as
espécies com reproducdo aquética e um contendo apenas as espécies com reproducao terrestre.

Devido ao fato de que os anuros sdo compostos por espécies muito sensiveis ao ambiente,
nossa hipotese foi de que o controle ambiental ¢ mais forte do que o controle espacial. Em relagéo ao
tipo de reproducdo, nossa hipétese foi de que os dois grupos diferem quanto as principais forcas
ambientais e espaciais que controlam a distribuicdo de suas espécies. Nossa predi¢do foi de que as
espécies com reproducdo terrestre sao mais afetadas por fatores espaciais, pois sua distribuicdo é mais
restrita por limitacdes de dispersdo do que por dependéncia em disponibilidade de agua. Por outro
lado, nossa predicdo foi que os anuros com reproducdo aquatica sdo mais controladas por fatores
relacionados ao nicho das espécies, principalmente aqueles relacionados com a disponibilidade de
agua. Caso estas previsOes estejam corretas, as espécies com reproducdo aquatica podem ser mais
adequadas para usos em estudos de monitoramento biolégico e avaliacdo dos efeitos de alteracdes
ambientais do que as espécies com reproducéo terrestre, ou do que o uso dos dois tipos em conjunto.

Observamos que nossos modelos explicaram cerca de 35% da variagdo na distribuicdo das
assembleias de anuros. Quando analisamos todas as espécies, independente do tipo de reproducéo, o
padrdo espacial foi mais representativo do que o padrdo ambiental. Contudo, observamos que o tipo de
padrdo observado depende do tipo de reproducdo das espécies. As espécies com reproducdo aquética
possuem um padrdo ambiental forte (i.e. controladas por fatores relacionados ao nicho das espécies).
Por outro lado, as espécies com reproducdo terrestre possuem um padrdo espacial ainda mais forte,
indicando que a distribuicdo dessas espécies € controlada por fatores relacionados a dispersdo limitada
ou que os fatores ambientais que realmente sdo importantes para as espécies com reproducao terrestre
ndo foram medidos neste estudo. Estes resultados podem ser bastante Gteis durante o planejamento de
estratégias de conservacao e de estudos de monitoramento biolégico e avaliacdo dos efeitos causados
por alteracGes ambientais, pois as espécies com reproducdo aquatica podem responder muito mais as

alteracdes ambientais do que as espécies com reproducao terrestre.



Conteudo do Capitulo 5

Nesse capitulo nds analisamos dados de 22 grupos biol6gicos amostrados na reserva Ducke.
Destes 22 grupos, 15 sdo de plantas e 7 de animais. A ideia geral do capitulo foi de medir a
congruéncia no padrao de distribuicdo dos diversos grupos, avaliando se € possivel usar apenas um
grupo, ou apenas alguns grupos, em estudos de biomonitoramento (uso de grupos substitutos). NGs
também avaliamos se resolu¢des numéricas (abundancia ou presenca e auséncia) e taxonémicas (nivel
de identificacdo) mais finas sdo necessarias. Ou seja, avaliamos se € necessario coletar dados de
abundancia ou se dados de presenca e auséncia, e se é necessario identificar em nivel de espécie ou se
a identificacdo em nivel de género é suficiente para encontrar 0 mesmo padrdo de distribuicdo ao
analisar os dados. Os dados utilizados sdo de amostragens realizadas em um méaximo de 72 parcelas e
um minimo de 30, onde as parcelas amostradas sdo sempre as mesmas.

No6s também utilizamos dados ambientais e espaciais para avaliar se a congruéncia observada
entre os diversos grupos é mais bem explicada pelo ambiente ou por varidveis espaciais. Os dados
bioldgicos sdo referentes a abundancia relativa dos organismos em cada parcela. Os detalhes amostrais
e o0s conjuntos de dados (biol6gicos, ambientais e geograficos) estdo disponiveis na pagina de dados e
metadados do PPBio (http://ppbio.inpa.gov.br).

Em geral, as varidveis ambientais foram bons preditores das comunidades de plantas
analisadas, explicando em torno de 20 a 30 %. Em alguns casos, o padrdo espacial foi mais forte que o
ambiental, como para 0s sapos noturnos, ervas e para os arbustos do género Psychotria (Rubiaceae).
As comunidades de animais, exceto sapos, ndo foram bem explicadas nem pelo ambiente nem pelas
variaveis espaciais. As comunidades de sapos diurnos foram bem explicadas pelas variaveis
ambientais, enquanto o0s sapos noturnos foram mais bem explicados pelas varidveis espaciais.

NGs observamos que 0s grupos de plantas sdo 0s grupos onde existe maior concordancia no
padrdo de distribuicdo. Em geral, os grupos mais concordantes foram aqueles que apresentaram
padrdes espaciais e/ou ambientais fortes, indicando que a distribui¢do desses grupos esté associada aos
mesmos fatores ambientais e/ou espaciais. A congruéncia entre os grupos de animais foi sempre baixa,
exceto para sapos, indicando que estes grupos possuem uma distribuicdo similar a uma distribuicéo
aleatoria na escala espacial da reserva Ducke. Observamos também que a resolugdo numérica e a
resolucdo taxondémica podem ser reduzidas sem grandes problemas para dados de presenca e auséncia
e identificagdes em nivel de género. Em especial, as lianas (da familia Bignoniaceae), palmeiras,
arvores da familia Lecythidaceae e Fabaceae e as samambaias e ervas foram 0s grupos mais
congruentes. Lianas foi o grupo com maior concordancia, sendo um 6timo candidato a grupo
substituto. Embora as lianas sejam dificeis de identificar e de contar no campo, a possibilidade de
trabalhar com dados de presenca e auséncia e identificacdes em nivel de género diminui a dificuldade
de se trabalhar com lianas. Entretanto, palmeiras, ervas e samambaias sdo grupos relativamente mais

faceis de se trabalhar e que também possuem um alto nivel de congruéncia com 0s outros grupos.
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Objetivos

Os principais objetivos deste trabalho foram os seguintes:

i) Criar um texto de revisdo sobre autocorrelagdo espacial com diversos exemplos
ilustrando os principais conceitos relacionados e as principais formas de analise disponiveis (Capitulo
1);

i) Discutir o uso de analises espaciais e a definicdo correta da matriz de distancias que
ird compor a anlise, usando exemplos de organismos aquaticos onde a matriz de distancias pode ser
definida através do curso d"agua ou através da distancia em linha reta, pela terra (Capitulo 2);

iii) Discutir as possiveis diferencas entre analises baseadas em dados brutos e em matrizes
de distdncia bem como o efeito da escala espacial e a heterogeneidade ambiental das areas amostradas
(Capitulo 3);

iv) Avaliar o padréo de distribuigdo de espécies de anuros em relagéo a fatores ambientais
e a fatores espaciais. Avaliar se os padrdes ambientais e espaciais observados nas assembleias de
anuros dependem do tipo de reproducéo das espécies (Capitulo 4).

V) Avaliar se existe concordancia no padrdo de distribuicdo de espécies de diversos
grupos taxonémicos indicando um possivel grupo substituto para ser utilizado em estudos de
monitoramento bioldgico. Avaliar se a concordancia observada € causada por fatores ambientais
(nichos) ou fatores ndo definidos (espaciais), que podem ser neutros ou de nicho. Avaliar se é possivel
reduzir a resolucdo taxondmica (de espécie para género) e resolucdo numérica (de abundancia para
presenca e auséncia) sem perder informacdes importantes sobre o padrao de distribuicdo das espécies
(Capitulo 5).



Capitulo 1

Landeiro, V. L. & W. E. Magnusson, 2011. The geometry of spatial analyses:
implications for conservation biologists, Natureza & Conservagéo 9: 7-20.
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ABSTRACT

Most conservation biology is about the management of space and therefore requires spatial
analyses. However, recent debates in the literature have focused on a limited range of issues related to
spatial analyses that are not always of primary interest to conservation biologists, especially
autocorrelation and spatial confounding. Explanations of how these analyses work, and what they do,
are permeated with mathematical formulas and statistical concepts that are outside the experience of
most working conservationists. Here, we describe the concepts behind these analyses using simple
simulations to exemplify their main goals, functions and assumptions, and graphically illustrate how
processes combine to generate common spatial patterns. Understanding these concepts will allow
conservation biologists to make better decisions about the analyses most appropriate for their
problems.
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INTRODUCTION

Spatial ecology has increasingly attracted the attention of ecologists and conservationists, and
spatial analyses are frequently used in biodiversity conservation planning (Diniz-Filho and Telles
2002; Nams et al. 2006; Moilanen et al. 2008). For example, approximately 25% of the articles citing
SAM software, a specialized spatial analysis software (Rangel et al. 2006), were concerned with
biodiversity conservation (Rangel et al. 2010). Beale et al. (2010) listed 4 questions of interest to
conservation biologists that potentially involve spatial analyses: (1) How does the spatial scale of
human activity impact biodiversity or biological interactions? (2) How does the spatial structure of
species’ distribution patterns affect ecosystem services? (3) Can spatially explicit conservation plans
be developed? (4) Are biodiversity patterns driven by climate? The third question is probably of most
immediate concern to conservation biologists, and has spurred the development of complex algorithms
to help land-use decision-making processes, such as Marxan with Zones (Watts et al. 2009). The
mathematics associated with this type of question are usually normative (Colyvan et al. 2009), and
designed to optimize the chances of obtaining a consensus decision.

Spatial ecology has opened many promising avenues of research for conservation. It has been
used to extrapolate and predict species occurrence (Austin 2002; Betts et al. 2006; De Marco et al.
2008), and may be used to predict the effects of global warming on biodiversity. However, one of the
main strengths of spatial analysis in conservation is its capacity to describe the patterns of diversity at
different spatial scales. Knowing what factors generate beta diversity, and at what spatial scales they
act, can be of great importance to conservation planning (Legendre et al. 2005; Tuomisto and
Ruokolainen 2006). Spatial analysis can be also used to identify patterns of genetic variability at
different spatial scales and define operational units for conservation planning (Diniz-Filho and Telles
2002).

The rapid development and sophistication of spatial methods and their applications have
enabled researchers to make predictions of species distributions and plan conservation efforts. For
example, Bini et al., (2006) used simulation procedures to predict anuran species that could be
discovered in the Cerrado biome by 2050, and showed that the predicted distributions lead to different
priorities for placement of reserves than those based on currently known distributions of species. Some
researchers have suggested that spatial interpolation to predict species distributions may be more
effective than models based on environmental variables (Bahn and McGill 2007).

Arguably, all conservation related questions should be embedded in a landscape context
(Metzger 2006). Chesson (2003) commented “Would it not be more useful to focus on how physical
environmental variation is translated into patterns exhibited by organisms?” However, recent
discussion of spatial analyses in the scientific literature has focused on descriptive models that produce
the parameters that can be used as inputs to more applied models. Beale et al. (2010) asserted that

“many ecologists ... often believe that spatial analysis is best left to specialists. This is not necessarily
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true and may reflect a lack of baseline knowledge about the relative performance of the methods
available.” We suggest that, rather than being a problem of not understanding the relative performance
of the methods, most conservationists focus on particular problems that can be approached with
normative mathematics, and not on the problems in obtaining generally robust descriptive statistics
that were derived from simulations using unrealistic ecological assumptions.

Most recent comparative evaluations of spatial methods used computer simulations to evaluate
the relative utility of different methods (Dormann et al. 2007; Beale et al. 2010). These simulations are
often difficult for biologists to appreciate because they are couched in terms of distance space and
matrix algebra. In this paper, we use simple geometric models to illustrate the concepts behind
regression analysis of distance data, and discuss what the results imply in terms of ecological
processes that may be of interest to conservationists.

The leaders in spatial ecology usually explain ecology with the associated mathematics and
statistics. However, ecologists and conservationists often find the explanations complex, due to the
difference between space and most ecological variables. Ecological variables are generally treated as
linearly additive by appropriate transformations or sampling procedures. That is, each variable
represents a single dimension. However, space is usually measured in two or more dimensions in a
coordinate system. The coordinates themselves do not necessarily represent the conceptual distance
between two objects, which is usually the Euclidean distance. Some believe that space cannot be
represented by linear additive combinations, and that joint analysis of spatial and ecological variables
can only be undertaken by transforming the ecological variables to distances (Tuomisto and
Ruokolainen 2006). Others claim that this procedure produces statistics that are difficult to interpret,
and that space should be converted to linear additive components for inclusion in analyses (Legendre
et al. 2005; Legendre et al. 2008). Although we are inclined towards the latter, we wish to avoid these
difficult conceptual problems because most of the concepts in spatial analysis can be understood in
terms of simple one-dimensional spatial models (e.g. distances along a transect), and it is easier for an
ecologist to appreciate the conceptual problems if they are first presented in models in which space is

described in only one dimension.

Autocorrelation

Autocorrelation, as the name implies, is the correlation of a variable with itself. This
correlation could be in time or space. For example, values of a variable are temporally autocorrelated
if the values of that variable at short time intervals are more or are less similar than expected for
randomly associated pairs (Legendre and Legendre 1998). The same is true for spatial autocorrelation,
in which values nearby are more similar than values from points separated by greater distances. There
are several causes of spatial autocorrelation and this is the greatest source of confusion, because

different definitions for spatial autocorrelation are used in relation to the process that generates it. For
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example, according to Peres-Neto & Legendre (2010), autocorrelation results from “spatial structure
due to the dynamics of the species (or their communities) themselves (e.g., via dispersal)”. Under this
definition, spatial autocorrelation is not used for predictor variables but rather is used only for
response variables that are autocorrelated by endogenous causes. The many definitions used in spatial
ecology generate confusion, such that some authors have published their own glossary (Peres-Neto
and Legendre 2010). The difference between the definition of Legendre & Legendre (1998), who
defined autocorrelation in relation to pattern, and that of Peres Neto & Legendre (2010), who defined
autocorrelation in terms of process, is important, and reflects on another important concept,
“stationarity.”

Stationarity is a requirement of many methods of analysis that specify that the mean, variance,
and other statistical properties of the distribution be constant over the space or time. Fortin & Dale
(2005) defined stationarity as “a process, or the model of a process, is stationary (or homogeneous) if
its properties are independent of the absolute location and direction in space... the parameters of the
process, such as the mean and variance, should be the same in all parts of the study area and in all
directions ”. However, whether this refers to the underlying process or the resulting pattern is unclear.
Consider an organism that colonizes a point in a previously empty space, and then reproduces.
Assuming that the organism and its descendents have limited dispersal, after a few generations the
density of the species can be represented by a single peak in the previously empty space (Fig. 1). The
process that generated that peak was endogenous autocorrelation (we did not need information on
anything but the density in neighboring sites in the previous generation to produce the peak), and the
process was stationary (i.e. knowing the process, we only needed information on the densities in

neighboring sites, independent on where we were in space).

asuodsay

Figure 1. A peak of abundance representing the distribution of a species. Some factor
associated with intrinsic biology of the species, such as reproduction or limited dispersion could create

such pattern.
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A problem arises when we only have the pattern and are unsure of the process. Imagine no
endogenous autocorrelation, but that the peak in population density corresponds to a physical peak in
the landscape, which might happen if the density of the organism were related to temperature or some
other correlate of altitude. The pattern is identical, but the density of the organism is a function of
temperature and not a function of the density in neighboring sites. In this case, a combination of
endogenous autocorrelation and an external driving variable can generate exactly the same pattern.
The literature can be confusing because the interpretation of autocorrelation and stationarity depends
on the researcher’s assumptions about the underlying processes, and we generally only have

information on the pattern.

Stationarity in one or two dimensions

Consider a response variable () that varies with distance along a transect (T), as shown in
Fig. 2A. An assumption of most spatial analyses is that the relationship between Y and space is
stationary. That is, the variation of Y across T is the same independent of the observer’s position along
the transect, and in any direction (i.e the relationship is independent of the position in T). That
condition can be seen to hold for the data in Fig. 2A. Starting from any point, an increase in the
distance along T of one unit, will increase the value of Y by a constant amount. This relationship
applies independently of direction. Conversely, if we decrease T by one unit, we decrease the value of
Y by the same constant amount.

It is important to note that the only way for the observed relationship between Y and distance
to be stationary is for the relationship between Y and T to be linear. Any nonlinear relationship will
result in the effect of distance being dependent on spatial location (i.e. the value of T at which we start
to measure the distance). This is illustrated in Fig. 2B, where the relationship between Y and T is
nonlinear. If we start at point B and move 1 unit forward along the T axis to C, Y is reduced by
~0.287. If we start at A and move four units forward along T, Y remains constant. In one dimension,
the only way that the relationship between Y and distance can be stationary is for Y to have a linear
relationship with distance. In two dimensions, the only way that the relationship between Y and
distance can be stationary is if the value of Y can be represented in space by a flat plane with no
curvature. Note that a small-scale stationary process, such as that described in Figure 1 can generate an

apparently nonstationary pattern at a larger scale.
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Distance along Transect

Figure 2. The difference between a stationary process and a stationary pattern. A) a stationary
pattern, where the effect of distance along a transect is independent of location or direction. B) a non-
stationary pattern that could result from a stationary process acting over a limited time period. C) a
pattern that could arise from a small-scale stationary process acting over a stationary pattern, such as
reproduction with limited dispersal of the organisms illustrated in part A. D) magnification of A), a
stationary process may create a non-stationary pattern. E) a stationary pattern similar to that in A), but
the organisms are closer together. A small-scale stationary process, such as that illustrated in part C,

does not produce a recognizably non-stationary pattern in this case, as seen in part F.

If the relationship between the value of a variable and space is linear in one dimension (i.e. the
pattern is unambiguously stationary), it does not matter whether we use a conventional analysis or an
analysis based on distances. For instance, we could calculate the differences between the values of Y
(0Y) for each pair of points and regress this against the distances between the points. A Mantel test
uses the absolute value of the distance, but as we are only considering one dimension, we could use a
positive or negative sign to indicate direction. The value of the slope of the regression (the amount that
the dependent variable increases for a 1 unit increase in the independent variable) is logically the same
whether the dependent variable is Y and the independent variable T, or whether the dependent variable
is 0Y and the independent variable 6T. However, the values may only be the same if we use geometric
mean regression for the second analysis, because we have artificially inflated the variance in T by
using 8T, and this biases the estimate of the slope downwards for least-squares regression (Zar 1996).

The slope of the relationship is only representative of the “effect of distance” if the relationship with
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the resultant variable is stationary. As with any simple regression, if the underlying relationship is not
linear (i.e. the effect of space is a variable and not a constant), estimating a single slope parameter is
meaningless.

What this means for the construction of most conservation-related models is that useful
parameters are only obtained if that parameter is a constant, unless we are willing to move to
likelihood methods or Bayesian statistics and try to generate a probability distribution for the values of
the parameter. We will use simple one-dimensional models to illustrate the recent discussion in the
literature, and evaluate the relevance of those discussions to ecologists undertaking conservation

research.

Stationarity of pattern and stationarity of process

Note that a stationary process does not necessarily generate a stationary pattern (Fortin and
Dale 2005). Let us imagine a secondary process that has a nonlinear relationship with space. For
instance, each point on Fig. 2A could represent a value for a single individual. If that individual
reproduces, and dispersal is limited, we may see a pattern like that on Fig. 2C, with similar values of Y
(similar because of genetic similarity or maternal provisioning) at close by points in space. Although
the process (reproduction with limited dispersal) is the same at each point (i.e. stationary), the
resulting pattern is not stationary. This can be seen by amplifying the area around what were originally
two individuals (Fig. 2D). Although individuals vary in Y, the mean value of Y does not increase
between points A and B. However, the effect of the same difference in Y between B and C is much
greater. This point is important. A stationary process at one scale does not necessarily generate a
stationary pattern at larger scales, and many analyses assume a stationary pattern.

We gave an example of a stationary process generating a nonstationary pattern in Fig 2A.
Interpretation of a pattern generated by a nonlinear stationary process can be difficult, as can be seen
from Hubbell’s (2005) neutral theory of biogeography. By using simulations analogous to those we
used to generate Fig. 2C, but with many more potential species, Hubbell (2005) generated local
communities that varied over a much larger metacommunity landscape. The overall analysis is very
complicated, but the result of most relevance to spatial patterns is that this process led to similarity
among local communities that decreased linearly with the log of distance. That is, the relationship of
similarity (the complement of ecological distance) was nonlinear with distance, even though the
process that generated that similarity was the same at each point.

It would appear easy to deal with this situation. We could carry out a Mantel test of the
relationship between similarity and log distance, but transforming a distance matrix has complex
implications for interpretation. The rules we use in mathematics generally conform to Euclidean

geometry, but the geometry of curved surfaces is much more complex, and manipulation of such
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geometry is not a trivial task, even for geniuses, such as Einstein (Mlodinow 2001). If the “effect of
distance” is not linear, the effect of a particular unit of distance (say the distance you walk from point
1 to point 2) depends on the position of the observer relative to those two points. This is the theory of
relativity, and not the sort of problem that most ecologists are thinking of when they ask “How much
does distance matter?”

The apparent effect of a secondary nonlinear process depends on the dispersal of the primary
units (those generating the secondary response). The points in Fig. 2A were widely scattered, and we
assumed that these were the only individuals in the population (i.e. not the only ones sampled).
Therefore, the secondary process of reproduction produced clumps of points that reflected the
autocorrelation. If the initial individuals were close together in relation to the extent of influence of the
secondary process (Fig. 2E), there may be no obvious clumping (i.e. the pattern is stationary) after the
action of the secondary process (Fig. 2F), even though the same mechanistic process generated the
data. Pattern may be useful to indicate the probable action of a secondary process, but the absence of
pattern is not necessarily evidence of the absence of that process. This is important because all spatial
analyses are about detecting clumping and trying to determine what caused that clumping so that
nuisance variables can be discounted (controlled) and interesting variables can be analyzed.

If clumps can be identified a priori, it may be possible to select the most probable hypotheses
and discard the most unlikely (Barnett et al. 2010). However, most stationary positive autocorrelation
processes will lead to an essentially uniform distribution of the dependent variable if left to act long
enough in a homogeneous landscape. Strong clumping is usually strong evidence that a stationary
positive autocorrelation process is not acting alone. Assumption of an autocorrelation process may
lead to erroneous biological conclusions when some other process causes clumping (Barnett et al.
2010).

SPATIAL ANALYSIS

Clumping as an indication of the effect of space

Most hypotheses about ecological communities attempt to explain spatial patterns (clumping).
However, researchers seek independent evidence, and spatial proximity may cause pseudo-replication
(Hurlbert 1984). Therefore, researchers face the quandary of forming hypotheses due to spatial
clumping while attempting to avoid clumping to test those hypotheses. Space is not an ecological
variable, but rather reflects some process that varies spatially (Diniz-Filho et al. 2003). Clumping may
occur at any of a variety of scales, from large (Fig. 2A) to small (Fig. 2D) with many intermediate
possibilities (Legendre and Legendre 1998; Legendre et al. 2002). It may be illogical to try to study

many phenomena occurring at different scales in the same analysis (Fortin and Dale 2009), and all
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spatial analyses can be considered attempts to isolate the effects of particular independent variables
from other processes that cause clumping.

General trends (which may be the only stationary patterns) might be excluded before
undertaking spatial analyses, or removing effects of local patterns might be necessary. Regardless, the
choice of which scales to study should be determined by the questions, not the analysis (Diniz-Filho et
al. 2007; Fortin and Dale 2009). There is no scale at which only endogenous autocorrelation can be
assumed, and endogenous autocorrelation does not necessarily occur only at one scale. Consider the
distribution of individuals of a species of plant that is dispersed passively by gravity and also by birds.
This will result in two scales of clumping, both of which are endogenous. If the extent of the study is
small in relation to the extent of endogenous autocorrelation, the autocorrelation may be manifest as a
broad-scale trend across the study area (Beale et al. 2010). Removal of such a trend to obtain
“stationarity”, as is frequently recommended in time-series analyses, may be totally inappropriate.

The first step in an investigation of the role of space in ecology is exploratory data analysis
(EDA). In this step we do not invoke process and must only investigate pattern. Therefore, we use the
definition of Legendre & Legendre (1998), which defines autocorrelation in terms of pattern, rather
than that of Peres Neto & Legendre (2010), which defines autocorrelation in terms of process, because
distinguishing endogenous from exogenous autocorrelation requires knowledge of the process. In this
step, we are asking questions, such as “Are my data spatially autocorrelated?” “Is the response
variable, the predictor variable, or both autocorrelated?” “If yes, what is the extent of autocorrelation?”
“Are model residuals autocorrelated?” “Should I use a spatial analysis to take autocorrelation into
account (see below)?” Measures of autocorrelation, such as Moran’s | and Geary’s ¢ and their
correlograms are used to explore these questions. Correlograms are used to detect statistically
significant spatial structure (i.e, the pattern, not the process) and to describe its general features.
Combined with maps, they are used to assess the magnitude and the pattern of autocorrelation in data
sets (Legendre and Legendre 1998). However, it is not obvious what criteria should be used to indicate
when space needs to be taken into account, and several authors recommend the use of spatial analyses
on the basis that they will always improve interpretation (Dormann et al. 2007; Beale et al. 2007;
Beale et al. 2010).

Why undertake spatial analyses?

When nearby values of variables are more similar than expected at random, a pattern of
positive autocorrelation is assumed, and produces two major classes of problems in spatial analyses.
The first is conceptual and related to the structure of the causal interpretation of the model being
investigated. When we introduce "space" into the model, we are including it as surrogate for some
biological or physical process, which induces spatial autocorrelation. If it is only a surrogate for a

nuisance variable, then eliminating the effect of space will not affect our interpretation. However, if it
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is also a surrogate for a variable we wish to investigate, removing the "problem” of space may
eliminate an effect that we wanted to study. Therefore, before analysis, it is necessary to decide which
aspects of space we want to include in the analysis, and which aspects we want to discard. This
decision is biological/conceptual and often very difficult when we know little about the functioning of
the biological systems. However, it is also the most important decision, because it will affect all of our
interpretations (Legendre 1993; Legendre et al. 2002).

The second class of problems is statistical/computational. Autocorrelated data can give the
wrong estimates of degrees of freedom for conventional statistical tests and consequently gives
inflated type | error rates (Legendre 1993). This effect is often called pseudoreplication, but it is very
different from the pseudoreplication caused by confounding variables described in the previous
paragraph. Spatial autocorrelation may also affect estimates of regression coefficients due to red shifts
caused by spatial autocorrelation (Lennon 2000).

Discussion of the points alluded to in the preceding paragraphs (mainly the one related to
coefficient shifts) is recent, and filled with controversies (Lennon 2000; Diniz-Filho et al. 2003;
Hawkins et al. 2007; Bini et al. 2009). The second class of problems has been the focus of most of the
recent discussions in the literature (Diniz-Filho et al. 2003; Dormann et al. 2007; Begueria and Pueyo
2009; Bini et al. 2009), but these aspects are also related to the practice of partitioning variance
between interesting predictor variables and the possibly confounding factor "space” (Borcard et al.
1992; Legendre 1993; Legendre and Legendre 1998). Partitioning variance between "space" and
ecological predictor variables is the focus of research on niche versus neutral models of community
dynamics (Peres-Neto et al. 2006; Legendre et al. 2009a; Legendre et al. 2009b; Peres-Neto and
Legendre 2010), and the question of whether area or habitat is more important for reserve design.

Before deciding which spatial analysis to use, one must answer the following conceptual
questions:

1) Do we only want to remove the possible effects of other variables that are spatially
confounded with the predictor variable?

2) Do we want to partition the variance in the response variable into that which appears to be
associated only with the predictor variable(s) and that which may be associated with the predictor
variable and/or other variable(s) that are confounded with spatially-structured environmental
variation?

3) Do we only want to use a spatial analysis to remove spatial autocorrelation in order to be
able to use standard statistical tests?

4) Do we want to describe spatial patterns in response and predictor variables, relating them to
a specific spatial scale where they are most affected by autocorrelation?

Some analyses do more than one of these simultaneously, but it is important that we recognize
which problems are being resolved, because there is no general method that can solve all the

conceptual and statistical problems simultaneously.
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Where is space in my model?

In general, the construction of an ecological model is a trade-off between complexity and
utility (Levins 1966). In the best-case scenario, the predictor variables should be orthogonal to space
and therefore not autocorrelated; however this rarely occurs in observational studies. In the simplest
form of statistical tests, inclusion of spatial variables decreases spatial autocorrelation in the residuals,
but reduces degrees of freedom. When modeling, our data might have autocorrelation patterns in the
response variable, in the predictor variables, and/or in the errors (residual) of the model (Fig. 3).

An assumption of most statistical tests is that the errors are independent and identically
distributed (the so called I.1.D. of errors), and it is common practice to say that residuals results from
all factors not included in model; e.g. soil pH, land use history (Diniz-Filho et al. 2003). The
assumption of L.1.D. of residuals (errors) is necessary to generate the distributions of statistics under
null hypotheses for most tests. In the "error model," residuals may be independent (first i in 1.1.D.). In
"residual” (ecological) models, residuals are known not to be independent because they have causal
relationships with variables not included in model. At most, we can hope that they are independent of
the variables included in the model. One of the external variables traditionally relegated to the residual

variation is "space."

Autocorrelation might
be present at:

y = a-+ b X+ e associated p-value
v ~

N \ -

\
N\ P

\
and may affect the

estimate of:

Figure 3. The basic structure of a linear-regression equation. Autocorrelation might be present
in the response (y) and/or in the predictor (x) variables, as well as in the errors (e). When present,
autocorrelation might affect the estimate of p-values, though the existence of shifts in the estimates of
the intercept (a) and the slope (b) is debatable (Lennon 2000; Diniz-Filho et al. 2003; Hawkins et al.
2007).

When “space” affects variables in the analysis, the residuals may have a spatial pattern.
Consequently, the decision to use spatial methods may come as a result of an evaluation of residuals.

If residuals are autocorrelated then spatial analysis is used. However, statistical tests are compromised
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only when both the predictor and response variables are autocorrelated (Legendre et al. 2002).
Therefore, residuals can be spatially structured without inducing statistical bias (P.R. Peres-Neto
Personal Communication). In fact, the residuals may remain autocorrelated even after the use of the
appropriate spatial analysis (Beale et al. 2010). Therefore, the choice of the appropriate test should not
be based only on analyses of residuals, but by assessing whether both response and predictor variables
are spatially structured.

Several solutions have been proposed to manage the spatial autocorrelation in ecological data.
We distinguish among two groups of solutions: i) removers - autocorrelation is a problem that should
be removed from data; and ii) includers - autocorrelation is a natural process that should be understood
and studied as an ecological phenomenon, not as a statistical problem. Generally, "the removers" tend
to delete sampling sites until the data are no longer autocorrelated (Legendre and Legendre 1998,
describe this process, but do not recommend it, pp 14), or to apply some type of correction to obtain
the geographically effective degrees of freedom (Dutilleul 1993; Dutilleul et al. 2008). “Removers” do
not necessarily try to take out all of the autocorrelation, but may restrict analyses to data grouped in
scales relevant to the question, and in which it is unnecessary to account for autocorrelation at other
scales. The "inclusive methods" are based on statistical procedures that take spatial autocorrelation
into account (Dormann et al. 2007), changing the way that the data are analyzed and interpreted
(Legendre 1993).

SIMULATIONS

What the simulations mean

In the following sections we will use simple models with space represented by a single
dimension (distance along a transect) to illustrate the results of some of the simulations in the
literature, and their implications for different types of analyses. Basically we will generate 16 types of
simulated data (Fig 4) and analyze these data using simple Ordinary Least Squares (OLS) regressions,
Simultaneous Autoregressive (SAR) models (error, lagged, and mixed), Generalized Least Squares
(GLS), and Spatial Filtering Techniques (using three different procedures to choose spatial filters to
use in the model). Details of simulations and analysis are in the supplementary material. The effects of
spatial autocorrelation on our interpretations depend on its strength and extent (Beale et al. 2010). We
will discuss that later, and start with simple combinations of large-scale (a linear trend across the
transect — Fig. 2A), small-scale autocorrelation generated by local processes (such as in Fig. 2D), and
no autocorrelation (random association with space). Either or both of the dependent and independent
variables may have no, large-scale, small-scale, or large- and small-scale autocorrelations. The
possible combinations and resulting patterns in the relationships between dependent and independent

variables are shown in Figure 4.
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We can group the 16 graphs in three general scenarios: (1) Autocorrelation in either the
dependent or predictor variable, but not in both (Fig 4. B, C, D, E, I, M). (2) Both the dependent and
independent variables are spatially autocorrelated, but they are orthogonal (independent in the sense
that information on one relationship does not allow prediction of values generated by the other), and
spurious relationships are unexpected for purely geometrical reasons (Fig 4 H, L, N, O, P). (3) Both
variables are linearly related to space, resulting in a spurious relationship between them due to their

common relationship with space. (Fig. 4 F, G, J, K).

Random

Linear trend

Response variable

Linear trend
+ Contagious

Contagious

Figure 4. Sixteen combinations that can result from sampling different combinations of the

structures described in Fig. 2A-D. We sampled 200 equidistant points, spaced by 5 units, along the

transect.
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These data were generated to avoid a causal relationship between the dependent and
independent variables. That is, information about the independent variable was not used to generate
the dependent variable. Therefore, the ideal statistical test would not indicate a relationship between
the dependent and independent variables. If we apply a test of the relationship between the dependent
and independent variables many times (we used 1000 times in our simulations), they should give an
apparently significant result only once in twenty times, if we use the conventional critical level to
reject the null hypothesis of 0.05. While we do not recommend an arbitrary 0.05 “significance” level,
it is commonly used to estimate the frequency of type I error (how often the null hypothesis is rejected
erroneously).

Scenario 1. — All of the combinations in scenario 1 involving autocorrelation in the dependent
variable (Fig. 4. A, B, C, D, E, I, M) induce autocorrelation in the residuals of a regression of the
dependent variable on the independent variable (Table 1), but conventional statistical tests produce
about the correct level of type | error (0.05). This is expected because statistical tests are compromised
only when both the predictor and response variables are autocorrelated (Legendre et al. 2002).
However, advocates of spatial analyses claim that spatial analyses should be carried out always
because spatial autocorrelation may affect the analyses even when statistical tests do not detect
autocorrelation at the appropriate significance level. We will not enter into this debate, but it clearly
would be beneficial to have diagnostic statistics to indicate when autocorrelation in the variables is

likely to lead to compromised statistical tests.

Table 1: Results of ordinary least squares (OLS) regression models for 1000 simulation runs
combining samples taken from our four scenarios (Fig. 4). Type | error rate / rate of times that
the residuals were autocorrelated at the first distance class among 1000 simulation runs.

Environmental

Random Linear Linear+Contagious  Contagious
Random 0.059/0.065 0.045/0.04 0.047/0.041 0.054/0.053
§ Linear 0.056/1.0 1.0/0.713 1.0/0.543 0.387/1.0
;’; Linear+Contagious 0.049/1.0 1.0/0.986 1.0/0.937 0.407/1.0
= Contagious 0.05/0.911 0.353/0.867 0.385/0.875 0.412/0.924

Scenario 2. — Both the dependent and independent variables are autocorrelated, but the
processes that lead to autocorrelation are independent for each variable, such that we would not expect
a relationship between them for geometric reasons (i.e. they are geometrically orthogonal, Fig 4 H, L,
N, O, P). This situation is probably rare in nature (Betts et al. 2009), and is not what worries most

ecologists. However, this scenario has been used in simulations by most modelers (Dormann et al.
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2007; Betts et al. 2009; Beale et al. 2010) because it gives a good example of how autocorrelation can
give spurious statistical results, despite apparently orthogonal geometry. In this scenario, the null
hypothesis of no relationship between the dependent and independent variables is true, but ordinary
least squares (OLS) regressions indicate significant relationships (Table 1). Of the eight spatial
methods frequently recommended, only three, those related to SAR methods, returned type | error
rates close to the nominal 0.05 level (Table 2).

Scenario 3. — Both the dependent and independent variables have spatial relationships that
lead to a spurious relationship between them (Fig 4 F, G, J, K). This is probably the most common
case confronting ecologists and conservationists. If all clumping (autocorrelation pattern) in the
dependent variable is due to the effects of independent variables, there is no statistical problem due to
the autocorrelated pattern (Beale et al. 2010). However, with real data, the cause of clumping is being
inferred, and is not known before analysis. The clumping could be due to endogenous autocorrelation
(a process affecting only the dependent variable), due to independent variables included in the model,
or other independent variables not included in the model. Researchers tend to assume that the spatial
autocorrelation is totally attributed to endogenous processes (i.e. not due to habitat). However, that is a

very sweeping assumption that should be supported by strong natural-history justifications.

Table 2: Proportion of simulation runs that had a p-value < 0.05 out of 1000. Row names are
the analysis used and column names are the variables used in the model. Y indicates a
response variable and X a predictor one. Subscript ¢ indicates contagious, | indicates linear,

and | + c indicates linear plus contagious.

Ye- X1 Ye-Xue Ye-Xo Ye-Xe Yi-Xc
OLS 0.504 0.561 0.564 0.565 0.513
SAReror  0.051 0.047 0.054 0.05 -
SARjageed  0.064 0.058 0.062 0.08 0.07
SARmixeds 0.053 0.046 0.054 0.061 0.051
GLS 0.241 0.409 0.417 0.405 0.399
ME 0.577 0.618 0.653 0.685 0.6361
SF 0.566 0.659 0.657 0.669 0.7746
PCNM 0.573 0.832 0.837 0.708 0.102

We used spatial confounding with a large-scale trend because it is easier to visualize, but
confounding can result when autocorrelation is on a similar scale for the dependent and independent
variables, independent of the scale of the autocorrelation. The problem of incorrectly estimated
probabilities remains along with the extra problem of confounded effects. Hurlbert (1984) referred to

the action of an unrecognized confounding variable as “demonic intrusion”. If the objective of spatial
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analyses is to evaluate the possible effects of all spatially confounding variables by including them in
the model as “space”, then space represents demonic intrusion. As we have seen, “space” is what we
use to represent clumping. By including the effects of clumping, we are including the effects of all
confounding variables that cause clumping.

In this case, the most we can do is to separate the variability in the dependent variable into
parts that are generated by different processes. Part can be unambiguously attributed to the non-spatial
independent variables included in the model, and part can be unambiguously attributed to spatially
aggregated effects, which could be due to endogenous processes, such as limited dispersal of
organisms, or spatially aggregated predictor variables not included in the model. Part of the variability
cannot attribute to anything (residual), and the rest could be due to either the spatial predictors or the
other independent variables included in the model (Fig. 5). To separate the effects of space and
predictor variables, we must model autocorrelation in the independent variable that corresponds to
autocorrelation in the dependent variable. Borcard and Legendre (2002) has pioneered this type of
analysis, mainly using a technique called Principal Coordinates of Neighbourhood Matrix - PCNM
(see also Dray et al. 2006; Legendre et al. 2009a). However, any of the methods that take spatial
autocorrelation into account in the independent variable may be used (Table 2).

The down-side of taking into account the potentially confounding effect of space is that when
we take out “space” we may be removing a true effect of the independent variable. This will affect our
estimates of the regression coefficient for the independent variable. We have seen that, even when the
effects of space and the independent variable are orthogonal, many of the spatial techniques, including
PCNM, may provide unbiased estimates of the slope of the regression, but with great cost in precision
(Fig. 6). This is important, because an imprecise estimate of the regression coefficient will lead to
imprecise variance partitioning (i.e. the amount of potential confounding). Because researchers
normally do one or a few studies, and have only one or a few estimates of the regression coefficient, it
may not be very relevant that if they had done 1000 studies, the mean estimate of the regression
coefficient would have been close to correct. Worse still, some of the best methods for dealing with
the statistical problem of high rates of type I error for scenario 2 (e.g. autorregressive models) produce

strongly biased estimates of the regression coefficient in scenario 3.
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Figure 5. Conceptual variation partitioning of OLS and SAR models. The first is the

conceptual variation partitioning diagram, showing the environmental-only component, the

environmental shared with the spatial component, the spatial-only component, and the unexplained

variation. The remaining partitions are for A) OLS models, in which there is considered to be only the

environmental component and the unexplained variance; B) SAR error, in which a spatial variable is

created to account for the autocorrelated errors, so this model conceptually has no shared component;

C) SAR lagged, in which a spatial variable is created to explain spatial patterns of the response

variable, so there is a shared component between environmental variables and the spatial component;

and D) SAR mixed models, in which two spatial variables are created in a way that the spatial

component might be interpreted as two spatial only components, one related to the endogenous

autocorrelation pWY, and the other related to the exogenous autocorrelation YWX.
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Figure 6. Boxplots representing the differences found in the slope (standardized coefficients)

between OLS1 estimated parameters from the other analysis

run after the data being

“pseudoreplicated”. The line inside the boxes is the median, the box indicates the first and third

quartiles and whiskers which extend to the minimum and maximum values (points are outliers further

from the mean than 1.5 times the box length).
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There is also a conceptual problem with the exercise of attributing proportions of variance to
“space”. Beside the fact that the result will be biased if there is a miss match between the scale of
sampling and the scale of effect of predictor variables (de Knegt et al. 2010), the answer must be scale
specific. The amount of variance due to any variable is not a characteristic of the biological system, it
is a characteristic of the sampling scale. Any discussion of the proportion of variance attributable to
factors causing endogenous autocorrelation should be prefaced by an explanation of why that
particular scale is of interest for the conservation problem in hand.

More complex simulations

Beale et al. (2010) have carried out comprehensive simulations that are extensions of scenario
2, with collinear predictor variables, model selection algorithms and application of regression
techniques designed to address problems derived from the violation of assumptions. In general, their
conclusions are similar to those presented here, although some methods that work well under simple
scenarios are not improved by use of model selection algorithms. Model selection for collinear
variables is an extremely complex subject and perhaps more polemical than selection of spatial
techniques (Taper and Lele 2004). The two most complex scenarios presented by Beale et al (2010)
were the scenarios in which none of the methods worked well and are useful to illustrate the
limitations of spatial analyses in general.

The first situation is where the relationship between the dependent and independent variables
is nonstationary. As in Beale et al. (2010), we simulated no relationship between the dependent and
independent variables on one side of the space (in our case, on one side of the transect) and a strong
relationship on the other side (Fig. 7). The lines in Figure 7 illustrate the relationship we are trying to
describe. It is clear why a global model cannot describe this situation. The regression coefficient is not
a constant, and any model that ignores that will be misleading. This is independent of the possible
autocorrelation in the residuals or any other statistical problem. The model is so badly specified that it
is meaningless to compare the utility of the different methods.

The second situation, which Beale et al. (2010) surprisingly considered worse than the first, is when
the general model is correct, but the autocorrelation in the residuals is nonstationary. They modeled an
increase in the extent of the autocorrelation across their spatial coordinates. This relationship is
illustrated in one dimension in Figure 8. This situation is analogous to breaking the assumption of
homogeneity of variance (heteroscedasticity) in a simple regression situation, with well-known
consequences (incorrect estimates of type | errors). The estimate of the regression coefficient is
generally not badly affected by heteroscedasticity in a simple regression, but estimates of slopes with
collinear predictor variables and heteroscedasticity may be very inaccurate (Beale et al. 2010).
Although we agree with Beale et al. (2010) that nonstationarity of the autocorrelation in the residuals

is a grave problem, we believe that, unlike the error in model specification described above, it is not
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inherently unsolvable, and, where individual clumps can be recognized, analyses such as those
described by Barnett et al. (2010), which include different variances for each level of the predictor
variable, may lead to improved spatial analyses, as they do for repeated-measures analyses.

Most of the techniques we have discussed assume isotropy (the effect of distance is
independent of direction). When the effect of distance depends on direction (usually), this needs to be
taken into account in the analysis. Spatial filters are designed to capture any form of clumping, but
most other analyses need information on the form and direction of the autocorrelation. Dendritic
systems usually have connections that are not well modeled by Euclidean distance (Peterson & Ver
Hoef 2010). Those authors describe how to take into account different forms of connectivity
(dispersal), but as with most of the papers reviewed here, they only treated autocorrelation in the
residuals, and not in the predictor variables (pseudoreplication sensu Hurlbert, 1984). We can expect

further advances in modeling anisotropic systems in the near future.

Transect

Figure 7. Example of a situation in which there was no relationship between the dependent
and independent variables (response [e.g. regression slope] = 0]) on one side of the space (in our case,

on one side of the transect) and there is a strong relationship on the other side.
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Transect

Figure 8. An example where the extent of autocorrelation is non-stationary, which might
occur in a situation where dispersal is more limited on one end of the transect. This results in points

clumps being more aggregated at small distances along the transect.

CONCLUSIONS

Where to go from here?

Conservation biologists want to use the most powerful method, and recent studies of spatial
analyses conclude that applying some of the techniques they describe is better than doing nothing
(Dormann et al. 2007; Bini et al. 2009; Beale et al. 2010). However, conservation biologists must be
clear about their objectives. Spatial autocorrelation is generally advantageous for specific normative
studies, because it permits land-use zoning and the inclusion of considerations relating to costs of land
acquisition and control of access (Watts et al. 2009). Many of the most promising spatial methods in
conservation biology described in the introduction do not involve statistical problems of
autocorrelation in the residuals, which has been the focus of much of the recent debate. It would be
foolish to try to remove the effect of spatial aggregation before undertaking these studies.

Although conservation biologists may be concerned about the possibility of unmeasured and
unknown confounding variables (demonic intrusion) leading to spurious conclusions, this has not been
the focus of most of the recent debate. Simulations were specifically designed to create autocorrelation
in the residuals without collinearity between “space” and the independent (predictor) variables (de
Knegt et al. 2010). If the researcher is worried about confounding variables, they should use

techniques that model space in the dependent or independent variables. However, no particular
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advantage may be obtained in allocating variance between “space” and environment, because, at most
spatial scales of interest to conservation biologists, “space” generally just represents unknown
environmental variables in the analysis. If a specific process, such as reproduction or dispersal, is
thought to cause autocorrelation, it may be better to model that process, rather than calling it “space.”
We have focused on simple examples, and assumed that sampling was undertaken at the scale
appropriate for the questions. However, autocorrelation in the residuals is likely to be caused by
sampling at a scale inappropriate to the question (de Knegt et al. 2010). In this case, removing
autocorrelation from the residuals instead of using it to redefine the question will result in analyses
that are as biased and inappropriate as OLS regression.

If the researcher can assume that “space” does not represent confounding variables, and only
wants to carry out valid statistical tests and estimate parameters (that cannot also be variables), then
spatial techniques that focus on the residuals are the most appropriate and may greatly improve
estimates (Beale et al. 2010 and references therein). Although we agree with Beale et al. (2010) that
nonstationarity of the autocorrelation in the residuals is a grave problem, we believe that, unlike the
model misspecification described in the previous paragraph, it is not inherently unsolvable, and, it may
be possible to use covariates to model the residual structure (Zuur et al. 2009). Where individual
clumps can be recognized, analyses such as those described by Barnett et al. (Barnett et al. 2010) may
lead to improved spatial analyses, as they do for repeated-measures analyses.

Recent studies in landscape ecology suggest that the configuration of landscape elements may
be important in itself, and there may be nonlinear “threshold” effects (Metzger 2006). There has been
only limited progress in landscape ecology because of the difficulty of replicating landscapes. Internal
validation (such as standard statistical tests) assumes that the ecological relationships are well known
(and generally linear) and can be extrapolated to other landscapes. However, real-world landscapes are
generally so complex, and with so many nonlinear relationships, that extrapolation to other systems
based on past knowledge of a particular system is risky because of the likelihood of essentially
unpredictable phenomena ("black swans" in the terminology of Taleb 2007). Conservation biologists
should seek more substantive replication (i.e. the repetition of the study by other researchers in other

landscapes) in order to have confidence in their models.
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SUMMARY

The use of spatial variables is a common procedure in ecological studies. The technique is based
on the definition of a connectivity/distance matrix that conceptually defines the dispersal of
organisms. The shortest distance between two points is a straight line. Despite the fact that a
straight line may not represent the easiest dispersal path for many kinds of organisms, straight
line distances are often used to detect patterns. We argue that other types of
connectivity/distance matrices will better represent dispersal paths, such as the watercourse
distance for aquatic organisms (e.g. fish, shrimps).

We used empirical and simulated community data to evaluate the usefulness of spatial variables
generated from watercourse and overland (straight-line) distances.

Spatial variables based on watercourse distances captured patterns that straight-line distances
did not, and provided better representations of the spatial patterns generated by dispersal along a

dendritic network.
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Introduction

Understanding the factors controlling the distribution of lotic organisms is one of the main
objectives of stream ecology. Traditionally, stream ecologists have related the biota to environmental
predictors (e.g. physicochemical measurements and substrate characteristics) in order to understand
and predict species distribution patterns (Cummins & Lauff, 1968; Townsend & Arbuckle, 1997; Buss
et al., 2004; Yoshiyuki & Hajime, 2007). Recently developed statistical techniques allow us to study
community distribution in relation to spatial predictors as well as environmental predictors (Borcard &
Legendre, 2002; Griffith & Peres-Neto, 2006; Peres-Neto & Legendre, 2010). These have been pivotal
to the study of metacommunities (Leibold et al., 2004; Holyoak, Leibold & Holt, 2005) because
spatial connectivity among communities is a key aspect of metacommunity analyses. Additionally, the
use of spatial predictors allows researchers to quantify, albeit indirectly, the role of dispersal in
shaping beta-diversity patterns, an issue often overlooked when only environmental models are used
(Bunn & Hughes, 1997).

Spatial eigenfunction analyses are frequently used to represent the variable “space” in
ecological studies, with the main objective of partitioning variance in response variables into that
attributable to measured environmental variables, pure space, and shared effects of environment and
space (Borcard & Legendre, 2002; Peres-Neto et al., 2006; Peres-Neto & Legendre, 2010). Spatial
eigenfunction analysis comes under a variety of names (although they are all variations of the same
theme; see Dray, Legendre & Peres-Neto, 2006 et al., 2006), including Principal Coordinates of
Neighbour Matrices (PCNM), Distance-based Eigenvectors Maps and Moran's Eigenvector Maps.
However, it is not always clear what space represents, and spatial eigenvectors represent any set of
variables that causes clumping in the distribution of values of the response variable(s). Space is often
meant to represent dispersal limitation or some other process that is largely independent of
environmental predictors, such as those proposed in neutral models of community assembly (Hubbell,
2001; 2005). However, space and environment are also highly interrelated (Tobler’s first law of
geography: “Everything is related to everything else, but near things are more related than distant
things”; e.g., Bjorholm et al., 2008). This spatial dependency decreases our ability to identify the main
processes (i.e. niche based vs. dispersal processes) and underlying patterns of community structure
(Gilbert & Lechowicz, 2004). Therefore, because clumping may also result from unmeasured
environmental variables, the attribution of observed patterns to dispersal processes must be done
cautiously (Diniz-Filho, Bini & Hawkins, 2003; Hawkins et al., 2007).

Spatial eigenvector methods decompose the spatial variability into a set of explanatory spatial
variables that represents independent propositions of how local communities are interlinked (Ramette
& Tiedje, 2007). As the created variables are statistically orthogonal, they are not collinear. Standard
methods to construct spatial variables (e.g. PCNM) are generally based on the use of a Euclidean

distance matrix between sampling sites. This distance matrix is then submitted to a Principal
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Coordinate Analysis whose axes (eigenvectors) are used as spatial explanatory variables in univariate
or multivariate analyses (see Borcard & Legendre, 2002 for more details about PCNM). The
eigenvectors associated with high eigenvalues represent broad scale patterns of relationships among
sampling units, whereas those with low eigenvalues represent fine scale patterns (Griffith & Peres-
Neto, 2006). Euclidean distances may be appropriate for aquatic organisms that migrate over land,
such as flying aquatic insects (Bilton, Freeland & Okamura, 2001). On the other hand, many
organisms, such as fish and immature stages of aquatic insects, are mostly unable to migrate in this
way. For these groups, the distance between two sites might be better defined by the length of the
watercourse between two points (i.e., the distance along the network pathway; Ganio, Torgersen &
Gresswell, 2005; Chaput-Bardy et al., 2009; Brown & Swan, 2010). In fact, several types of
connectivity matrices among stream sites can be generated (Fullerton et al., 2010).

Space per se cannot be considered an explanation of ecological variability (Leduc et al. 1992).
Thus, a significant relationship between spatial variables (eigenvectors) and raw species data tables
could indicate the existence of an underlying abiotic or biotic process with a spatial component. From
an ecological point of view, a set of spatial variables derived from overland distances is likely to
represent a large-scale gradient in climatic conditions and other abiotic factors, whereas a set of spatial
variables derived from watercourse distances is more likely to relate to dispersal limitation.

In order to increase our understanding of how spatial processes regulate biological
communities, and increase the variance explained by statistical models, new analytical methods have
been proposed to incorporate other kinds of connectivity among sites in stream networks, such as
autocovariance models (Peterson & Ver-Hoef, 2010) and asymmetric eigenvector maps (Blanchet,
Legendre & Borcard, 2008). It could be argued that the results of two analyses of variance
partitioning, the first one based on spatial variables generated by using overland distances and the
second by using watercourse distances (e.g. Beisner et al., 2006; Nabout et al., 2009), would be
equivalent due to the flexibility of eigenfunction spatial analyses (Griffith & Peres-Neto, 2006). This
is expected because, in both cases, several spatial variables with different spatial structures are
generated. However, the equivalence of different types of connectivity matrices for spatial
eigenfunction analyses has not been demonstrated.

We investigated whether spatial variables derived from watercourse distances explain more of
the variance in community structure than spatial variables based on overland distances for two groups
of aquatic organisms (fish and immature stages of caddisflies) in first to third order streams in a
tropical forest. We also generate artificial communities, in which spatial patterns were caused only by
dispersal limitation, to evaluate whether spatial variables based on watercourse distances explain more
of the variance in community structure than those based on overland (Euclidean) distances, when the

model is essentially neutral (no effects of environmental variables).
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Methods

Empirical Field Data

We used four sets of field data gathered in streams in Ducke Reserve (02°53°S, 59°58 W, near
the city of Manaus, Central Amazon, Brazil). Three data sets include fish samples taken from 30
stream sites (Fig. 1) on three sampling dates (Espirito-Santo et al., 2009). Six physicochemical
variables were also measured: pH, conductivity, width, depth, dissolved oxygen and water velocity.
Sampling details can be found in Espirito-Santo et al., (2009).

The fourth data set concerns caddisfly samples (Pes, 2005) taken at 27 of the same sites (Fig.
1), with three benthic sample units of 2.25 m? separated by at least 5 m, at each site. Larvae were
collected using a d-net and/or a Surber sampler (both with mesh size of 250 um) and individuals
attached to bedrock or stones were removed using tweezers and spatulas. Available substrate in the
sample units was assessed, collecting leaves, sand and macrophytes using d-nets, and storing in plastic
bags with 80 % ethyl alcohol (except stones and large woody debris). In the laboratory, the larvae
were identified to morphospecies or, when possible, species. The same physicochemical variables
were measured as for the fish datasets, except for dissolved oxygen.

RFAD ZOOM

O Fish and Caddisfly plots
® Only Fish plots

)

sRNER

P ouMCE

T
0 12525 5

Figure 1. Location of the Ducke Reserve (RFAD) and of the sampling plots. Fish

were sampled at 30 sites and caddisfly at 27.

Simulated Data

We drew manually an artificial stream network where 37 sites were placed haphazardly (Fig.
2). The shape of this network is commonly observed in nature, including many branches and
confluences, and has properties adequate for our objectives. The relationship between matrices

generated using overland and watercourse distances among the sites was weak, and the correlation



137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155

156
157
158
159

43

between Euclidean and watercourse distances was relatively low, as observed for streams in the Ducke
Reserve network (see Peterson & Ver-Hoef, 2010 for other ways to generate artificial stream
networks). In our simulation, there was no difference between the capacities to disperse upstream or
downstream.

We used a spatially explicit, individual-based (see Zurell et al., 2010 for examples) simulation
procedure to produce artificial community data. First we defined a pool of 50 species for the entire
network and then randomly assigned S species to each site. Each site had a fixed carrying capacity of
500 individuals that were equally distributed among the S species present at the beginning of the
process. At each time step, each individual could give birth to a single offspring with a probability b
and could die with a probability d. Each new individual could migrate to any site within a threshold
distance, defined as the minimum distance along the network to keep all sites connected (minimum
spanning tree; Legendre & Legendre, 1998). The probability of colonizing a new site was inversely
proportional to the distance from the source site. The distances among sites considered in these
simulations were watercourse distances. Thus, dispersal processes were restricted to follow the
network pathways. We ran the simulation for 1000 time steps. At the end of each time step and when
the total number of individuals (in any given site) was larger than 500, randomly selected individuals

were removed from sites until the local population was reduced to 500.

Figure 2. Artificial stream network used to simulate community data. Sampling sites were
haphazardly placed. Watercourse and overland distances were calculated and used in the simulation
process. The probability of colonization of a given site was inversely proportional to the distance from

the source site through the watercourse corridor.
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Data analysis

Data on fish and caddisfly species composition were analyzed in relation to the six and five
physicochemical variables, respectively, and in relation to two sets of spatial variables generated from
watercourse and overland distances. All analyses were carried out in the R environment (R
Development Core Team, 2009). PCNM was used to generate spatial variables, using the pcnm
function from the vegan package (Oksanen et al., 2010). We used partial redundancy analyses (pRDA;
Borcard, Legendre & Drapeau, 1992; Legendre & Legendre, 1998) to quantify the relative importance
of environmental and spatial variables in explaining the variation in community composition. For
these analyses, we employed the function varpart from the vegan package. We used a stepwise
selection procedure to select spatial variables (eigenvectors) and environmental variables using the
ordistep function from vegan. Community data were transformed prior to analysis using the Hellinger
transformation (Legendre & Gallagher, 2001).

The threshold value used in the PCNM analysis was the minimum distance that kept all
sampling sites connected using a minimum-spanning-tree procedure. However, a plateau at the centre
of the Ducke Reserve separates two drainage basins. The eastern basin is connected to the streams of
the western basin only by long watercourse distances, passing through the Amazon and Negro rivers
(Fig. 1). This long distance may act as a barrier for dispersal of organisms from streams of one basin
to streams of the other. Conventional PCNM procedure connects streams of both sides of the reserve,
so we used a second truncated connectivity matrix based on the Euclidean distances, in which the
western and eastern basins were “manually” unconnected. We also used a watercourse distance matrix
to generate the PCNM variables.

Hereafter, the sets of spatial variables generated by the PCNM analysis, and which were based
on the overland, overland with separation of the basins, and watercourse distance matrices will be
referred as overland, overland-unconnected and watercourse eigenvectors, respectively. To evaluate
the unique contributions of the PCNM variables generated by using these three distance matrices, we
ran three partial RDA models for each of the three fish and caddisfly datasets, using environmental
data and each set of eigenvectors as explanatory variables.

We analyzed the simulated data using partial RDA in which spatial variables generated by
watercourse and overland distances were used as two sets of explanatory variables. To quantify the
shared variance explained by the two sets of spatial variables, we ran two stepwise selection
procedures using the ordistep function to retain watercourse and overland eigenvectors to be used in
the partial RDA. It is important to note that this procedure was used only to quantify the shared

variance explained by the two sets of spatial variables.
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Results

The correlations between overland and watercourse and between overland and overland-
unconnected distance matrices were 0.49 and 0.46, respectively. The correlation between overland-
unconnected and watercourse distance was 0.62. In our artificial network the correlation between

overland and watercourse distance matrices was 0.58.

Empirical Field Data

For all three fish databases, analyses based on watercourse distances produced adjusted R
higher than those based on Euclidean (overland) distances (Table 1). RDA models applied to caddisfly
data produced lower adjusted-R? than the RDA models applied to fish data. In general, models based
on overland-unconnected distances (i.e. east and west basins unconnected) produced higher adjusted-
R? than connected inter-basin overland distances. More spatial variables were retained in the analyses
using watercourse distances, and these generally represented spatial structures at finer scales (i.e.

eigenvectors with low eigenvalues).

Table 1. Table of variance partitioning for fish and caddisfly data. Spatial variables represent spatial
structures varying from broad (eigenvectors associated with high eigenvalues) to fine (low
eigenvalues) scales. Spatial variables are shown in the order they were retained in the stepwise
procedure (low numbers (e.g. 1, 2, etc.) represent variables with high eigenvalues). Values for each
explained fraction are adjusted R® Fractions are [a] pure environmental, [b] shared, and [c] pure
spatial. Overland-U represents the spatial variables generated by using a Euclidean distance matrix in

which east and west basins are unconnected.

. Spatial variables Environmental Fractions
Data Distance retained variables retained [a] [b] [c]
. Overland 17,8 0.178 0.075 -0.015™
;‘Z?O‘:]r{ Overland-U 1,17 d[i)si‘;tlc;egxﬁg?h 0152 0101  0.035
Watercourse 1,12,22,4 ' 0.098 0.155 0.081
Fish rainy Overland 17 D?pth, Oxygen 0.307 0.03 -0.004™
season Overland-U 1 dlssolveo!, pH, 0.297 0.04 0.035
Watercourse 22,1,19,4,3,9,25 Velocity 0.138 0.199 0.082
Fish dry Overland 17 0.202 0.047 -0.017™
season 2 Overland-U 1,3,17,20 Depth, pH 0.159 0.091 0.062
Watercourse 12,1,22,9,4,20,19 0.077 0.172 0.088
Overland 1,3 0.073 0.014 0.024
Caddisfly Overland-U 1,11 pH, Depth, 0.028 0059 0.011™
y ' Conductivity
Watercourse 1,11 0.035 0.052 0.022

™ Non significant fraction (p > 0.05); all other testable fractions were significant at P < 0.05.
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Simulation

The high value for adjusted R? (0.75) obtained by RDA is an indication that the simulation
procedure was effective for our objectives (i.e., we were able to generate communities with spatial
patterns related to our distance matrices). There was a considerable difference between the adjusted R
obtained with the spatial variables generated using overland and watercourse distances. Some spatial
variables were redundant, but about 35% of the total variance explained was exclusively attributable to
the spatial variables generated using watercourse distance (the distance used in the simulation). Only
about 3 % of the variance was exclusively attributable to the overland eigenvectors (Fig. 3).

1.0 7
0.8
N 06
o
o
9
[72]
=)
T 04
<
0.2
—&— Watercourse
—&— Owerland
0.0 “t+ Shared
| [ | | | I
0 200 400 600 800 1000
Time step

Figure 3. Variation partitioning of simulated data. Shown are the adjusted R from three
separate RDA models. The first included only watercourse eigenvectors, while the second included
only overland eigenvectors. The third series of values was obtained by a partial RDA that included
both watercourse and overland eigenvectors to obtain the shared fraction. Note that the exclusive
portion of variation explained by overland eigenvectors was minimal (ca. 3%). Simulations were run

for 1000 time steps and values are plotted in intervals of 20 time steps.
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Discussion

Stream communities are affected by processes operating at different scales, from local to
regional (Heino, Louhi & Muotka, 2004; Mykrd, Heino & Muotka, 2007; Roque et al., 2010). The
long watercourse distance between the two Ducke Reserve basins might represent a physical barrier
and constrain the dispersal of organisms. Such an effect was not detected by simple overland
distances, and spatial variables generated by a watercourse-distance based eigenvector procedure
explained much more of the fish community structure than the same procedure applied to overland
distances.

In contrast, caddisflies have flying adults that are able to disperse over land (Collier & Smith,
1998; Wilcock et al., 2007) and, in their case, the spatial variables based on overland distances
accounted for more of the variability in community structure. Moreover, the proportion of variability
in caddisfly communities that was uniquely explained by spatial variables derived from watercourse
distances was slightly lower than that for fishes.

Although our results showed that watercourse eigenvectors explained much more variance
than overland eigenvectors, the unconnected-overland eigenvectors also explained a significant
fraction of the variance in fish data. However, this explained variance was almost completely shared
with watercourse eigenvectors as shown by a partial RDA using both sets of spatial predictors
(variance purely attributable to unconnected-overland was 0.4 % for the first dry season, < 0.1 % for
the rainy season, and 4.9 % for the second dry season). Thus, because overland and watercourse
distance matrices are correlated to some extent (0.49 to 0.62), both distance matrices provide spatial
variables that are also correlated, causing a detectable shared component. For aquatic insects that have
different dispersal modes (i.e., drifting along the watercourse during immature stages and flying
overland at adult stages; Poff et al., 2006), the use of both types of distances might be necessary to
explain species distributions. However, currently there is no tool to tease apart the shared component,
so we cannot be confident if the variation explained by one of the two distances is spurious or not. It is
important to keep this in mind when evaluating processes related to different types of distance
matrices, as it is in the evaluation of gene flow by different dispersal routes (Chaput-Bardy et al.,
2009).

Peres-Neto and Legendre (2010) discussed the influence of the number of spatial variables on
the power to detect the exclusive effect of environmental predictors in a variation-partitioning
framework. Although our results also highlight this effect (i.e., a reduction in the relative contribution
of the environment), they were stable in relation to the number of variables in the sense that we
detected a significant environmental fraction ([a], Table 1) in most cases. Most importantly for our
discussion, however, the variability of the environmental fraction was also dependent on the type of
distance matrix used. Thus, our results demonstrate that the number of spatial variables and the type of

distance matrix used to generate spatial variables have a profound effect on the interpretation of
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metacommunity models. For instance, the use of a simple overland distance matrix would suggest that
a species-sorting model would be most appropriate (see Table 1), as found in several studies (e.g.
Cottenie 2005; Vanschoenwinkel et al., 2007; Van der Gucht et al., 2007). On the other hand, the
importance of dispersal-related processes in driving metacommunities structure increased
conspicuously when the watercourse distance matrix was used (Table 1; see also Beisner et al., 2006
for another analysis with fish data). In these cases, the results were consistent with a mixed (species-
sorting + mass effects) metacommunity, a pattern found in 29% of the 158 data sets analyzed by
Cottenie (2005).

Dispersal limitation appears to be the principal endogenous cause of spatial autocorrelation
that is of interest to ecologists (Bahn, Krohn & O'Connor, 2008; Shurin, Cottenie & Hillebrand, 2009),
and most of the discussion on the effect of “space” is in regard to dispersal limitation. However,
spatial variables generated by eigenfunction analyses do not measure this directly, and much of the
variance attributed to space may be due to the effects of unmeasured environmental variables (Diniz-
Filho et al., 2003; Hawkins et al., 2007). Also, Smith & Lundholm (2010), using simulated data,
raised concerns about the use of variation partitioning as a method to tease apart the effects of niche
and neutral processes, mainly due to the effects of the degree of dispersal limitation on both pure
environmental and pure spatial variance fractions. When dispersal limitation is the primary mechanism
creating species distribution patterns of lotic species, as in our simulations, spatial variables based on
watercourse distances do explain more of the observed variance than spatial variables based on
straight-line distances (i.e. overland eigenvectors).

In the simulation study, about 60% of the variance explained was attributable to the shared
component (i.e., the variability that either watercourse or overland eigenvectors was able to explain),
but the exclusive variance explained by watercourse eigenvectors (note that simulated data were
generated using an algorithm of dispersion only along watercourse corridors) was about 35%, while
the exclusive variance explained by the overland eigenvectors was only about 3%, showing the
importance of using the correct distance or connectivity matrix for eigenfunction spatial analyses.

In this study, we assumed that dispersal limitation among sites was a simple function of
distance along the watercourse. However, dispersal is not necessarily as easy in an upstream direction
compared to downstream (Blanchet et al., 2008), or in small streams compared to large streams. If
more were known about the natural history of the species, it might be possible to use more realistic
distances and connectivity matrices. Even when organisms do not disperse along channel segments,
other functions could represent matrix permeability, and account for differences in environmental
conditions that could affect dispersal. For instance, Ver-Hoef et al. (2006) and Peterson et al. (2007)
showed that spatial models that incorporate flow direction, as well as stream distance, were more
adequate than models that only use stream distance. In an application of these models, Isaak et al.
(2010) showed that spatial models significantly outperformed their nonspatial counterparts in

predicting thermal habitats of salmonids.
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We conclude that the use of Euclidean distances, despite their simplicity of definition, might
not be the best choice for creating spatial predictors for eigenfunction spatial analyses. This is
particularly important for aquatic systems, but may well apply to terrestrial systems depending on the
environmental setting (e.g. fragmented or topographically variable landscapes) and on the vagility of
the taxonomic group under study.
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SUMMARY
1. Many recent studies have quantified the relative importance of environmental variables and

dispersal limitations in shaping the structure of stream communities. The effect of scale on the
importance of these two factors has seldom been evaluated and the effect of niche properties,
represented by substrate characteristics and stream properties, depend on environmental
heterogeneity, which increases with the increase in spatial extent. Spatial processes causing
spatial patterns, such as dispersal limitation, also depend on the scale of the study.

We analyzed the distribution of caddisfly species in 89 Amazonian streams in relation to
stream characteristics and spatial variables representing overland dispersal routes. The streams
are distributed in three regions differing in spatial extent and environmental characteristics.
We analyzed the data using partial Redundancy Analysis with two predictor datasets, one
environmental and one spatial, to evaluate the variation in assemblage composition. We also
separated caddisflies into good and bad dispersers to evaluate possible differences in
responses of these two groups.

The environmental component explained a higher proportion of variance in the assemblage
composition than the spatial component. Spatial effects were evident only when analyzing
data from the three regions together, although, the exclusive spatial fraction was quite low.
Good dispersers responded similarly to the whole community, while poor dispersers were
related to environmental variables only in one region and also were not related to spatial
variables.

Caddisflies were most affected by niche factors. The large environmental effect and small
spatial effect conform to the use of these stream insects as good indicators of site properties

and disturbances in monitoring programs.
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Introduction

Most streams are environmentally heterogeneous at multiple spatial scales, from whole biomes to local
substrates (Mykrd, Heino & Muotka 2007), and this heterogeneity generally regulates the patterns of
distribution and abundance of stream organisms(Heino, Louhi & Muotka 2004). Substrate,
limnological factors, biotic interactions, and frequency of spates are important factors influencing
stream biota at all spatial scales (Bond & Downes 2000; Clausen & Biggs 1997; Heino et al., 2004;
Olsen, Townsend & Matthaei 2001; Pringle 2001; Roque et al., 2010). In addition, due to higher, on
average, connectivity, streams within drainages may be more biologically similar than streams in
different drainages. The high similarity among communities inhabiting nearby streams may be due to
both environmental similarity and the limited ability of species to disperse to distant streams in a
metacommunity context.

Two main types of factors can affect community compositions at local and regional scales.
Local processes relate to species interactions and local environmental conditions, while regional
processes are related to dispersal of organisms between communities in addition to environmental
variables describing regional properties. In this context, two main frameworks have been used to
discuss the control of species distribution (Brown et al., 2011). The idea that communities are
principally structured in relation to niche properties is usually called species sorting (Cottenie 2005).
Neutral theories treat individuals of all species as ecologically equivalent with identical dispersal
capacity. According to this perspective, differences in distributions are created by random processes of
mortality and colonization (Hubbell 2001). Determining the relative contributions of species sorting
and neutral processes is currently the objective of many ecological studies (Logue et al., 2011).

Variation partitioning analysis is frequently used to infer the relative importance of
environmental factors and spatial variables in explaining the structure of biological assemblages
(Peres-Neto & Legendre 2010 and references therein ; e.g. Peres-Neto et al., 2006). Partitioning the
variation in assemblage data uses the species-data table as the response variable and environmental
and spatial variables as predictors. Space is usually represented by a symmetric geographic distance
matrix D containing n(n-1)/2 elements (where n is the number of sites). This matrix can be analyzed
directly using partial Mantel tests (distance approach; Tuomisto & Ruokolainen 2006; Tuomisto &
Ruokolainen 2008), but it is also possible to convert this matrix into orthogonal variables of length n,
allowing the analysis of the species-assemblage data in its original form (the raw-data approach;
Legendre, Borcard & Peres Neto 2005). The raw-data approach is usually based on eigenfunction
analysis (e.g. Griffith & Peres-Neto 2006; Landeiro & Magnusson 2011; Peres-Neto & Legendre
2010), which is considered the most flexible way to recover spatial patterns in the data (but see
Landeiro et al., 2011).

Eigenfunction analysis produces eigenvectors associated with large, intermediate, and small

eigenvalues that represent, respectively, landscape wide trends (e.g., global), medium scales (e.g.,
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regional), and fine scales or patchiness (e.g., local). This flexibility comes with a cost for
interpretation, but these methods are well suited to generate proxy spatial variables to represent
dispersal and/or unmeasured environmental variables, which may be structured at different spatial
scales (Blanchet, Legendre & Borcard 2008b; Landeiro et al., 2011).

Aquatic insects are often used as indicators of environmental impacts, and this raises the
question of whether differences in assemblage structure are due to the environment or are simply the
consequence of the distances among sites. The expected effect of distance on differences among
biological assemblages is nonlinear if one assumes a pure neutral model (Diniz et al., 2012; Hubbell
2001; Hubbell 2005; Rosindell, Hubbell & Etienne 2011), so the effect of distance depends on the
scale of the investigation. There are many questions that can be approached with distance analyses
(Landeiro & Magnusson 2011), but the objective in environmental impact studies is simply to remove
the confounding effect of space so that valid tests can be made concerning environmental impacts.

Caddisfly (Trichoptera) larvae frequently have been used in monitoring programs and as
bioindicators of organic pollution (e.g. Couceiro et al., 2007) and are important components of
Amazonian streams, playing an important role in food webs (Walker, Henderson & Sterry 1991) and
ecological processes, such as leaf breakdown (Landeiro et al., 2010; Landeiro, Hamada & Melo 2008).
Landeiro et al. (2011) concluded that species of Trichoptera have good local dispersal abilities as
adults, because community structure was related to Euclidean (overland) distances rather than
watercourse distances in a single, relatively small (100 km?) region. Caddisflies are commonly used as
bioindicators due to their relationships with environmental conditions (Rosenberg & Resh 1993), and
because they are good dispersers at local scales (Bilton, Freeland & Okamura 2001; Collier & Smith
1998), which might minimize distance effects and spatial pattern. However, the effects of distance
depend on the scale of the study, which in turn determines the length of many environmental gradients
(Gilbert & Lechowicz 2004). Environmental impacts may be limited to local scales, or may affect
large regions. Therefore, the relative effects of distance and environment on community similarity
should be evaluated over multiple spatial scales (Brown et al., 2011).

We investigated the effects of spatial scale on the structure of assemblages of caddisfly larvae in
89 Amazonian streams in three regions near Manaus (Brazil). These regions vary in spatial extent and
in the spatial arrangement of sampling sites. We hypothesized that the importance of environmental
and spatial variables would be higher in the analyses including all data than in analyses of the data for
each region separately. We expected that the region with the lowest spatial extent would have low
environmental heterogeneity and that assemblage composition would be poorly predicted by spatial
variables. Conversely, data sampled at broader scales should reveal higher environmental
heterogeneity and higher spatial effects (the latter due to increased effects of dispersal limitation). We
also classified caddisflies into good and bad dispersal classes, predicting that good dispersers are more
related to environmental variables and that bad dispersers are more related to spatial variables. We

show that variation in species composition of Amazonian caddisfly is better predicted by



123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

58

environmental than by spatial variables, even when only species considered poor dispersers were
included in the analysis. These results are in agreement with the statements that caddisflies are reliable
indicators of environmental impact in this region that holds so much of the world’s biodiversity.

Methods

Study area

The data used in this study were obtained from 89 stream sites, between April 2002 and February
2003, in Central Amazonia (see Fittkau 1964 for more details on Central Amazonia). We sampled
black-water streams (i.e. streams with dark waters caused by the humic and fulvic acids leaching from
decomposing leaves leaves) in areas that are not seasonally flooded (called “terra firme” forests in the
Amazonian literature). In general, streams in Central Amazonia are characterized by nutrient poor,
acid waters, and low daily and annual variation in water temperature, with annual and daily means
close to 25 °C (Sioli 1984).

We sampled immature caddisflies at 89 sites distributed in three regions (Fig. 1). The first
region included 39 sites in the Ducke Reserve (hereafter DR; 03°00'00"S; 59°52'40"W), a 10 x 10 km
reserve on the edge of Manaus City. The second region is maintained by the Biological Dynamics of
Forest Fragments Project (BD hereafter) located about 70 km north of Manaus (02°26'02"S;
59°46'32"W). The BD comprises areas of old-growth and regrowth forests, as well as pastures. We
obtained samples from 20 streams in the BD region. The third region was Presidente Figueiredo
County (hereafter called PF), located about 120 km north of Manaus (02°01'02"S; 60°01'30"W), where
we sampled 30 streams. The spatial extents, as defined by the most widely spaced sites in the regions,
were about 10 km at DR, 40 km at BD, and 100 km at PF region (Fig. 1).

Most streams in DR and BD have sandy bottoms, while those in PF have bedrock and stones
(boulders, cobbles, pebbles, and gravel) in addition to sand. Streams in PF have fast-flowing waters
and many waterfalls due to an ancient Tertiary plateau that is responsible for the sloped relief in

relation to the more geologically recent, low-elevation, Quaternary formations underlying BD and DR.

Sampling details

Before sampling, the proportion of each substrate type (woody debris, leaves, roots, sand,
macrophytes, stones [cobbles, pebbles, and gravel], and bedrock) was visually estimated following the
method described by McCreadie & Colbo (1991). We took three sample units of 2.25 m? at least 5 m
apart within a stream reach of 50 m, and sampled all substrate available in each of the three sample
units using a D-net (mesh size of 250 um). In some cases, where the main substrate was composed by

bedrock we used a Surber-sampler with the same mesh size. Caddisflies attached to bedrock and



160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

59

stones were removed using tweezers and spatulas. Samples were stored in plastic bags and fixed in
96% ethyl alcohol. In the laboratory, the caddisflies were separated under a stereomicroscope and
designated to morphospecies or, when possible, to species.

Physicochemical variables were also measured at each site. Water temperature was measured
using a hand-held thermometer. Conductivity and pH were measured with a portable conductivity and
pH meter. Water velocity (V; cm/sec) was estimated using the method described by Craig (1987).
Stream discharge (D) was estimated as D = WxDxV, where W is stream width (m) and D is stream
depth (m).

Data analysis

To test whether environmental heterogeneity differed among regions, we used analysis of
homogeneity of multivariate dispersions (hereafter PERMDISP). PERMDISP is a multivariate
analogue of Levene's test for homogeneity of variances and the statistic (average distance of group
members to the group centroid) is tested by permutation (Anderson 2006). In addition, we tested
whether the environmental characteristics differed among the regions using a non-parametric
multivariate analysis of variance (h(pMANOVA,; Anderson 2001). Environmental data (except pH)
were log-transformed before analysis. Data in percentages were transformed to arcsine square root.
Afterward, we standardized all variables to mean zero and unit variance. The Euclidean distances
based on standardized environmental data were used in the PERMDISP and npMANOVA.

Using the log(x+1) abundance data we calculated the Bray—Curtis index to represent the
dissimilarity in species composition among streams. When using assemblage dissimilarities, the
average distance to group centroid (i.e. multivariate dispersion) is a measure of overall species
turnover, or beta diversity in the region (Anderson, Ellingsen & McArdle 2006). Therefore, we used
the PERMDISP to evaluate if beta diversity differed among the regions (i.e. differences in multivariate
dispersions). Tukey's test was used for pairwise comparisons between regions. We also used
npMANOVA to test whether species composition differed among regions.

Caddisflies migrate overland in the adult stages and, although in-stream migration through larval
drift and upstream adult flight are well recognized for caddisflies (e.g. Petersen et al., 2004), a matrix
of Euclidean (overland) distances between sample sites provides adequate descriptors of dispersal
routes and spatial patterns (Landeiro et al., 2011). We analyzed the data using the raw data approach
(Legendre et al., 2005), through a partial Redundancy Analysis (pRDA), to evaluate the relative
contributions of environmental and spatial variables to assemblage patterns. The spatial variables used
in the pRDA were obtained by means of an eigenfunction analysis using Principal Coordinates of
Neighbor Matrices (PCNM; Borcard & Legendre 2002). The PCNM approach uses a truncated matrix
of geographic distances in a principal coordinate analysis to generate the spatial variables that

represent spatial patterns ranging from broad (low order PCNMs) to fine scales (high order PCNMs).
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After the creation of the spatial variables, we ran separate RDA models for environmental and spatial
variables and evaluated the significance of these models. In the cases where the full model was
statistically significant (as indicated by 9999 Monte Carlo permutations) we used a forward selection
procedure (Blanchet, Legendre & Borcard 2008a) to retain only the spatial and environmental
variables most related to caddisfly-assemblages to be used in the pRDA. By using pRDA, we obtained
the components of variance explained exclusively by the environmental variables [a], by the
environmental variables that are spatially structured [b], uniquely by the spatial variables [c] and the
unexplained variance [d]. We ran the pRDA and variance partitioning for data from all regions
combined, and separately for each region. Values of variance partitioning reported for pRDA are
adjusted R? (Peres-Neto et al., 2006). Someone might argue that rare species have great effects on
results of community analyses; therefore, we analyzed the data removing species that occurred in one
to ten streams to evaluate possible effect in the results.

In addition, we attempted to account for dispersal limitation of species classifying them as good
and poor dispersers. The optimal way to classify species as good or poor disperser is based on genetic
variation of population across geographic distance. However, this information is lacking for many
parts of the world and generally is done for a few species. Our solution was to classify species
exclusive to each region as poor dispersers and species occurring in all regions as good dispersers.
Then we also analyzed the data of each area considering the dispersal ability of species.

All analyses were done using the vegan (Oksanen et al., 2011) and packfor (Dray, Legendre &
Blanchet 2009) libraries available for the R environment for statistical computing (R Development
Core Team 2011).

Results

We collected a total of 98 morphospecies (Appendix 1), 69 from DR, 85 from PF, and 69 from BD.
The average number of species per stream was 22.5 species, ranging from 2 to 39. On average, DR
streams had a higher number of species per stream than PF and BD (Table 1). The number of
exclusive species (considered poor dispersers) was highest at PF (18), and much lower in DR (8) and

BD (4). Fifty one species occurred in the three areas and were considered good dispersers.

Environmental and biological differences among the regions

Assemblage composition and environmental characteristics differed among regions ((pMANOVA,
F.e6=8.07, Fy 86 = 29.82, respectively, p< 0.001). Environmental variability (Fig. 2A) also differed
among the regions (PERMDISP, F,gs = 8.30, p < 0.001), where PF was the region with the highest
environmental variability (average distance to centroid), followed by BD and DR (Table 1). However,

PF and BD did not differ significantly in their environmental variability (Tukey post-hoc tests; p =
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0.91), indicating that these regions are equally heterogeneous, while DR, the region with lower
average distance to group centroid (i.e. less environmental heterogeneity), differed in environmental
conditions from PF (Tukey; p < 0.001) and from BD (Tukey; p < 0.013).

The average distance to group centroid based on assemblage dissimilarities (i.e. species turnover
or beta diversity) also differed among the regions (PERMDISP, F, = 14.73, p <0.001, Fig. 2B). PF
had the highest average distance to group centroid, followed by BD and DR (Table 1). PF differed
significantly from BD and DR in average distance to group centroid (Tukey post-hoc test; p=0.005;
p<0.001; respectively), but DR and BD did not differ significantly.

Variation in assemblage composition

In line with the results provided by npMANOVA, Principal Coordinate Analysis showed a clear
pattern differentiating the caddisfly assemblage composition in PF streams from the other regions (Fig.
2B). For the pooled dataset, the full environmental and the full spatial models (i.e. including all
variables) were significant. The forward selection procedure retained 10 environmental variables and
eight spatial variables in the reduced models (Table 2). At this large scale (the three regions together),
24.3% of the variance was explained by the predictor variables. The exclusive fraction explained by
the environment [a] was 11% and the spatially structured environmental variation [b] accounted for
9.5%. There was a significant relationship with the spatial variables, but they accounted for only 3.8%
of the variance in assemblage composition. The caddisflies were sensitive to substrate type, and the
streams with large areas of bedrock and macrophytes were distinct from other streams in the same
region. The DR and BD streams differed in other environmental features (Fig. 2A), but these
differences were not important in predicting assemblage composition.

The full spatial model was not significant for data from individual regions analyzed separately
(i.e. there is no significant spatial patterns within regions). The full environmental model was
significant in all regions. At DR, three environmental variables (discharge, conductivity, and
percentage of stones) were retained in the reduced model, which explained 16.6% of the variance in
assemblage data. At BD two environmental variables (depth and temperature) were retained and
accounted for 14.3% of the variance in assemblage data. At PF, stream depth, width, temperature, and
conductivity were the variables retained, accounting for 14.6 % of the variance. The variance
explained exclusively by the environment was higher within regions (DR = 16.6%, BD = 14.3%, PF =
14.6) than for pooled data (11%). However, the fraction [a+b] (environment [a] plus spatially
structured environment [b]) was higher for the pooled data (Table 2). The removal of rare species did
not caused great changes in the overall results (Table S1).

The result of analysis including only common species (i.e. good dispersers) were similar to the

results above, in which environmental patters are significant and lack of spatial patterns (Table 3). On
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the other hand, exclusive species (i.e. poor dispersers) were related to environmental variables only in
DR and spatial patterns were not significant in any region (Table 3).

Discussion

The three regions differed in environmental characteristics and caddisfly assemblages, and both beta-
diversity and environmental variability were related to spatial extent. Thus, as predicted by Anderson
(2006), there was a positive association between biological and environmental variability. This
association was mediated by spatial extent, because the relative importance of abiotic factors changes
across spatial scales (Jackson, Peres-Neto & Olden 2001). However, assemblage structure was not
better explained by environmental and spatial variables in PF, the region with largest spatial extent and
environmental heterogeneity. For all regions, assemblage structure was better explained by
environmental descriptors than by spatial variables. When the analysis were done taking into account
dispersal abilities of species the results were similar to those for the whole assemblage, although the
environmental patterns were significant only in DR region for poor disperser assemblage. Therefore, it
appears that, at the scales we studied, caddisfly species are more dependent on species sorting factors
(i.e. relationship between the environmental gradients and species composition) than on dispersal
processes. Similar results have been obtained for other freshwater organisms, such as
macroinvertebrates (Mykra et al., 2007), snails (Hoverman et al., 2011), and bacterial community
composition (Van der Gucht et al., 2007), as well as for terrestrial organisms, such as and plants
(Gilbert & Lechowicz 2004; Ruokolainen et al., 2007; Tuomisto, Ruokolainen & Yli-Halla 2003),
highlighting the “power of species sorting” mechanisms (Leibold et al., 2004; VVan der Gucht et al.,
2007).

Geomorphological and hydrological features may account for the differences in assemblage
composition between regions in our study. For instance, most streams in the PF region contain
bedrock and free stones as the main available substrates, whereas most BD and DR streams have
sandy bottoms. Stream substrate has been recognized as an important factor controlling the
distribution of caddisflies in other regions (Urbanic, Toman & Krusnik 2005; Wiggins 1996), as well
as other aquatic insects (Boyero 2003; Buss et al., 2004; Siqueira et al., 2012). In our study, spatial
patterning observed in the analysis using all data might be due to the lack of environmental variables
describing regional patterns, while regional patterns were well described by the spatial variables
generated with PCNM analysis. Indeed, the PCNMs retained for the pRDA model were those
representing broad spatial scales (first order PCNMs; Borcard & Legendre 2002). However, given the
lack of spatial patterns within areas, it is unlikely that the inclusion of spatially patterned variables
would increase the coefficient of determination of our models.

The dispersal modes of caddisflies are dependent on their life cycle stage. Larval stages disperse

by drifting downstream, mainly during spate events where the dispersal distance is dependent on spate
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intensity. Adults are known to disperse upstream by lateral flight to other streams, varying among
species. We expected to observe spatial patterns caused by dispersal limitation in PF area because its
high spatial extent, however, spatial patterns were not observed.” The lack of spatial effects in the PF
region might be related to the hydrological characteristics of that area. In PF, streams are wider, with
more rapids and higher water velocity, factors that increase the intensity of disturbances during spate
events. Spate events might carry organisms for long distances and obscure the relationship between
niche factors and dispersal ability trait. At DR and BD, the streams are smaller and streams overflow
laterally during spates, rather than rushing downstream (Espirito-Santo et al., 2009; Pazin et al., 2006).

Some streams sampled in PF are wider and have lower canopy cover than the other two regions,
allowing high light availability and algal proliferation (Vannote et al., 1980). Accordingly, most
species found in PF feed on algae, such as six species of the family Hydroptilidae and three species in
the genus Smicridea [Hydropsychidae] (Merritt & Cummins 1996; Oliveira & Froehlich 1996; Pes,
Hamada & Soares 2008) that were found only in PF streams. Atopsyche sp. [Hydrobiosidae] and
Synoestropsis sp. [Hydropsychidae] also found only in PF, are generally associated with bedrock
substrates in wider streams in Central Amazonia.

Recognizing the role of niche and spatial effects in community composition is currently one of
the main goals of several branches of ecology. According to Logue et al., (2011) “species-sorting is
the only paradigm that can clearly be distinguished, metacommunities characterized by species-sorting
processes can, however, be further scrutinized for high and limited dispersal; the origin of spatial
variation can be difficult to assess”. Variation partitioning is affected by the lack of important spatially
structured environmental predictors, which causes an overestimation of the pure spatial component [c],
precluding its use as an absolute indicator of neutral processes (Laliberté et al., 2009).

We used only environmental variables describing the variation at local scale (stream reaches),
and inclusion of regional variables could improve understanding of species distributions and increase
the percentage of variance explained (Rogue et al., 2010). Galbraith et al. (2008) found that 22.4% and
24.2% of the explained variance in caddisfly species distribution in Oklahoma and Arkansas streams
was accounted for exclusively by regional environmental variables and by regional spatially-structured
variables (shared component), respectively. However, the spatial variables generated with PCNM are
expected to form clumps similar to those formed by regional environmental variables. The high
variance explained exclusively by regional variables in the study of Galbraith et al. (2008) might be
due the use of trend-surface analysis, a technique less flexible than PCNM to recover spatial patterns
at local scales (Borcard & Legendre 2002; Griffith & Peres-Neto 2006). The lack of spatial component
observed within regions indicates that inclusion of regional variables would probably not help to
explain caddisfly species distribution within regions. However, the stronger spatial patterns for the
data pooled from the three regions, indicate that inclusion of regional properties, such as drainage
basins or geological formations, may be an appropriate strategy where potential environmental

impacts cross regional boundaries.
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The percentage of variance in species composition explained by environmental variables did not
increased with the increase in environmental heterogeneity, but was similarly predicted by species
sorting mechanisms (sensu Leibold et al., 2004). However, spatial effects, or dispersal limitation, were
not observed even in PF, the area with high spatial extent. This was unexpected mainly for poor
disperser assemblage, considering that PF covered a much larger area than the other regions. The
strength of association between geographical distance and assemblage dissimilarity depends on the
grain size and on the spatial extent. In general, large spatial extents should produce stronger
relationships between assemblage dissimilarity and geographical distance (Nekola & White 1999).
Brown & Swan (2010) and Heino et al. (2011), in studies carried out at a similar spatial extent (~100
km ), observed low spatial effects and attributed their findings to the possibility that the study regions
were too small in spatial extent for the detection of strong dispersal limitation. Thompson &
Townsend (2006) and Maloney & Munguia (2011) also analysed data on macroinvertebrates at similar
spatial extent, and found higher spatial effects, but Astorga et al., (2012) found that freshwater
organisms are more controlled by environmental factors than by limited dispersal over distances up to
1100 km in Finland, though the species with low dispersal abilities were more related to spatial
distance.

A possible reason for these different results is the differences in the dispersal ability of the fauna
sampled in each region. In addition, there are other species traits, such as life-history and dispersal
capacity, that should be accounted for in attempts to disentangle niche versus dispersal processes.
Information on such traits is generally lacking for Amazonian caddisflies, and studies of genetic
variation of populations might give the information on dispersal abilities. Another possible
explanation is that these studies focused on the entire community rather than on a small subset of the
freshwater community, for example, subsets of species with similar dispersal abilities (Brown et al.,
2011). Recognizing the role of niche and spatial effects in community composition is currently one of
the main goals of several branches of ecology. There are several analytical issues that need further
development, but more knowledge of species traits and genetic variability among populations could
help to disentangle spatial and niche processes. Such species traits should ideally be incorporated into
metacommunity analysis, however, this kind of information is lacking for many parts of the world,
including the Amazon. Empirical studies of dispersal would provide the information necessary to
adequately include dispersal processes in stream metacommunity ecology (Brown et al., 2011).
Studying dispersal abilities through genetic measures might be the solution, but it is quite difficult and
expensive, generally done with a few number of species (Miller, Blinn & Keim 2002; Wilcock et al.,
2007).

Conclusion
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Before a particular taxon can be used as an environmental indicator it is important to evaluate
the effects of spatial scale and environmental heterogeneity on differences among assemblages. The
movement of aquatic insects via different dispersal routes has received considerable attention (Bilton
et al., 2001; Collier & Smith 1998). Downstream drift, upstream flight, and between-stream
migrations through lateral migrations (Miller et al., 2002) increase genetic homogeneity and similarity
of species composition among streams and stream reaches (i.e. decrease beta diversity). In the absence
of environmental effects, dispersal ability of species is a major control of the turnover. Our results
show that community composition was related to spatial processes when all sites are analyzed jointly.
However, when we analyzed the data from each region separately, community composition were
unrelated to spatial processes (even in PF that have spatial extent of more than 110 km, similar to the
longer distance of the pooled data). Even when there were significant effects of spatial variables,
environmental properties explained much more variation than spatial one. In temperate regions,
caddisflies are considered to be useful indicators for biomonitoring due their sensitivity to aquatic
conditions (Rosenberg & Resh 1993). In view of the higher environmental control (i.e. species sorting)
observed, our results support the use of caddisflies as an indicator of water quality and environmental

conditions, even in megadiverse tropical regions such as the Amazon.

Acknowledgments

We are very grateful to CNPq for continuously supporting our workgroups by providing research
grants and student fellowships. This project received partial financial support from PPI 1-3070, 1-3570
(MCT/INPA) and CNPg/Edital Universal (process # 479258/2001-5) and Project Igarapes (No. XX
Technical Series, Biological Dynamics of Forest Fragments Project - PDBFF - INPA/Smithsonian
Institution). Thaise Emilio helped with figure 1 and two anonymous reviewers provided helpful
comments on early drafts. Roberto Stieger, Wellington L. da Costa, Ocirio (Juruna), Leo, Jodo, Carlos

A. Azevédo, Janny, Jéferson and Patricia helped greatly in the fieldwork.

References

Anderson,M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics,
62, 245-253.

Anderson,M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26, 32-46.

Anderson,M.J., Ellingsen,K.E. & McArdle,B.H. (2006) Multivariate dispersion as a measure of beta
diversity. Ecology Letters, 9, 683-693.



415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

66

Astorga,A., Oksanen,J., Luoto,M., Soininen,J., Virtanen,R. & Muotka,T. (2012) Distance decay of
similarity in freshwater communities: do macro- and microorganisms follow the same rules?
Global Ecology and Biogeography, 21, 365-375.

Bilton,D.T., Freeland,J.R. & Okamura,B. (2001) Dispersal in freshwater invertebrates. Annual Review
of Ecology and Systematics, 32, 159-181.

Blanchet,F.G., Legendre,P. & Borcard,D. (2008a) Forward selection of explanatory variables.
Ecology, 89, 2623-2632.

Blanchet,F.G., Legendre,P. & Borcard,D. (2008b) Modelling directional spatial processes in
ecological data. Ecological Modelling, 215, 325-336.

Bond,N.R. & Downes,B.J. (2000) Flow-related disturbance in streams: an experimental test of the role
of rock movement in reducing macroinvertebrate population densities. Marine and
Freshwater Research, 51, 333-337.

Borcard,D. & Legendre,P. (2002) All-scale spatial analysis of ecological data by means of principal
coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.

Boyero,L. (2003) The quantification of local substrate heterogeneity in streams and its significance for
macroinvertebrate assemblages. Hydrobiologia, 499, 161-168.

Brown,B.L., Swan,C.M., Auerbach,D.A., Grant,E.H.C., Hitt,N.P., Maloney,K.L. & Patrick,C. (2011)
Metacommunity theory as a multispecies, multiscale framework for studying the influence of
river network structure on riverine communities and ecosystem. Journal of the North
American Benthological Society, 30, 310-327.

Brown,B.L. & Swan,C.M. (2010) Dendritic network structure constrains metacommunity properties in
riverine ecosystems. Journal of Animal Ecology, 79, 571-580.

Buss,D.F., Baptista,D.F., Nessimian,J.L. & Egler,M. (2004) Substrate specificity, environmental
degradation and disturbance structuring macroinvertebrate assemblages in neotropical
streams. Hydrobiologia, 518, 179-188.

Clausen,B. & Biggs,B.J.F. (1997) Relationships between benthic biota and hydrological indices in
New Zealand streams. Freshwater Biology, 38, 317-342.

Collier,K.J. & Smith,B.J. (1998) Dispersal of adult caddisflies (Trichoptera) into forests alongside
three New Zealand streams. Hydrobiologia, 361, 53-65.

Cottenie,K. (2005) Integrating environmental and spatial processes in ecological community
dynamics. Ecology Letters, 8, 1175-1182.

Craig,D.A. (1987) Some of what you would know about water or K.1.S.S. for hydrodynamics. Bulletin
of the North American Benthological Society, 35, 178-182.

Diniz,J.A.F., Siqueira, T., Padial,A.A., Rangel, T.F., Landeiro,V.L. & Bini,L.M. (2012) Spatial
autocorrelation analysis allows disentangling the balance between neutral and niche processes

in metacommunities. Oikos, 121, 201-210.



451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

67

Dray, Stéphane, Legendre, Pierre, and Blanchet, F. Guillaume (2009) packfor: Forward Selection with
permutation (Canoco p.46). http://R-Forge.R-project.org/projects/sedar/, http://R-Forge.R-

project.org/projects/sedar/
Espirito-Santo,H.M.V., Magnusson,W.E., Zuanon,J., Mendonca,F.P. & Landeiro,V.L. (2009)

Seasonal variation in the composition of fish assemblages in small Amazonian forest streams:

evidence for predictable changes. Freshwater Biology, 54, 536-548.

Fittkau,E.J. (1964) Remarks on limnology of central-Amazon rain-forest streams. Verhandlungen
Internationale Vereinigung fur theoretische und angewandte Limnologie, 15, 1092-1096.

Galbraith,H.S., Vaughn,C.C. & Meier,C.K. (2008) Environmental variables interact across spatial
scales to structure trichopteran assemblages in Ouachita Mountain rivers. Hydrobiologia,
596, 401-411.

Gilbert,B. & Lechowicz,M.J. (2004) Neutrality, niches, and dispersal in a temperate forest understory.
Proceedings of the National Academy of Sciences, 101, 7651-7656.

Griffith,D.A. & Peres-Neto,P.R. (2006) Spatial modeling in ecology: the flexibility of eigenfunction
spatial analyses. Ecology, 87, 2603-2613.

Heino,J., Gronroos,M., Soininen,J., Virtanen,R. & Muotka,T. (2011) Context dependency and
metacommunity structuring in boreal headwater streams. Oikos, In press, doi: 10.1111/1600-
0706-2011.19447 x.

Heino,J., Louhi,P. & Muotka,T. (2004) Identifying the scales of variability in stream
macroinvertebrate abundance, functional composition and assemblage structure. Freshwater
Biology, 49, 1230-12309.

Hoverman,J.T., Davis,C.J., Werner,E.E., Skelly,D.K., Relyea,R.A. & Yurewicz,K.L. (2011)
Environmental gradients and the structure of freshwater snail communities. Ecography, 34,
1049-1058.

Hubbell,S.P. (2001) The unified neutral theory of biodiversity and biogeography, Princeton University
Press, Princeton.

Hubbell,S.P. (2005) Neutral theory in community ecology and the hypothesis of functional
equivalence. Functional Ecology, 19, 166-172.

Jackson,D.A., Peres-Neto,P.R. & Olden,J.D. (2001) What controls who is where in freshwater fish
communities - the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries
and Aquatic Sciences, 58, 157-170.

Landeiro,V.L., Hamada,N., Godoy,B.S. & Melo,A.S. (2010) Effects of litter patch area on
macroinvertebrates assemblage structure and leaf breakdown in Central Amazonian streams.
Hydrobiologia, 649, 355-363.

Landeiro,V.L., Hamada,N. & Melo,A.S. (2008) Responses of aquatic invertebrate assemblages and
leaf breakdown to macroconsumer exclusion in Amazonian "terra firme" streams.

Fundamental and Applied Limnology, 172, 49-58.


http://r-forge.r-project.org/projects/sedar/
http://r-forge.r-project.org/projects/sedar/
http://r-forge.r-project.org/projects/sedar/

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

68

Landeiro,V.L. & Magnusson,W.E. (2011) The geometry of spatial analyses: implications for
conservation biologists. Natureza & Conservagao, 9, 7-20.

Landeiro,V.L., Magnusson,W.E., Melo,A.S., Espirito-Santo,H.M.V. & Bini,L.M. (2011) Spatial
eigenfunction analyses in stream networks: do watercourse and overland distances produce
different results? Freshwater Biology, 56, 1184-1192.

Legendre,P., Borcard,D. & Peres Neto,P.R. (2005) Analyzing beta diversity: partitioning the spatial
variation of community composition data. Ecological Monographs, 75, 435-450.

Leibold,M.A., Holyoak,M., Mouquet,N., Amarasekare,P., Chase,J.M., Hoopes,M.F., Holt,R.D.,
Shurin,J.B., LAW,R., Tilman,D., Loreau,M. & Gonzalez,A. (2004) The metacommunity
concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601-613.

Logue,J.B., Mouquet,N., Peter,H. & HILLEBRAND,H. (2011) Empirical approaches to
metacommunities: a review and comparison with theory. Trends in Ecology & Evolution, 26,
482-491.

Maloney,K.O. & Munguia,P. (2011) Distance decay of similarity in temperate aquatic communities:
effects of environmental transition zones, distance measure, and life histories. Ecography, 34,
287-295.

McCreadie,J.W. & Colbo,M.H. (1991) Spatial distribution patterns of larval cytotypes of the
Simulium venustum/verecundum complex (Diptera: Simuliidae) on the Avalon Peninsula,
New found land: factors associated with occurrence. Canadian Journal of Zoology, 69, 2651-
2659.

Merritt,R.W. & Cummins,K.W. (1996) An Introduction to the Aquatic Insects of the North America, -
862, Kendall/Hunt Publishing Destespany, lowa.

Miller,M.P., Blinn,D.W. & Keim,P. (2002) Correlations between observed dispersal capabilities and
patterns of genetic differentiation in populations of four aquatic insect species from the
Arizona White Mountains, USA. Freshwater Biology, 47, 1660-1673.

Mykré,H., Heino,J. & Muotka, T. (2007) Scale-related patterns in the spatial and environmental
components of stream macroinvertebrate assemblage variation. Global Ecology and
Biogeography, 16, 149-159.

Nekola,J.C. & White,P.S. (1999) The distance decay of similarity in biogeography and ecology.
Journal of Biogeography, 26, 867-878.

Oksanen, J., Blanchet, F. Guillaume, Kindt, R., Legendre, Pierre, O'Hara, R. B., Simpson, G. L.,
Solymos, P., Stevens, M. H. H, and Wagner, H. (2011) vegan: Community Ecology Package.
http://CRAN.R-project.org/package=vegan

Oliveira,L.G. & Froehlich,C.G. (1996) Natural history of three Hydropsychidae (Trichoptera, Insecta)

in a "Cerrado" stream from Northeastern Sdo Paulo, Brazil. Revista Brasileira de Zoologia,
13, 755-762.


http://cran.r-project.org/package=vegan

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

69

Olsen,D.A., Townsend,C.R. & Matthaei,C.D. (2001) Influence of reach geomorphology on hyporheic
communities in a gravel-bed stream. New Zealand Journal of Marine and Freshwater
Research, 35, 181-190.

Pazin,V.F.V., Magnusson,W.E., Zuanon,J. & Mendonga,F.P. (2006) Fish assemblages in temporary
ponds adjacent to ‘terra-firme' streams in Central Amazonia. Freshwater Biology, 51, 1025-
1037.

Peres-Neto,P.R. & Legendre,P. (2010) Estimating and controlling for spatial structure in the study of
ecological communities. Global Ecology and Biogeography, 19, 174-184.

Peres-Neto,P.R., Legendre,P., Dray,S. & Borcard,D. (2006) Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625.

Pes,A.M.O., Hamada,N. & Soares,C.C. (2008) Description of the last-instar larva and pupa and the
bionomics of Smicridea (Smicridea) truncata Flint (Trichoptera: Hydropsychidae) in Central
Amazonia, Brazil. Zootaxa, 1732, 54-60.

Petersen,l., Masters,Z., Hildrew,A.G. & Ormerod,S.J. (2004) Dispersal of adult aquatic insects in
catchments of differing land use. Journal of Applied Ecology, 41, 934-950.

Pringle,C.M. (2001) Hydrologic connectivity and the management of biological reserves: a global
perspective. Ecological Applications, 11, 981-998.

R Development Core Team (2011) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-
project.org.

Roque,F.O., Siqueira,T., Bini,L.M., Ribeiro,M.C., Tambosi,L.R., Ciocheti,G. & Trivinho-Strixino,S.
(2010) Untangling associations between chironomid taxa in Neotropical streams using local
and landscape filters. Freshwater Biology, 55, 847-865.

Rosenberg,D.M. & Resh,V.H. (1993) Freshwater biomonitoring and benthic macroinvertebrates, 1-
488, Chapman & Hall, New York.

Rosindell,J., Hubbell,S.P. & Etienne,R.S. (2011) The unified neutral theory of biodiversity and
biogeography at age ten. Trends in Ecology and Evolution, 26, 340-348.

Ruokolainen,K., Tuomisto,H., Macia,M.J., Higgins,M.A. & Yli-Halla,M. (2007) Are floristic and
edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and
Melastomataceae? Journal of Tropical Ecology, 23, 13-25.

Sioli,H. (1984) The Amazon and its main affluents: Hydrography, morphology of the river courses,
and river types. In: The Amazon. Limnology and landscape ecology of a mighty tropical river
and its basin(Ed Sioli H), pp. 127-165. Dr. W. Junk Publishers, Boston.

Siqueira,T., Bini,L.M., Roque,F.O., Couceiro,S.R.M., Trivinho-Strixino,S. & Cottenie,K. (2012)
Common and rare species respond to similar niche processes in macroinvertebrate

metacommunities. Ecography, 35, 183-192.


http://www.r-project.org/
http://www.r-project.org/

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

586

70

Thompson,R.M. & Townsend,C.R. (2006) A truce with neutral theory: local deterministic factors,
species traits and dispersal limitation together determine patterns of diversity in stream
invertebrates. Journal of Animal Ecology, 75, 476-484.

Tuomisto,H. & Ruokolainen,K. (2006) Analyzing or explaining beta diversity? Understanding the
targets of different methods of analysis. Ecology, 87, 2697-2708.

Tuomisto,H. & Ruokolainen,K. (2008) Analyzing or explaining beta diversity? reply. Ecology, 89,
3244-3256.

Tuomisto,H., Ruokolainen,K. & Yli-Halla,M. (2003) Dispersal, environment, and floristic variation of
western Amazonian forests. Science, 299, 241-244.

Urbanic,G., Toman,M.J. & Krusnik,C. (2005) Microhabitat type selection of caddisfly larvae (Insecta:
Trichoptera) in a shallow lowland stream. Hydrobiologia, 541, 1-12.

Van der Gucht,K., Cottenie,K., Muylaert,K., Vloemans,N., Cousin,S., Declerck,S., Jeppesen,E.,
Conde-Porcuna,J.M., Schwenk,K., Zwart,G., Degans,H., Vyverman,W. & De Meester,L.
(2007) The power of species sorting: Local factors drive bacterial community composition
over a wide range of spatial scales. Proceedings of the National Academy of Sciences, 104,
20404-204009.

Vannote,R.L., Minshall,G.W., Cummins,K.W., Sedell,J.R. & Cushing,C.E. (1980) The River
Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.

Walker,l., Henderson,P.A. & Sterry,P. (1991) On the patterns of biomass transfer in the benthic fauna
of an amazonian black-water river, as evidenced by *P label experiment. Hydrobiologia,
215, 153-162.

Wiggins,G.B. (1996) Larvae of the North American caddisfly genera (Trichoptera), 1-457, University
of Toronto Press, Toronto.

Wilcock,H.R., Bruford,M.W., Nichols,R.A. & Hildrew,A.G. (2007) Landscape, habitat characteristics
and the genetic population structure of two caddisflies. Freshwater Biology, 52, 1907-1929.



587
588
589

590
591
592
593
594
595
596
597
598

599
600

71

Table 1: Results for the analysis of homogeneity of multivariate dispersions. Shown are the mean
(xSD) distances to the group centroid. Last row shows the average number of species per stream at

each region.

DR BD PF
Spatial extent (decimal degress) 0.03+£0.01 0.10+0.07 0.19+0.17
Environmental dispersion 2.15+0.86 2.96 +1.39 3.08+0.91
Assemblage composition dispersion 0.45+0.05 0.49+0.07 0.56+0.08
Mean number of species per stream 24.616.0 20.1+7.1 21.616.9

Table 2: Variation partitioning results based on partial RDA analysis. The final pRDA model using
only the variables retained with the forward selection procedure is shown. Numbers for spatial
variables indicate their order, where lower orders represent broad scale patterns. P spat and P env give
the significance for the full spatial and full environmental models (i.e. using all variables available).
The spatial and environmental variables are shown in the order they were retained in the forward
selection procedure. [a] = environmental fraction; [b] = shared fraction; [c] = spatial fraction. The
significance values for the environmental and spatial fractions are given. The full spatial models for

DR, BD, and PF are not significant, therefore, the forward selection was not done.

Full model ) ] )
o Variables retained Fractions
significance
Datase
t Penv Pspat  Spatial Environmental [a] [b] [c]
Width, sand, depth, litter,
1,2,6,9, temperature, pH, stone, . 0.09 .
All 0.001 0.001 o 0.11 0.038
3,18,7,24 conductivity, macrophytes, 5
bedrock
DR 0.001 0.34 - Discharge, conductivity, stone 0.166° - -
BD 0.008 0.1 - Depth, temperature 0.143° - -

Width, depth, temperature, .
PF 0.001 0.56 - . 0.146 - -
conductivity

*p < 0.001; - The forward selection was not done
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Table 3: Variation partitioning analysis of species tables divided into exclusive species and species
common to all regions. Results based on partial RDA analysis. The final pRDA model using only the
variables retained with the forward selection procedure is shown. P spat and P env give the
significance for the full spatial and full environmental models (i.e. using all variables available). The
spatial and environmental variables are shown in the order they were retained in the forward selection
procedure. [a] = environmental fraction; [b] = shared fraction; [c] = spatial fraction. The significance

values for the environmental and spatial fractions are given.

Full model ) ) )
o Variables retained Fractions
significance
Dataset Region Penv P spat Spatial Environmental [a] [b] [c]
DR 0.040 0.235 - Width, conductivity 02277 - -
Exclusive gp  0.161 0.362 - - - -
species
PF 0.231 0.626 - - - -
DR 0.001 0.370 - Discharge, conductivity 0.160° - -
Common X
) BD 0.031 0.198 - Depth, temperature 0178 - -
Species
PF 0.002 0.511 - Depth, width, sand 0.160° - -

“p < 0.001; - The forward selection was not done
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Figure 1: Map of Brazil and geographical location of sampling sites. Ducke Reserve (DR), Presidente

Figueiredo (PF), and the reserves of the Biological Dynamics of Forest Fragments Project (BD).

PCoA 2
PCoA 2

-4 -2 0 2 4 -04 -0.2 0.0 0.2

PCoA 1 PCoA 1

Figure 2: Principal Coordinate Analysis (PCoA), used in the PERMDISP procedure, illustrating the
differences in A) environmental conditions and B) assemblage composition. The assemblage
composition observed in PF differed statistically from those of DR and BD. The environmental
dissimilarity matrix used in the PCoA was calculated using the Euclidean distance on standardized
environmental data. The assemblage dissimilarity matrix used in the PCoA was calculated on
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abundance data (x) transformed to log(x + 1). Polygons delimitate samples from the same sample

region.
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ABSTRACT:

Anurans are one of the most endangered biological groups, and their sensitivity to environmental
changes makes them a useful tool for biomonitoring programs. Species with close relationships to
environmental variables are those more threatened by environmental changes. However, species
without environmental associations that show patterns more related to spatial factors, such as dispersal
limitation, might be less affected by environmental changes and less threatened by global warming.
We evaluated the distribution of anurans in 72 plots in central Amazonia, relating them to
environmental factors and other factors that induce spatial clumping. We predicted that species with
aquatic reproduction would be more dependent on environmental conditions than species with
terrestrial reproduction, which we predicted to be more affected by factors that induce spatial patterns
unrelated to known environmental predictors. Combining all species in the same analysis, the spatial
pattern was stronger than that induced by the environmental factors included in the analysis. However,
the observed pattern was highly dependent on the reproductive mode of species. Species with aquatic
reproduction were more related to the environmental variables, while species with terrestrial
reproduction showed strong spatial patterns. These findings are relevant to development of
conservation strategies and biological monitoring programs. Because species strongly influenced by
environmental controls may be more sensitive to specific threats, such as conversion of riparian areas,
whereas species that do not have restrictive needs for reproduction, but which show strong
associations with forests could be better indicators of general environmental degradation associated
with climate change or selective timber harvesting.

Key words: anuran assemblages; Central Amazon; dispersal limitation; Neotropics; niche control;

spatial patterns; variance partitioning, redundancy analysis
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RESUMO:

Anuros sdo um dos grupos biol6gicos mais ameagados e sua sensibilidade as mudangas ambientais os
torna uma ferramenta Gtil para programas de biomonitoramento. Espécies com distribui¢do
relacionadas as variaveis ambientais sdo as mais ameagadas por mudancas ambientais. Entretanto, as
espécies sem associacdes ambientais e que mostram padrfes mais relacionados a fatores espaciais,
como dispersdo limitada, podem ser menos afetadas por mudancas ambientais e menos ameacadas
pelo aquecimento global. Avaliamos a distribuicdo de anuros em 72 parcelas ha Amaz6nia central,
relacionando-os a fatores ambientais e a fatores que induzem agregacdo espacial. Previmos que
espécies com reproducdo aquatica seriam mais dependentes das condi¢des ambientais que espécies
com reproducéo terrestre, que previmos ser mais afetadas por fatores que induzem padr@es espaciais
alheios aos fatores ambientais. Combinando todas espécies na mesma analise, o padrdo espacial foi
mais forte do que o produzido pelas varidveis ambientais incluidas nas analises. Entretanto, o padrdo
observado depende muito do modo reprodutivo das espécies. Espécies com reprodugdo aquéatica foram
relacionadas com as varidveis ambientais, enquanto espécies com reproducao terrestre mostraram
padrdes espaciais. Estes resultados sdo relevantes para o desenvolvimento de estratégias de
conservagao e para os programas de controle biologico. Pois as espécies fortemente influenciadas pelo
ambiente podem ser mais sensiveis a ameacas especificas, como a conversdo de matas ciliares, ao
passo que espécies sem necessidades ambientais restritivas para a reproducdo, mas que mostram
associagOes fortes com as florestas, podem ser melhores indicadores de degradagdo ambiental, em

geral associadas a alteracBes climaticas ou a extracdo seletiva de madeira.
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AMPHIBIAN SPECIES ARE THREATENED BY MANY FACTORS INCLUDING habitat loss, habitat
fragmentation, diseases and pollution throughout the Neotropics (Loyola et al., 2008; AmphibiaWeb,
2011). About 32 percent of amphibian species are threatened or extinct (IUCN, 2010). Amphibian
species are considered sensitive to environmental changes (e.g. Vallan, 2000), generally
associated to their strong endemism and physiological constraints. Climate change is a major threat to
amphibian biodiversity (Hero et al., 2006) and management actions are urgent (Shoo et al., 2011).

The distribution of anurans is known to be affected by many biotic and abiotic factors, such as
availability of breeding habitats (Zimmerman & Bierregaard, 1986), litter cover (Heinen, 1992),
vegetation structure (Pearman, 1997), and structural diversity of habitats (Ernst et al., 2006). In
tropical rainforests, topography, soil, leaf litter depth and vegetation are considered the major factors
affecting anuran species distribution (Lieberman, 1986; Fauth et al., 1989; Allmon, 1991; Giaretta et
al., 1999; Vonesh, 2001). However, anuran species with different developmental modes might respond
to habitat disturbance in different ways (Loyola et al., 2008). In Amazon forests, the abundance of
terrestrial breeding species is affected by topography and soil features (Menin et al., 2007), whereas
the abundance and occurrence of aquatic breeding species are affected mainly by the distance from
streams (Menin et al., 2011).

In general, as in most studies with other taxa, only environmental constraints have been
evaluated in analysis of anuran species distribution. However, spatial factors related to dispersal
ability have been evaluated for a few species (Jones et al., 2006). Neutral theory of biogeography and
biodiversity posits that the patterns of abundance and distribution of species can be understood by
models that consider individuals as if they were equivalent in birth, death and dispersal rates, and in
their competitive abilities. Therefore, species spatial distribution patterns, such as the distance decay
of similarity in ecological communities, would be the result of stochasticity in dispersal limitation
rather than to species niche properties (Hubbell, 2001; Rosindell et al., 2011). Therefore, spatial
aggregations may occur for reasons other than direct environmental influences. Many authors have
included spatial factors in their models, trying to tease apart the effects of niche properties from those
of spatial patterns not directly related to the measured environmental factors through variance
partitioning techniques (Borcard et al., 1992; Peres-Neto et al., 2006). It is important to emphasize that
neutral theory tries to explain why there is so little variation among communities at local scales, while
studies of variance partitioning focus only on that part of the community that varies spatially.
Although many recent studies on metacommunity dynamics have investigated the role of spatial
processes in light of the predictions given by the neutral theory (Linares-Palomino & Kessler, 2009;

Bonada et al., 2011), few have done that with a special focus on conservation biology.
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Here, we evaluate the environmental and spatial processes controlling anuran species
assemblages at 72 plots in an Amazon forest. Besides estimating the relative role of these processes in
controlling overall assemblages we separated the species with aquatic reproduction from those with
terrestrial reproduction to evaluate whether they respond to the same factors. Because anurans are very
sensitive to environmental changes we hypothesized that the environmental control would be higher
than the spatial control, and that species with different types of reproduction would differ in their
relationships with environmental and spatial variables. More specifically, we predicted that species
with terrestrial reproduction would be more affected by spatial constraints, because their distribution is
more restricted by dispersal limitation than by dependence on water resources, and that species with

aquatic reproduction would be more controlled by niche factors associated with water availability.

METHODS

STUDY AREA.—Our study was undertaken in the Reserva Florestal Adolpho Ducke (RFAD, 02°55
and 03°01°S, 59°53” and 59°59°W), adjacent to the city of Manaus, Amazonas state, Brazil (Fig. 1).
The reserve covers 10,000 ha of terra firme (non-flooded) rainforest, a well-drained forest not subject
to seasonal inundation. The forest is characterized by a 30-37 m tall closed canopy, with emergents
growing to 40-45 m (Ribeiro et al.,, 1999). The understorey contains abundant sessile palms
(Astrocaryum spp. and Attalea spp.; Ribeiro et al. 1999). The climate is characterized by a rainy
season from November to May and a dry season during the rest of the year (Marques Filho et al.,
1981). Mean annual temperature is approximately 26° C (Marques Filho et al., 1981) and mean annual
rainfall between 1985 and 2004 was 2489 mm.

FIGURE 1: Location of Ducke Reserve adjacent to the city of Manaus in the Brazilian Amazon.

Points indicate 1 km equidistant sample plots.
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BIOLOGICAL DATA.—We sampled anurans during three diurnal samples (November—December
2002, February—April 2003 and January—February 2004) and five nocturnal samples (November—
December 2002, March—May 2003, November—December 2003, January—March 2004 and April-May
2004). Data were collected in 72 plots systematically distributed over a 64-km? grid formed by 8-km
long trails (Fig 1, see also Menin et al., 2007; 2008 for more information). Each plot was at least 1 km
distant from any other. Plots were 250 m long and positioned to follow altitudinal contour lines, and
thus minimized altitudinal and soil variation within each plot (Magnusson et al., 2005a). All plots
were at least 1 km distant from the reserve edges. Surveys occurred only during the rainy season
(November to May).

Diurnal surveys lasted about 2 h per plot and were conducted between 08:00 and 16:00 h by two
people walking along a 250 m x 1 m plot. Observers visually scanned and gently turned over the leaf-
litter, detecting individuals by visual encounter. The two first surveys were conducted by the same
person (FW and field assistant), but in the third survey, a member was changed (two field assistants
with a lot of field experience). Nocturnal samples were carried out by using simultaneous visual
encounter surveys and auditory sampling (Heyer et al., 1994). We sampled each plot for about one
hour between 18:30 and 22:00 h. The two observers stopped every 5 m and recorded the number of
calling individuals of each species and searched the litter and vegetation for anurans. All individuals
located visually or by their call within 20 m of the center line of the plot were recorded. All nocturnal
surveys were conducted by the same two people (MM and field assistant). We produced separate
datasets of abundance of anurans for diurnal and nocturnal surveys, then pooled the datasets from the
two periods to form a single dataset. We also separated the species into those with aquatic
reproduction and those with terrestrial reproduction, comprising thus tree datasets: all species, species

with aquatic reproduction, and species with terrestrial reproduction.

ENVIRONMENTAL AND SPATIAL PREDICTORS—We included the following environmental
variables in our analysis: average slope across the plot, percentage soil clay content, number of trees in
the plot, litter depth, distance to the nearest stream, and soil pH (see Menin et al., 2007 for more
details). All data used in this work is freely available at http://ppbio.inpa.gov.br, where detailed
metadata describing each data set can be found, including more detailed information on sample
methods and measurements.

Spatial variables were generated through a technique called Principal Coordinates of Neighbor
Matrices (Borcard & Legendre, 2002). PCNM was based on a Euclidean distance matrix between
sampling plots in which this distance matrix is submitted to a Principal Coordinate Analysis (PCoA)
and the eigenvectors with positive eigenvalues are extracted. These eigenvectors (usually called
PCNMs or spatial filters; Diniz-Filho & Bini, 2005; Griffith & Peres-Neto, 2006) represent distinct
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spatial patterns that are mutually orthogonal — they were used as our spatial predictor variables.
PCNMs have been used as proxies representing spatial structures generated by environmental
autocorrelation and biotic processes, such as dispersal, in studies on metacommunity dynamics
(Nabout et al., 2009; Landeiro et al., 2011). PCNMs with high eigenvalues (i.e., PCNMs of low order)
represent broad-scale patterns of relationships among sampling sites, whereas those associated with
low eigenvalues (i.e., PCNMs of high order) represent fine-scale patterns.

DATA ANALYSIS.—The environmental data was transformed to log (x + 1), except pH, and
standardized to zero mean and unit variance before analysis. To evaluate the effects of environmental
and spatial variables on the distribution of anuran species we used partial Redundancy Analysis
(Peres-Neto & Legendre, 2010). The biotic dataset was transformed using the Hellinger
transformation, following recommendations for this kind of analysis (e.g. Peres-Neto & Legendre,
2010). The spatial variables were generated using Principal Coordinates of Neighbor Matrices
(Borcard & Legendre, 2002). We used a forward selection procedure (Blanchet et al., 2008a) based on
10,000 permutations to retain only the most important environmental and spatial variables affecting
the distribution of anuran assemblages.

Because models with a high number of variables (i.e. more variables retained in the forward
selection procedure) has, artefactually, higher explanatory power than models with few variables,
results of partial Redundancy Analysis were based on adjusted fractions of variation (Peres-Neto et al.,
2006). The total variation in the anuran assemblages was divided into four fractions: variation
explained exclusively by environmental variables [a], explained variation that is shared between
environmental and spatial variables [b], variation explained exclusively by spatial variables [c], and
the unexplained variance [d]. All analysis were run using R functions (R Development Core Team,
2011) available in vegan (Oksanen et al., 2011) and packfor (Dray et al., 2009) R libraries.

RESULTS

We collected 29 species of anurans, of which 20 species have aquatic reproduction and 9 have
terrestrial reproduction. Seven species with aquatic reproduction were found only sporadically (i.e.in
less than four sites) and were removed from the analysis. Therefore, we analyzed only 13 species with
aquatic reproduction.

About 39 percent of the variation of anuran assemblages was explained by the environmental
and spatial variables (Fig. 2). Both environmental [a] and spatial [c] fractions were significant
(p<0.001). The spatial component was higher than the environmental component (23.8% and 10%

respectively) and the shared component was 5.3 percent. The environmental variables related to
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anuran assemblages were distance to the nearest stream, soil pH, number of trees in the plot, and soil
clay content. Nine spatial variables were retained for the partial RDA model.

Anurans (all species)

Environmental [a] Spatial [c]

0.100 0.238

Environmental variables retained Spatial variables retained
Stream.distance, pH, Trees, Clay PCNMs: 2,3,1,37,4,7,10,30,46

Residuals = 0.608

FIGURE 2: Variation partitioning results for anuran assemblages (all species). Results based in

a partial Redundancy Analysis and values shown are adjusted R%

About 34 percent of the variation in the assemblage of anurans with aquatic reproduction was
explained by both set of predictors (Fig. 3). Both environmental [a] and spatial [c] fractions were
significant (p<0.001). Most of the variation (26.6%) in the assemblages of anurans with aquatic
reproduction was explained exclusively by environmental variables (distance to the nearest stream and
number of trees). Only three spatial variables were retained and accounted for only 4.9 percent of the
variation. The shared variation was equal to 2.9 percent.

About 40 percent of the variation in the assemblage of anurans with terrestrial reproduction was
explained by the spatial and environmental variables (Fig. 4). Environmental [a] and spatial [c]
fractions were significant (p<0.001). In contrast to the anurans with aquatic reproduction, the variation
in the assemblages of anurans with terrestrial reproduction was better explained by spatial variables
(eight spatial variables retained), accounting for 30.3 percent of the variation. The two environmental
variables retained (soil clay content and pH) accounted for only 5.4 percent of the variation and the

shared fraction was equal to 3.6 percent.
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Anurans with aquatic reproduction

Environmental [a] Spatial [c]
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Environmental variables retained Spatial variables retained
Stream.distance, Trees PCNMs: 1,5,37

Residuals = 0.656
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FIGURE 3: Variation partitioning results for assemblages of anurans with aquatic reproduction.

Results based in a partial Redundancy Analysis. Values shown are adjusted R?.

Anurans with terrestrial reproduction

Environmental [a] | Shared [b]| Spatial [c]

0.054 0.036 0.303

Environmental variables retained Spatial variables retained
Clay, pH PCNMs: 2,3,1,37,10,4,7,30

Residuals = 0.606

FIGURE 4: Variation partitioning results for assemblages of anurans with terrestrial

reproduction. Results based in a partial Redundancy Analysis. Values shown are adjusted R%.
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DISCUSSION

Our models explained about 35 percent of the between-plot variation in anuran assemblages. When all
species were pooled, the spatial patterns were stronger than the effects of the environmental variables
included in the analyses. However, the pattern was highly dependent on the reproductive mode of
species. Species with aquatic reproduction were more associated with variation in environmental
factors (i.e. probable niche control), whereas species with terrestrial reproduction showed spatial
patterns that were not associated with the environmental variables included in the analyses.

The environmental patterns are easily interpreted because they are associated with
environmental variables included in the analyses. However, spatial patterns may arise from two main
sources. Some spatially structured environmental variables, important for anurans, may not have been
measured and, consequently, were not included in the models (Diniz-Filho et al., 2003; Landeiro &
Magnusson, 2011). That is, in the absence of an important environmental variable in the analysis, the
variation in species distribution due to that environmental variable will be attributed exclusively to
spatial variables. Another possibility is that species are really not dependent on environmental
constraints and the observed spatial patterns are due to dispersal limitation or other endogenous
process such as differential reproduction (Fortin & Dale, 2005; Landeiro et al., 2011). Here, we
measured environmental variables commonly found to affect anuran species distribution, so we
believe that the spatial pattern observed in species with terrestrial reproduction is more related to
intrinsic dispersal processes than to the lack of important environmental variables.

In the Neotropical region, the main environmental characteristics that have been found to affect
anuran distributions are vegetation structure, leaf litter depth, topography and soil features, such as pH
and clay content. Some studies reported positive relationships between litter layer development and
species richness or abundance of many species (Fauth et al., 1989; Giaretta et al., 1999; Vonesh,
2001), probably related to a greater number of microhabitats (Fauth et al., 1989) or refuges
(Lieberman, 1986), whereas other studies find no such effect on the anuran litter community (Allmon,
1991; Menin et al., 2007). Here, we found no relationship between litter depth and anuran
assemblages in the Ducke Reserve. Topographic characteristics, such as slope, are related to the
abundance or occurrence of three of the anuran species with terrestrial reproduction we found in this
study (Menin et al., 2007). However, this does not create a general pattern for the whole terrestrial-
breeding assemblage.

In our study, terrestrial breeding anurans were related to soil features. Soil pH also influenced
the abundance of terrestrially breeding anuran species when each species was analyzed independently
(Menin et al., 2007). The early developmental stages of some species of amphibians can be severely

affected by low pH because it affects ionic regulation of embryos (Pierce, 1985). Therefore, although
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relationships with pH were not detected for all species when the analysis was run on each species
independently, it appears that the distributions of terrestrially anurans are dependent on natural
variation in soil pH. Effects of soil clay content in the abundance of some anuran species has been
detected in Costa Rica (Watling, 2005), Australia (Woinarski et al., 1999) and Amazonia (Menin et
al., 2007). Soils with high clay content are found distant from streams margins (riparian zones) and
retain high water and moisture, allowing the reproduction of species in terrestrial nests. On the other
hand, aquatic breeding anurans were affected by distance from streams and number of trees.

Vegetation structure is generally assumed to be an important characteristic affecting riparian
anuran species (Parris & McCarthy, 1999). The density of trees influences species richness and
composition of terrestrial and arboreal anuran species in some tropical sites (Pearman, 1997; Parris &
McCarthy, 1999; Ernst & Rédel, 2005; Ernst, 2006; Keller et al., 2009). In Central Amazonia, a high
density of small trees was found in bottomlands (Castilho et al., 2006). Distance to the nearest stream,
soil clay content and the slope of the terrain in the plot is related to the water availability, and sites
near streams with low clay content and flatter terrains (through pond formation) can provide more
oviposition sites for anurans (Keller et al., 2009; Menin et al., 2011).

The conservation of anuran species can be highly dependent on life-history traits, such as the
type of reproduction (Loyola et al., 2008). The inclusion of anuran developmental modes in analyses
aimed to choose priority areas for anuran conservation results in a clear gain in comprehensiveness of
the selection process. When compared to usual analyses that do not consider these life-history traits,
the conservation of species that require an aquatic habitat for their reproduction is improved.
Otherwise, priority area setting exercises tend to favor species with terrestrial development (Loyola et
al., 2008).

As the severity and frequency of droughts affecting the Amazon region are expected to increase
(Lewis et al., 2011), associated with other potential environmental changes caused by global warming,
the effects on anuran species might be severe for species dependent on aquatic habitats to reproduce,
and for species that rely on humid soils for terrestrial reproduction. Most terrestrial-breeding frogs
occur in humid areas (Duellman, 1995; 1999). Our results showed that species with aquatic
reproduction are highly related to environmental conditions, mainly the distance to the nearest water
source, indicating that their occupation in the landscape will be affected by changes in the availability
of water sources. In addition, little of the beta diversity observed in terrestrially breeding frogs
assemblages is associated with habitat variation (Menin et al., 2007).

Zimmerman & Bierregaard (1986) suggested that frogs are not good indicator species for
fragmentation studies because their distributions are largely determined by the presence of water
bodies suitable for reproduction. However, that generalization does not apply to the terrestrially

breeding species (Menin et al., 2007). The effects of climate change are likely to be different for
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aquatic-breeding and terrestrial-breeding frogs. Whereas the distribution of aquatic-breeding frogs
across the landscape are likely to be influenced by changes in the distribution of water bodies, aquatic-
breeding species are not likely to become locally extinct until almost all water bodies are lost, and they
could potentially be maintained by artificial water sources. This probably explains why aquatic-
breeding species are common in the driest areas of Amazonia (Duellman, 1988). In contrast, there are
few or no terrestrial-breeding species in the drier parts of Amazonia, suggesting that their limited
dispersal abilities associated with requirements for humid climates might result in their being pushed
completely off the landscape. Considerations about vulnerability of different species will have to take
into account differences in the requirements of the guilds and the scale of the changes.

These findings are relevant to development of conservation strategies and biological monitoring
programs, because species strongly influenced by environmental controls may be more sensitive to
specific threats, such as conversion of riparian areas. On the other hand, species that do not have
restrictive needs for reproduction, but that show strong associations with humid forests could be better
indicators of general environmental degradation associated with climate change or activities such as

selective timber harvesting.
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ABSTRACT

The need for biodiversity conservation is increasing at a rate much faster than the acquirement
of knowledge on biodiversity, such as descriptions of new species and mapping species distribution.
As global changes are winning the race against the acquisition of knowledge, many researchers resort
to the use of surrogate groups to aid in conservation decisions. Reductions in taxonomic and numeric
resolution are also desirable, because they could speed up the acquisition of data using less effort, if
little important information is lost. In this study, we evaluate the congruence in species composition
among 22 taxonomic groups to evaluate if any of these groups could be used as surrogates for the
others in monitoring programs. We also evaluated if the taxonomic or numeric resolution of possible
surrogates can be reduced without greatly reducing the overall congruence. Congruence among plant
groups was high, while the congruence among most animal groups were very low, except for anurans
in which congruence values were only slightly lower than for plants. Liana (Bignoniaceae) was the
group with highest congruence, even using genera presence-absence data. The congruence among
groups was related to the environmental factors, specially soil clay and phosphorous contents. Several
groups showed strong spatial clumping, but this was unrelated to the congruence among groups. The
high congruence of lianas with the other groups suggests that it may be a reasonable surrogate group,
mainly for the other plant groups analyzed. Although difficult to count and identify, the number of
studies on the ecology of lianas is increasing. Most of these studies have concluded that lianas are
increasing in abundance in tropical forests. Beyond the high congruence, lianas are worth monitoring
in their own right because they are sensitive to global warming and the increasing drought frequency
and severity in tropical regions. Our findings suggest that data on surrogates groups with relatively
low taxonomic and numerical resolutions can be reliable shortcuts for biodiversity assessments,
especially in megadiverse areas with high rates of habitat conversion where lack of biodiversity

knowledge is pervasive.

Keywords: Amazonia, Congruence, Mantel, Procrustean rotation, Spatial patterns, Surrogate groups
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1. Introduction

Reliable biodiversity data allowing the use of systematic conservation planning procedures
(Margules and Pressey, 2000) are available only for a few areas worldwide. Conversely, most of the
species-rich areas are plagued by the absence of biological information (e.g. Hopkins, 2007; Schulman
et al., 2007). Brown & Lomolino (1998) and Lomolino (2004) coined the terms “Linnean shortfall”
and “Wallacean shortfall” to summarize this problem. The first term refers to the lack of information
about species identities, whereas the second is related with the lack of data on the spatial distribution
of the species (see also Whittaker et al., 2005).

The world is experiencing severe human-induced impacts (e.g. Hansen et al., 2000;
Vorosmarty et al., 2010), so we may not have time to solve the Linnean and Wallacean shortfalls
before the impacts on biodiversity become irreversible. In addition, carrying out inventories of all
biodiversity of megadiverse regions of the planet, apart from being expensive and time-consuming,
may be a quixotic task (Magurran and Queiroz, 2010). The huge diversity found in the Amazon would
require an inordinately large number of taxonomists for a minimally reliable inventory of this diversity
(Hopkins, 2007), and many tropical areas are still inaccessible, especially in the Amazon region
(Schulman et al., 2007).

Because of the Linnean and Wallacean shortfalls, most proposed systematic conservation
plans are based on surrogate taxa, which are selected by the availability of data (Rodrigues and
Brooks, 2007). However, the decisions taken for a particular surrogate group may not be the best for
the conservation of all (unknown) biodiversity in a given area (Franco et al., 2009) and the
effectiveness of these decisions are also scale dependent. Because of the uncertainty about the
efficiency of the surrogacy approach, the number of studies testing for community congruence (cross-
taxon congruence) is increasing conspicuously (e.g. Paszkowski and Tonn, 2000; Su et al., 2004;
Macia et al., 2007). Two communities are said to be concordant when beta-diversity or community
structures exhibited by these communities are correlated (Lopes et al., 2011). Similar response to
major environmental gradients is the most common mechanism underlying community congruence
(Heino et al., 2003). A good surrogate group should be easy to sample, identify, and have a
distribution pattern congruent with those of other taxonomic groups. Independently of other
requirements, although rarely tested, concordance is a necessary property for the reliable use of
surrogate groups.

Besides the analysis of community congruence, a different set of studies has focused on how
well biodiversity patterns, obtained with species-level data, can be reproduced by data on higher taxa,
in order to improve the cost-effectiveness of monitoring programs and community analyses in general

(e.g. Attayde and Hansson, 2001; Bertrand et al., 2006). The effects of taxonomic resolution on
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biodiversity patterns can be tested by merging species into coarser taxonomic classes and by
evaluating the similarity between ordination patterns depicted by both species-level and lower-
resolution data (Melo, 2005; Anderson et al., 2005). If the patterns are similar, then higher taxa data
can be used to substitute species-level data (e.g. Terlizzi et al., 2003) that is more expensive and time
consuming to obtain. The effects of numerical resolution (e.g., transforming abundance data into
presence-absence data) on biodiversity patterns can be analyzed similarly (Melo, 2005; Carneiro et al.,
2010). The reliability of higher taxa data for conservation planning is also scale dependent and, in
general, the effectiveness of surrogates increases with the increase of the spatial extent of the area
under study (La Ferla et al., 2002; ter Steege et al., 2006).

Studies in the Amazon region have found cross-taxon correlations between similarity matrices
derived from plant groups (Vormisto et al., 2000; Ruokolainen et al., 2007; Macia et al., 2007), but
studies evaluating the congruence between floristic and faunistic data are largely lacking (see Paavola
et al., 2006; Qian and Ricklefs, 2008 for studies in other regions). Variation in faunistic similarity
might be better predicted by floristic similarity than by environmental similarity matrices (Oliver et
al., 1998). This is so because data on plant species composition integrate a number of important
environmental factors and because of the direct relationships among animal and plants (Schaffers et
al., 2008).

Here we used comprehensive data on composition of different communities in a 100 km?
Amazonian reserve to evaluate the congruence in the distribution pattern of 22 taxonomic groups. For
those groups that could be used to predict the distribution of others, we also evaluated the degree to
which biomonitoring assessments undertaken at this spatial scale can be simplified by using surrogate
groups and reducing the taxonomic and/or numeric resolution. To the best of our knowledge, no
previous study has examined the adequacy of surrogate groups, taxonomic and numerical resolution in

the same study.

2. Material and methods

2.1 Study area

This study was undertaken using data on 22 taxonomic groups collected at the Ducke Reserve
of the Instituto Nacional de Pesquisas da Amazo6nia (INPA), located 26 km north-west of Manaus
(Fig. 1). The area corresponds to site 1 of the Brazilian Long-Term Ecological Research Program
(PELD), and is part of the Biodiversity Research Program (PPBio) of the Brazilian Ministry of
Science and Technology (MCT). The reserve covers 10,000 (10x10 km) hectares of terra-firme

tropical rain forest, with a closed canopy 30-37 m high and emergents growing to 40-45 m (Ribeiro et
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al., 1999). A central plateau splits the reserve into two drainage systems (Espirito-Santo et al., 2009)
with altitude ranging from 40 to 110 m asl. The mean annual temperature is 26°C and the mean annual
rainfall is 2362 mm. Soils in the reserve are composed of marine sediments of the tertiary,
representing a continuum from clayey soils at higher altitudes to sandier soil at lower altitudes (i.e.
stream valleys).

> R, Amazonas

Figure 1. Location of Ducke Reserve in the Brazilian Amazon. Points indicate 1 km equidistant

sample plots.

2.2 Sampling design and datasets

All datasets used in this study were gathered by research teams working in PPBio (see
Magnusson et al. 2005 and http://ppbio.inpa.gov.br/Eng). The basic sampling design used in this
program is based on the RAPELD protocol with a system of trails and permanent plots in which a
diverse range of taxa can be sampled (see Magnusson et al., 2005; Costa and Magnusson, 2010 for a
detailed description of the sampling design).The RAPELD grid in Ducke Reserve is a rectangle with
sides of 8 by 9 km, resulting in 64 km? of trails in which 72 plots separated by 1 km are spread (Fig.
1). Each sample plot is 250 m long, with width varying according to the taxa or life stage being
sampled. The center line of each plot follows an elevation contour line, thus minimizing altitudinal

variation within plots. A detailed description of the sampling protocols used to collect the data on
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composition and abundance of the different taxonomic groups can be found in the metadata available
together with individual datasets in the PPBio website (http://ppbio.inpa.gov.br/Eng).

Most of the 22 datasets used were of plant groups: [of trees of  Burseraceae,
Chrysobalanaceae, Euphorbiaceae, Fabaceae, Lauraceae, Lecythidaceae, Moraceae, Myristicaceae and
Sapotaceae; Palms; Angiosperm Herbs; Ferns; shrubs of Piperaceae in the genus Piper and Rubiaceae
in the genus Psychotria; and lianas (Bignoniaceae)]. Seven datasets were of animal groups: [diurnal
anurans; nocturnal anurans; lizards; bees; ants; soil-and-litter meso-invertebrates; and mites of the
Suborder Oribatida].

All organisms were identified to species or morphospecies, except for soil and litter meso-
invertebrates, which were identified to Class, Order or Family. Samples were taken in the same plots;
but some groups were not sampled in all plots (30 to 72 plots were sampled for each group).
Environmental variables are also available from the PPBio data repository (http://ppbio.inpa.gov.br).
In this study, we used five environmental variables (soil clay, silt and phosphorus (P) contents, terrain
slope and number of trees in the plot) that PPBio researchers found to be the most important in
explaining patterns in community structure of the different groups analyzed in this study (e.g. Costa et
al., 2005; Kinupp and Magnusson, 2005).

2.3 Analysis of congruence

We first analyzed the congruence among all datasets using species abundance data.
Abundance data were transformed into log(x+1) prior to analyses to reduce the influence of outliers.
To reduce the dimensionality of each dataset, we conducted a principal coordinate analysis (Legendre
and Legendre, 1998) using the Bray-Curtis distances among sampling plots. The level of community
congruence (between any two ordination solutions; i.e., between the eigenvectors extracted from the
Bray-Curtis distance matrices) was quantified and tested for statistical significance by the Procrustean
superimposition method and a Monte Carlo procedure (with 5000 permutations), respectively. The m?
values (the goodness-of-fit statistic that measures the level of congruence between two ordination
configurations) were transformed to Procrustes correlation (r) by calculating the square root of their
complements (r = V(1 — m?)) (Oksanen et al., 2011).

Mantel tests are also commonly used in studies of community congruence (see Table 2 of
Heino, 2010). For this reason, we also evaluated the levels of community congruence by estimating
the standardized Mantel correlation (ry) between pairs of Bray-Curtis distance matrices. The
significance level of each Mantel statistic was determined by comparing the observed value of ry with
those obtained after 5,000 Monte Carlo simulations. Results from this test were similar and are

presented in the Appendix. We present the results from Procrustean approach in the body of the paper
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because it has been shown to have higher power and lower type | error rates than the Mantel test
(Peres-Neto and Jackson, 2001).

We submitted the matrix of congruence (pair-wise congruence) to a second-stage Non-Metric
Multidimensional Scaling (NMDS) analysis to construct a plot to further examine the congruence
between datasets. We calculated the average congruence that each group had with the others and the
group with the highest mean was considered the best surrogate.

2.4 Putative causes of congruence

We used a partial Redundancy Analysis (pRDA, Peres-Neto et al., 2006) to evaluate spatial
and environmental patterns in each dataset (species abundance, using the Hellinger transformation).
For this analysis, we used the five variables presented above as environmental predictors, while the
spatial variables were the eigenvectors extracted, using an eigenfunction analysis (PCNM), from a
matrix of geographic distances between plots (Borcard and Legendre, 2002). We used a forward
selection procedure (Blanchet et al., 2008) to retain spatial and environmental variables to be used in
the pRDA. The results of variation partitioning were based on adjusted fractions of variation (Peres-
Neto et al., 2006). Detailed descriptions of variation partitioning based on RDA can be found in Peres-
Neto & Legendre (2010) and references therein.

Multivariate partitioning techniques have been extensively used to infer the relative roles of
spatial and niche processes in structuring biological communities (Cottenie, 2005). However, these
approaches were recently challenged by Gilbert & Bennet (2010), who indicated that different
versions of these techniques produced biased estimates of the relative importance of spatial and
environmental signals, and by Smith and Lundholm (2010), who showed that identical levels of
migration and environmental control can produce very different variance components. We believe that
these recent criticisms to multivariate partitioning techniques have raised an important debate, which
is far from being settled. Thus, we used these techniques here cautiously and only as a way to detect
either environmental or spatial signals, instead of trying to measure their relative importance in
community structuring. We predicted that datasets with high environmental and/or spatial signals
would have higher congruence between themselves than between datasets with low environmental
and/or spatial patterns. We predicted that datasets with high environmental and/or spatial signals
would have higher congruence between themselves than between datasets with low environmental
and/or spatial patterns.

We also regressed the mean level of congruence of each group with the environmental fraction

[ab] and with the spatial fraction [bc] of the variance partitioning analysis. This regression enabled us
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to determine how much of the congruence patterns were associated with shared responses to
environmental and spatial factors and how much were simply due to other unstudied factors.

2.5 Impacts of reducing taxonomic and numerical resolution

After identify the taxonomic group with highest congruence with the others, we evaluated the
impact of decreasing the numeric and taxonomic resolution of data on the levels of congruence. To
accomplish this, we pooled species to genera (except for meso-invertebrates, Psychotria and Piper
datasets) and/or converted abundance to presence-absence data. We used the Sorensen distance for
presence-absence data in the association matrix for the PCoA that was used in the Procrustes and
Mantel analyses. The same procedures were used to measure the levels of congruence between the
group with the highest mean congruence (after reducing the taxonomic and numerical resolution) and

all other groups.

2.6 Computational tools

All analyses were run in the R environment for statistical computing (R Development Core
Team, 2011). Protest, Mantel tests, redundancy analysis, and variation partitioning analysis were all
run using the functions protest, mantel, rda and varpart available in vegan package (Oksanen et al.,
2011).

3. Results

3.1 Analysis of congruence

The highest level of congruence we found was between palms and lianas (r = 0.87; P < 0.005),
while the lowest was between Burseraceae and mesofauna (r = 0.04; P = 0.99). In general, congruence
was higher among plant groups (mean r = 0.51 + 0.16 SD) than among animal groups (mean r = 0.24
+ 0.12 SD) and lianas was the group with the highest mean level of congruence (mean r = 0.60+ 0.23
SD, Fig. 2, see also Table Al in The Appendix). The second stage NMDS represented well the
relationships in the procrustean congruence among groups (Fig. 3), where groups with higher
congruence were placed together. Almost all plant groups are close together in a cluster in which the
groups with higher congruence form the center. Two plant groups (Euphorbiaceae and Lauraceae),
which were poorly correlated with the other plant groups are spread around, together with the animal
groups.
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248 The ordination patterns generated by lianas (species abundance data) were virtually unchanged
249  after the conversion of abundance to presence and absence data (Protest, r = 0.975, P < 0.001), after
250  pooling species into genera (Protest, r = 0.857, P <0.001) or when changing genera abundance data to
251  genera presence-absence data (Protest, r =0.777, P = 0.001).

252

253 3.2 Putative causes of congruence

254

255 Most datasets of plants and those of anurans showed high environmental and/or spatial signals,
256  while invertebrates and lizards had no significant spatial or environmental signals (Table 1). Lianas
257  showed no spatial pattern, but had the second largest environmental signal ([a] = 0.253), being mainly
258  associated with clay and P contents. The mean level of congruence, obtained for each group, was
259  highly related to the environmental fraction [ab] (r*= 0.56, p < 0.001, Fig. 4-a), but the mean level of
260  congruence was not significantly related with the spatial fraction [bc] (r? = 0.07, p = 0.24, Fig. 4-b).
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262 Figure 2. Procrustean rotation results for species abundance data (5000 permutations).

263  Congruence among 22 community datasets was evaluated with the correlations in symmetric
264  Procrustean rotations. This figure was constructed using the values presented in Table Al in the
265  Appendix.
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266 Table 1: Variance partitioning analysis. Spatial filters (PCNMs) and environmental variables are shown in the
267 order they were retained in the forward selection procedure. [a] = environmental fraction; [b] = shared fraction; [c]
268 = spatial fraction; [a+b+c] = Total variance explained.

269

Environment PCNMs [a] [b] [c]

Lianas clay,P - 0.289 - -

Trees clay,P,slope,trees 1,2,3,37,24,6,30,38,8 0.086 0.038 0.033
Palms P,clay,slope,trees 30,1,2,38,8,42,31 0.262 0.152 0.025
Herbs clay,slope,P,trees 34,33,29,11,2,4,1,7,6,31,40,26,8,36,35 0.109 0.143 0.114
Ferns P,slope,clay,trees 11,32,33,29,34,1,25,30,10 0.185 0.165 0.105
Lecythidaceae clay,P 1,24,2,37,3,6,13 0.148 0.042 0.068
Fabaceae clay,P,slope 1,2,3,44 0.094 0.002 0.028
Burseraceae P,clay,slope,trees,silt  2,28,37,48,3,8,38,1,14,26,13,30 0.11 0.068 0.081
Psychotria P,clay,slope,trees 32,2,1,3,9,37,6,5 0.142 0.079 0.176
Sapotaceae clay,P,trees 3,2,1,8,45,5,6 0.054 0.034 0.045
Moraceae clay,trees,P 2,30,47,37,1 0.104 0.041 0.036
Piper clay,slope,P 1,40,4,2,6,44 0.143 0.046 0.089
Chrysobalanaceae  P,Clay 24.2.10,48 0.048 0.005 0.031
Diurnal Anura clay,slope,trees 1 0.218 0.005 0.053
Myristicaceae clay,P,trees - 0.112 - -

Euphorbiaceae P,slope 31,37,2,42 0.056 0.015 0.039
Ants - 2 - - 0.043
Noturnal Anura P,silt,trees,Clay 2,3,37,1,4,7,10,30,46,12,48 0.098 0.111 0.214
Lauraceae P,silt 35,4 0.02 0.001 0.013
Oribatida Clay 1,6,34,7,2,30,25,18,49 0.008 0.01 0.078
Lizards trees,Clay 7 0.048 -0.003 0.018
Bees Silt 574 0.012 0.013 0.087
Mesofauna - 16,15,35,6,3,27,7,2,1,19,8,20,12 - - 0.219

" no variable was retained in the forward selection procedure.
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Figure 3. An ordination plot from second-stage NMDS obtained from the matrix of
congruence (evaluated with the correlations in symmetric Procrustean rotation — see Table 1) among

22 community datasets. Stress = 20.41.

3.3 Impacts of reducing taxonomic and numerical resolution

Although not statistically significant (paired t-test = 1.087; df = 20; P = 0.29, mean of the
differences = 0.005), the levels of congruence between lianas (the surrogate group with highest overall
congruence) and other groups (especially herbs, palms, Chrysobalanaceae, Myristicaceae,
diurnal/nocturnal anurans, oribatid mites and bees) were even higher after transforming the liana-
abundance data into presence-absence data. However, the levels of congruence between lianas and the
other groups were statistically lower after grouping lianas species abundance data into genera-
abundance data (paired t-test = 3.389; P = 0.002, mean of the differences = 0.048) or after reducing
both the taxonomic and numerical resolution of the lianas dataset (i.e., using the genera presence-
absence data; paired t-test = 4.141; P < 0.001, mean of the differences = 0.080). However, even using
genera presence-absence data for lianas (i.e. the coarsest numeric and taxonomic resolutions), the
mean level of congruence (mean r = 0.516, Table 2) was still better than the mean congruence found

for palms (mean r = 0.515), the group with the second highest level of congruence (see Table Al in
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the Appendix). Thus, the ability of lianas to reproduce ordination patterns generated by other groups

was largely maintained after the reduction of numerical resolution (abundance to occurrence),

reduction of the taxonomic resolution (species to genera) or both (Table 2).

Similar results were obtained using Mantel tests to evaluate the patterns of congruence (see

Appendix 1).

Table 2. Congruence between Lianas, at different taxonomic and numeric resolutions, with

the other groups (species abundance, except for mesofauna). Congruence was evaluated using

Procrustean rotations (5000 permutations). The mean congruence was high for all combinations of

taxonomic resolution.

Lianas
Species Genera
Abundance Ocurrence  Abundance Ocurrence
Palms 0.87 0.88 0.83 0.77
Lecythidaceae 0.78 0.77 0.70 0.64
Ferns 0.83 0.82 0.63 0.59
Fabaceae 0.76 0.73 0.68 0.62
Herbs 0.83 0.85 0.73 0.72
Burseraceae 0.81 0.80 0.73 0.68
Psychotria 0.78 0.76 0.68 0.62
Piper 0.68 0.67 0.69 0.65
Moraceae 0.74 0.70 0.72 0.65
Sapotaceae 0.67 0.66 0.56 0.50
Chrysobalanaceae 0.68 0.69 0.68 0.65
Diurnal Anura 0.59 0.61 0.59 0.58
Myristicaceae 0.55 0.56 0.47 0.40
Ants 0.34" 0.32" 0.40 0.45
Euphorbiaceae 0.69 0.67 0.63 0.57
Nocturnal Anura 0.60 0.62 0.55 0.50
Lauraceae 0.40 0.40 0.34 0.33
Oribatida 0.35 0.36 0.31" 0.29"
Lizards 0.24" 0.19" 0.16" 0.12"
Bees 0.15" 0.20" 0.15" 0.19"
Mesofauna 0.18" 0.17" 0.30" 0.32"
Mean 0.60 0.59 0.55 0.52
SD 0.23 0.23 0.23 0.23

" Non-significant values (p > 0.05)
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Figure 4. Relationship between the mean level of congruence values (Protest) calculated for each
group with the environmental [ab] and with spatial [bc] fractions derived from the partial RDA
analyses. [ab] and [bc] represent the adjusted R? resulting from RDAs between the biological matrices
and the environmental predictor matrix and between the biological matrices and the spatial predictor

matrix, respectively.
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4. Discussion

The distribution patterns of most of 15 plant group analyzed showed high congruence, while
invertebrates and lizards had low congruence with other groups. Anurans showed high congruence
with plants, but the values were slightly lower than those among plants. Based only on congruence,
lianas (Bignoniaceae) would be the best candidate for a surrogate group. Although statistically
significant, the decrease in the taxonomic and numeric resolution of lianas datasets did not greatly
decreased the congruence with the other groups; the coarsest resolution of lianas (genera presence-
absence) had higher congruence values than the finest resolution of palms (species abundance data),
the group with the second highest congruence.

4.1 Congruence among groups

The congruence in distribution patterns might be highly dependent on the geographic location
and spatial extent of analysis (McKnight et al., 2007; Cabeza et al., 2008). McKnight et al. (2007)
found that the congruence in beta diversity among amphibians, birds and mammals were generally
stronger within the Neotropical than within the Nearctic realm. Thus, extrapolation of our results to
regions beyond the Amazon should be done with caution.

Based on Mantel tests, Ruokolainen et al. (2007) considered ferns (Pteridophytes) to be the
best surrogate group for other plants. Our results based on Procrustean rotations (and Mantel, see
Appendix Al) also identified ferns as a potential surrogate group, but several other groups of plants
also had high values of congruence (e.g. palms, Lecythidaceae, ferns, Fabaceae, angiosperm herbs,

Burseraceae), and lianas (Bignoniaceae) had the highest overall congruence.

4.2 Putative causes of congruence

Differences in distributional patterns between communities may be due to dissimilar responses
to environment gradients, due to different dispersal abilities or both (Linares-Palomino and Kessler,
2009). Conversely, similar responses to environmental gradients may be the main causes of
congruence between groups of species (e.g. Paszkowski and Tonn, 2000). The high congruence among
plant groups observed here might be explained by the environmental control because the variance-
partitioning analysis indicated that the variance associated with environmental variables was related to
the mean congruence of each group.

The main causes for the high congruence among plants might be associated with similar

responses to soil characteristics. Variation in densities of most plants was associated with clay and P
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content. Lianas showed the highest sensitivities to soil variation (28.9 % of the variance was explained
by clay and P soil contents). In general, soil factors have been found to be better predictors of floristic
patterns in the Amazon region than spatial factors (e.g. Tuomisto et al., 2003; Costa et al., 2005).
Lianas generally have high dispersal ability (Macia et al., 2007), which might be responsible for the
lack of spatial pattern observed.

4.3 Lianas as a potential surrogate group

Although lianas are considered a weed in silvicultural activities (Gerwing, 2001) and are hard
to sample and count in the field, they have many interesting ecological characteristics that may make
them useful as a surrogate group. The importance of lianas might be increasing in tropical forests,
where they comprise about 25% of the woody stem density and species richness, reaching values as
high as 44% in the Amazon forests (Schnitzer and Bongers, 2002). Lianas contribute to diversity and
community structure, exerting profound effects on other growth forms, such as altering tree growth,
species composition and reducing fecundity, fundamentally changing the functioning and
physiognomy of tropical forests (Schnitzer and Carson, 2010). In general, lianas are more abundant on
rich soils (Putz and Chai, 1987) and related with tree structure (Nogueira et al., 2011) at small scales.
At large scales, lianas are associated with the seasonality of rainfall, being more abundant and more
species rich in regions with strong seasonal droughts (Schnitzer, 2005), and reduction in rainfall may
be favoring lianas in some tropical forests (Swaine and Grace, 2007). Schnitzer (2005) showed that
lianas can growth seven times more in height than trees during periods of reduced water availability.
Gap formation (Schnitzer and Bongers, 2002) and forest fragmentation (Laurance et al., 2001) also
may increase the abundance and diversity of lianas.

Proliferation of lianas may exacerbate biomass declines and seriously affect forest structure
and functioning (Laurance et al., 2001) with considerable implications to the carbon cycle and for the
biodiversity of tropical forests (Phillips et al., 2002). A volume of Forest Ecology and Management
(vol. 190, 2004) was dedicated to discussion of the importance of lianas in tropical forest functioning,
in which understanding the ecology of lianas was pointed out as crucial, not just for the understanding
of basic ecological questions, but also for the management and conservation of tropical forests (Wright
et al., 2004). Because the severity and frequency of drought events affecting the Amazon region are
expected to increase (Lewis et al., 2011), the use of lianas as a surrogate group for other plants in the
Amazon might be fruitful not just due to its surrogacy capability, but also because it is an indicator
group for environmental changes.

While lianas may be useful surrogates for biological variation at local scales, or as surrogates

for environmental changes, their potentially high dispersal and close association with environmental
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factors may make them less suitable as surrogates at wider scales for groups that have more limited
dispersal, or for groups, such as the animal groups in this study, that show less local variation
associated with soil characteristics. Very often, it is the local endemics that are of greatest
conservation concern, and not the species with high dispersal ability and high adaptability to
disturbance. Programs, such as the PPBio (http://ppbio.inpa.gov.br), are just starting to accumulate

integrated data on many taxa and environmental variables at wider scales, so selection of surrogates

for wider scales should be made with great caution.

4.4 Effects of numerical and taxonomic resolution

In our study, the reduction of the taxonomic resolution of lianas caused a significant decrease
in the congruence of lianas with the other groups. However, the mean of the differences was low. In
addition, even using low resolution data, the group composed by lianas was the best surrogate one (i.e.
had the highest mean congruence). Therefore, the taxonomic and numeric resolution of lianas can be
reduced without a greater loss of information, at least in the spatial scale of this study. These results
are in line with previous studies showing that the use of data with low numerical and taxonomic
resolutions may be reliable for plant groups (e.g. Prinzing et al., 2003; Torre-Cuadros et al., 2007) and
for animal groups (e.g. Attayde and Hansson, 2001). Conversely, there is a tradeoff between the
taxonomic resolution used and how clear cut the pattern is (e.g. the magnitude of the effect, Melo,
2005) that should be taken into account before deciding what resolution to use.

There is high variability at the species level at local and regional scales. Increasing the
taxonomic level decreases the variability at local scales, but at regional scales it remains high
(Anderson et al., 2005). This is in agreement with the idea that coarser taxonomic resolution could be
effectively used for conservation purposes, in which regions of rapid species turnover require
increased attention to the placement and size of conservation areas in order to protect biodiversity
(McKnight et al., 2007). Therefore, reducing the numerical and taxonomic resolution could reduce the

labor and costs of biodiversity sampling without losing important information.

5. Conclusions

Our study provides information on the use of surrogate groups at local scales in the Amazon.
Plant groups were highly congruent at the scale studied, while animal groups had low congruence with
other animal datasets and with plant datasets. The use of lianas as surrogate group might have many
fruitful properties other than those related to a surrogate group. Because lianas grows fast in new gaps

and during drought periods, they might be used as an indicator group of global climate changes, such
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as increased drought periods, while acting as a surrogate group for other purposes. In addition to the
use of lianas as a surrogate group to simplify monitoring assessments, the use of liana’s presence-
absence data and genera level identifications also could reduce the costs and labor of monitoring
studies.
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Table ALl. Procrustean rotation results for species abundance data (5000 permutations). Congruence among 22 community datasets was evaluated with the

correlations in symmetric Procrustean rotations. This matrix was used to run the second stage NMDS. The last two rows show the mean and standard

deviation of congruence values obtained for each taxonomic group. Columns and rows are ordered from the highest mean value to the lowest.

[ (21 [B1 [4 [61 [6] (71 [8] [9 [101 [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
[1] Lianas
[2] Palms 0.87
[3] Lecythidaceae 0.78 0.71
[4] Ferns 0.83 0.74 0.69
[5] Fabaceae 0.76 0.67 0.67 0.58
[6] Herbs 083 0.79 0.64 0.69 0.6
[7] Burseraceae 081 078 06 06 0.62 0.67
[8] Psychotria 0.78 077 06 062 063 057 061
[9] Piper 0.68 0.62 054 061 052 058 054 05
[10] Moraceae 0.74 062 059 053 059 052 063 048 0.46
[11] Sapotaceae 0.67 055 061 048 048 048 049 047 048 0.46
[12] Chrysobalanaceae 0.68 0.6 055 049 048 053 0.6 043 041 04 0.59
[13] Anura-Diurnal 059 044 048 055 049 053 038 032 038 031 031 03
[14] Myristicaceae 055 042 051 041 04 039 041 041 03 04 052 043 024
[15] Ants 0.34" 0.26" 036 0.32" 0.34" 029" 033" 0.28" 0.35" 0.32" 046 02" 05 05
[16] Euphorbiaceae 069 049 04 049 038 038 036 034 053 032 033 022" 032 022" 037
[17] Anura-Noturnal 06 03 028 036 034 029 036 035 036 035 022" 024 02" 019" 034" 0.2
[18] Lauraceae 04 031 032 025" 029 03 023 031 021" 017" 04 038 029 0.16" 028" 0.12" 0.17"
[19] Oribatida 035 0.26 0.29 031 024 017" 012" 033 012" 02" 0.26 0.24 0.22" 015" 0.18" 0.06" 0.16" 0.08"
[20] Lizards 0.24" 032 02" 0.24" 033 025 0.26 019" 026 0.25 0.21" 02" 026 014" 028" 02" 0.15" 0.13" 0.14"
[21] Bees 0.15" 0.2" 0.14" 0.12" 0.23" 0.26" 0.2" 0.09" 0.29" 0.25" 0.14" 0.2" 0.17" 0.09" 0.13" 01" 037 0.22" 027" 0.17"
[22] Mesofauna 0.18" 0.1" 0.12" 0.16" 0.21" 0.06" 0.04" 0.16" 0.11" 0.2" 0.13" 0.22" 0.16" 0.1" 0.25" 0.13" 0.15" 0.13" 0.64 0.18" 0.24"
Mean 06 052 048 048 047 047 046 044 042 042 042 04 036 033 032 032 028 024 023 022 019 017
SD 023 022 02 02 016 021 021 019 016 016 0415 016 013 045 0.09 016 011 01 013 0.06 0.07 0.12

" Non-significant values (p > 0.05)
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Table A2. Mantel correlation results for species abundance data. Congruence among 22 community datasets was evaluated with Mantel’s tests. The last two

rows show the mean and standard deviation of congruence values obtained for each taxonomic group. Rows are ordered from the highest to the lowest mean

value.
[1 2 [3] [4 [5] [6] [1 (8 01 [10] [11] [12] [13] [14] 15 [16] [i7] [18] [19] [20] [21] [22]
[1] Lianas
[2] Palms 0.69
[3] Burseraceae 0.67 0.75
[4] Ferns 0.76 067 0.56
[5] Herbs 066 072 057 0.63
[6] Lecythidaceae 061 0.63 052 0.6 0.2
[7] Piper 053 059 053 05 045 054
[8] Moraceae 057 052 051 04 041 0.5 0.5
[9] Psychotria 058 064 052 046 042 056 043 031
[10] Fabaceae 06 053 045 037 048 045 031 036 033
[11] Chrysobalanaceae 038 044 042 034 032 029 029 027 03 022
[12] Anura_2 0.47 0.35 0.35 0.44 0.24 0.35 0.23 0.23 0.37 0.28 0.23
[13] Sapotaceae 03 038 033 038 033 036 018 025 026 027 021 0.16
[14] Myristicaceae 0.35 03 027 019 028 021 028 024 017 017 018 011 o021
[15] Lauraceae 0.24 0.29 0.27 0.26 0.25 0.28 0.26 0.19 0.22 0.16 0.17 0.1 0.2 0.12
[16] Anura_1 0.3 0.17 0.14 0.24 0.25 0.2 01" 0.09" 0.13 0.26 0.02" 0.16 0.12 0.11 0.09
[17] Euphorbiaceae 038 017 018 0.07" 018 013 02 017 006" 017 012 005" 011 013 0.07 0.03"
[18] Lizards 0.09" 0.11" 011" 0.13" 01" 0.11" 0.08" 0.2 0.05" 0.14 0.12 0.09" 0.13 0.01" 0.02" 0.06" 0.13
[19] Mesofauna 0.08" 0.11" 006" 011" 013 -0.01" 0.03" 0.08" -0.01" 0.12 -0.01" 0.02" 0.03" -0.04" 0.05" -0.04" -0.09" 0.03"
[20] Oribatida 0.07" 0.1" 0.09" 017 0.08" 002" -0.02" 0.04" 003" 012 -0.01" 0.03" 0.02" -0.02" 013 014 -0.05" 0.04" 0.34
[21] Bees -0.02" o" -0.02" -0.12" -0.08" -0.13" -0.01" 0.02" -0.04" -0.06" 0.13" 0.06" -0.13" 0.01" -0.06" -0.09" -0.09" -0.1" 0.14" -0.04"
[22] Ants 015 -0.05" -0.03" -0.11" -0.02" -0.06" -0.04" -0.05" 0.03" -0.07" -0.08" -0.02" -0.02" 0.07" -0.06" -0.07" 0.2 -0.18" 0.03" -019" 0.14"
Mean 04 039 032 034 027 033 034 028 028 028 019 021 011 016 -0.02 0.11 02 015 005 0.07 -002 0.06
SD 0.24 0.26 0.24 0.24 0.18 0.22 0.23 0.21 0.21 0.18 0.14 0.15 0.11 0.11 0.09 0.11 0.14 0.11 0.1 0.08 0.08 0.09

" Non-significant values (p > 0.05)
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Table A3. Congruence among Lianas at different taxonomic and numeric resolutions and the other

datasets (species abundance). Congruence was evaluated using Mantel correlations. The mean

congruence was high for all combinations of taxonomic resolution.

Lianas
Species Genera
Abundance  Ocurrence  Abundance  Ocurrence
Palms 0.69 0.72 0.70 0.57
Burseraceae 0.67 0.69 0.67 0.51
Ferns 0.76 0.73 0.65 0.49
Herbs 0.66 0.68 0.66 0.59
Lecythidaceae 0.61 0.62 0.52 0.38
Piper 0.53 0.57 0.53 0.41
Moraceae 0.57 0.60 0.57 0.46
«» Psychotria 0.58 0.59 0.56 0.37
§ Fabaceae 0.60 0.59 0.55 0.42
g Chrysobalanaceae 0.38 0.38 0.40 0.31
‘8 Anura Nocturnal 0.47 0.49 041 0.26
2 Sapotaceae 0.30 0.30 0.27 0.19
(‘% Myristicaceae 0.35 0.34 0.35 0.33
Lauraceae 0.24 0.23 0.21 0.15
Anura Diurnal 0.30 0.30 0.34 0.30
Euphorbiaceae 0.38 0.33 0.32 0.23
Lizards 0.09" 0.07" 0.07" 0.03"
Mesofauna 0.08" 0.06" 0.13" 0.15"
Oribatida 0.07" 0.06" 0.09" 0.07"
Bees -0.02" 0.01" 0.02" 0.06"
Ants 0.15 0.11" 0.13" 0.16"
Mean 0.40 0.40 0.39 0.31
SD 0.24 0.25 0.22 0.17

" Non significant values (p >0.05).
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Figure Al. Mantel results for species abundance data (5000 permutations). Congruence among 22
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values presented in Table A2.
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Sintese

Acreditamos que o capitulo um ir4 facilitar bastante a fase inicial de pesquisadores novatos na
area de ecologia espacial. Os conceitos e problemas discutidos no capitulo 1, bem como as referéncias
citadas, podem nortear bem o aprendizado da ecologia espacial. Nos capitulos subsequentes,
acreditamos que as principais mensagens sdo de que 0s autovetores espaciais ndo sao tao flexiveis em
criar variaveis espaciais que representam diversas escalas espaciais como se imaginava (Capitulo 2).
As abordagens de dados brutos e de matrizes de distdncia sdo usadas para responder diferentes
questdes, entretanto, caso sejam utilizadas da forma errada, as conclusGes provavelmente serdo as
mesmas, minimizando os problemas gerados pelo seu uso erréneo (Capitulo 3). No Capitulo 4
mostramos que os padrdes de distribuicdo de diversos grupos sdo concordantes, indicando que 0 uso
de grupos substitutos é uma boa forma para reduzir custos em estudos de monitoramento e criagdo de
planos de manejo. Neste capitulo também é possivel verificar que em escalas menores, como a
extensdo da reserva Ducke, os grupos de invertebrados ndo sdo boas ferramentas para
biomonitoramento e criacdo de planos de manejo, pois nesta escala sua distribuicdo parece com uma
distribuigdo aleatoria. Ou seja, qualquer decisdo tomada com base em invertebrados sera téo eficiente
guanto outra. Entretanto, o forte padrdo ambiental e espacial observado para plantas nesta escala, bem
como a concordancia entre a maioria dos grupos, indica que os grupos de plantas podem ser boas
ferramentas para serem utilizadas em estudos de biomonitoramento e em tomadas de decisGes nestas
escalas.

Em geral, observamos que a maioria dos grupos analisados neste trabalho apresentou um
padrdo ambiental mais forte que o padrdo espacial. Isso indica que na escala dos dados analisados,
variando de aproximadamente dez a aproximadamente 120 km, as principais caracteristicas afetando
0s organismos sdo relacionadas ao ambiente. Pode ser que acima dessa extensdo a capacidade de
dispersdo das espécies pode ter um efeito maior na diferenciagdo das comunidades e
consequentemente os padrfes espaciais sejam mais fortes e evidentes. Porém, apesar do baixo efeito
espacial, nos salientamos que sempre é importante avaliar os efeitos espaciais em estudos ecolégicos,
pois dados estruturados espacialmente podem levar a erros tipo 1 e consequentemente a conclusdes

errbneas sobre 0s conjuntos de dados.
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PESQUISAS DA AMAZONIA

PAIS RICO E PAIS SEM POBREZA

ATA DA DEFESA PUBLICA DA TESE DE
DOUTORADO DO PROGRAMA DE POS-
GRADUAGAO EM ECOLOGIA DO
INSTITUTO NACIONAL DE PESQUISAS
DA AMAZONIA.

Aos 21 dias do més de novembro do ano de 2011, as 09:00 horas, na sala de aula do
Programa de Pés-Graduagdo em Ecologia - PPG ECO/INPA, reuniu-se a Comissao
Examinadora de Defesa Publica, composta pelos seguintes membros: o(a) Prof(a). Dr(a).
Bruce Walker Nelson, do Instituto Nacional de Pesquisas da Amazoénia, o(a) Prof(a). Dr(a).
Elizabeth Franklin, do Instituto Nacional de Pesquisas da Amazénia e o(a) Prof(a). Dr(a).
Neusa Hamada, do Instituto Nacional de Pesquisas da Amazoénia, tendo como suplentes
o(a) Prof(a). Dr(a José Luis Campana Camargo, do Instituto Nacional de Pesquisas da
Amazénia e o(a) Prof(a). Dr(a). Sheyla Couceiro, da Universidade Nilton Lins, sob a
presidéncia do(a) primeiro(a), a fim de proceder a arglicdo publica da TESE DE
DOUTORADO de VICTOR LEMES LANDEIRO, intitulada “Relagdes espaciais e ambientais
da biodiversidade em florestas tropicais”, orientada pelo(a) Prof(a). Dr(a). William Ernest
Magnusson, do Instituto Nacional de Pesquisas da Amazonia e co-orientada pelo(a) Prof(a).
Dr(a). Luis Mauricio Bini, da Universidade Federal de Goias.

Apbs a exposicdo, o(a) discente foi arguido(a) oralmente pelos membros da Comiss&o
Examinadora, tendo recebido o conceito final:

APROVADO(A) [ ] REPROVADO(A)

[ ] POR UNANIMIDADE [ ] POR MAIORIA

Nada mais havendo, foi lavrada a presente ata, que, apds lida e aprovada, foi assinada pelos
membros da Comissdo Examinadora.

Prof(a).Dr(a). Bruce Walker Nelson /Q’A ) “ﬁ‘/"‘/z /I%"L —
Prof(a).Dr(a). Elizabeth Franklin %M%M/ B

Prof(a).Dr(a). Neusa Hamada ¥

Edordenacao PPG-ECO/INPA
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