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Resumo 

 

 
Este trabalho teve como objetivo avaliar questões referentes à ecologia espacial e como as análises 

espaciais podem ajudar os ecólogos a entender os padrões de distribuição de espécies. Inicialmente 

fizemos uma revisão da literatura mais atual sobre ecologia espacial e tentamos explicar alguns 

conceitos básicos através de simulação de dados para ilustrar diversas possibilidades com que os 

ecólogos podem se deparar. Em uma segunda etapa nós avaliamos a importância de definir bem as 

variáveis espaciais para serem incluídas em modelos ecológicos, avaliando a diferença entre análises 

usando uma matriz de distância que define rotas de dispersão pelo curso d´água e rotas de dispersão 

em linha reta, sobre a terra. Uma das técnicas mais recentes e utilizadas da ecologia espacial, os 

autovetores espaciais, podem ser tão flexíveis na geração de padrões espaciais que não importa qual 

matriz de distâncias é utilizada que os mesmos padrões serão gerados. Usando dados de peixes, de 

insetos aquáticos (Trichoptera) e dados simulados nós mostramos que a técnica de autovetores não é 

tão flexível como esperado. Portanto, a definição correta da matriz de distâncias é muito importante 

para que uma análise adequada seja feita. Em um próximo passo nós avaliamos duas abordagens para 

analisar dados ecológicos. Uma delas, usando dados brutos e a outra usando matrizes de distância. 

Uma discussão recente sobre o uso dessas duas abordagens se instalou na ecologia, porém ainda não 

há um consenso sobre quando usar cada uma delas. Assim, nós usamos e comparamos as duas 

abordagens para analisar dados de distribuição de Trichoptera em 89 riachos da Amazônia central, 

distribuídos em 3 regiões distintas (Reserva Ducke, áreas do PDBFF e no município de Presidente 

Figueiredo). Nós avaliamos o efeito da extensão espacial e da heterogeneidade ambiental nas análises 

da distribuição das espécies de Trichoptera. Os fatores ambientais foram os mais relacionados com a 

distribuição de Trichoptera em todas as escalas analisadas. Analisamos a distribuição de anuros em 72 

parcelas amostrais da Reseva Ducke e observamos que o padrão de distribuição das espécies é muito 

relacionado ao tipo de reprodução das espécies. Espécies de anuros com reprodução aquática são mais 

bem explicadas por padrões ambientais enquanto as espécies com reprodução terrestre são mais 

explicadas por padrões espaciais. Desta forma, anuros com reprodução aquática são mais indicados 

para estudos de monitoramento biológico e avaliação de efeitos de alterações ambientais do que o uso 

de anuros com reprodução terrestre ou que o uso de ambos. Por fim, nós avaliamos a concordância nos 

padrões de distribuição de 22 grupos taxonômicos (15 de plantas e 7 de animais) amostrados da 

Reserva Ducke. Avaliamos também se é possível reduzir a resolução taxonômica de espécies para 

gêneros e a resolução numérica, de abundância para dados de presença e ausência sem a perda de 

informações importantes. Observamos que o uso de dados de presença e ausência e que identificações 

em nível de gênero são suficientes para analisar o padrão de distribuição dos grupos analisados. Houve 

grande concordância no padrão de distribuição das espécies de plantas, enquanto os grupos de animais 

foram pouco concordantes. Os fatores ambientais foram os mais relacionados à alta concordância entre 

os grupos, mostrando que o ambiente é o principal responsável pela distribuição das plantas na 

Reserva Ducke. Embora alguns grupos tenham apresentado forte padrão espacial não houve relação 

entre a concordância entre os grupos e os fatores espaciais. Os grupos mais concordantes, e possíveis 

candidatos a grupos substitutos, foram lianas da família Bignoniaceae, ervas, samambaias e árvores 

das famílias Lecythidaceae e Fabaceae. 
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Spatial and environmental relationships of biodiversity in tropical forests 

 

Abstract: 

 

 
This study aimed to evaluate issues related to spatial ecology and how spatial analysis can help 

ecologists to understand patterns of species distribution. Initially, we reviewed the current literature on 

spatial ecology and illustrated basic concepts with simulated data represented various situations that 

ecologists frequently face. In a second step we evaluated the importance of clearly defining the spatial 

variables to be included in ecological models, assessing the differences between analyses using a 

matrix that defines dispersal routes through stream distance and routes of dispersal in a straight line 

overland. One of most frequently used techniques spatial ecology, spatial eigenvector functions, is 

generally considered to be so flexible in generating spatial patterns that it should generate the same 

patterns no matter what distance matrix is used. Using data from fish, aquatic insects (Trichoptera) and 

simulated data, we show that the technique of eigenvectors is not as flexible as expected. Therefore, 

the correct definition of the matrix of distances is important for an effective analysis. In the next step, 

we evaluated two approaches to analyze ecological data. One of them uses raw data and the other 

using distance matrices. A recent discussion on the use of these two approaches has been polemical 

and we try to clarify what types of questions each of these approaches is better able to analyze. To do 

this we used data on the distribution of Trichoptera in 92 streams of central Amazonia, sampled in 

three distinct regions (Ducke Reserve, at PDBFF areas, and at the municipality of Presidente 

Figueiredo). We also evaluated the effect of spatial extent and environmental heterogeneity to on the 

distribution of Trichoptera species. We found that environmental factors were more related to the 

distribution of Trichoptera than undefined factors that caused spatial clumping at all scales examined. 

We analyzed the distribution of anuran species at 72 sample plots in Ducke Reserve and observed that 

the species distribution pattern is much related to the type of reproduction of the species. The 

distribution of species with aquatic reproduction is better explained by environmental patterns, while 

species with terrestrial reproduction are better explained by spatial patterns. We conclude that anurans 

with aquatic reproduction are better indicated for biomonitoring and for studies evaluating the 

consequences of environmental disturbances than the use of species with terrestrial reproduction or 

than the use of both. Finally, we evaluated the congruence in the distribution patterns of 22 taxa (15 

plants and 7 animal groups) sampled at Ducke reserve. We also evaluated if it is possible to reduce the 

taxonomic resolution of species to genera and the numeric resolution from abundance data to 

presence-absence data with little loss of information. Presence-absence data and genus-level 

identification was sufficient to capture most of the spatial patterns of most groups. There was strong 

congruence in the distribution pattern of plant groups, while animal groups were less concordant. 

Measured environmental factors were closely related to the high congruence among the groups, 

indicating that environment is primarily responsible for the distribution of plants in the Ducke 

Reserve. Although some groups showed strong spatial patterns, there was no relationship between the 

congruence among groups and spatial factors. The groups that were more concordant with other 

groups, and possible candidates as surrogates, were the lianas of the family Bignoniaceae, herbs, ferns, 

and trees of the families Fabaceae and Lecythidaceae. 
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Introdução geral 
 

Geralmente, espécies diferentes requerem condições ambientais diferentes para persistir. Estas 

diferenças podem ter surgido em escalas evolucionárias em que os indivíduos de cada espécie se 

especializaram em explorar otimamente certas condições de habitats e recursos. O estudo da 

distribuição de espécies e as relações espécie-ambiente é um tema central da ecologia. Estes estudos 

formam a base para a conservação e planos de manejo de espécies ameaçadas, para prever impactos 

das mudanças globais e impactos do uso da terra, bem como de outros estudos de impacto ambiental. 

O estudo dos efeitos ambientais na distribuição de espécies, geralmente chamados de efeitos 

do nicho, surgiram há bastante tempo e formam os pilares da ecologia. Diversos conceitos de nicho já 

foram propostos (e.g. Krebs, 2008) e em geral os ecólogos tentam explicar a distribuição das espécies 

com base nas variáveis ambientais medidas em cada local. Desta forma, dados de comunidades são 

relacionados aos dados ambientais utilizando diversos tipos de análises, onde, em geral, tenta-se 

avaliar quanto da distribuição das espécies é explicado pelas variáveis ambientais. Quando um 

conjunto de dados de algum grupo biológico é explicado por um conjunto de dados ambientais 

presume-se que àquele grupo biológico é controlado por fatores referentes ao nicho das espécies. 

Na tentativa de explicar a distribuição das espécies de outra forma, pensando mais nos fatores 

espaciais, Hubbell (2001) unificou duas grandes teorias da ecologia, a teoria neutra e a teoria de 

biogeografia de ilhas. Na teoria de Hubbell (2001), todos os indivíduos de todas as espécies são 

equivalentes ecologicamente, mas limitações na capacidade de dispersão, iguais para todas as espécies, 

geram os padrão de distribuição de espécies que observamos na natureza. Neste modelo, as 

distribuições e abundâncias podem variar entre espécies, mas estas diferenças são somente devido à 

fatores aleatórios e pouco afetadas por fatores ambientais (limitações do nicho). A partir dessa teoria, 

muitos pesquisadores passaram a avaliar se as comunidades estudadas eram mais afetadas por fatores 

ecológicos relacionados aos nichos das espécies, ou se o padrão se deve mais aos fatores neutros, 

relacionados à dispersão limitada das espécies (e.g. Gilbert e Lechowicz, 2004; Adler et al., 2007; 

Smith e Lundholm, 2010; Diniz-Filho et al., 2011). 

Um dos principais objetivos da ecologia é entender a distribuição das espécies, identificando 

as escalas em que os processos ecológicos que controlam a distribuição. Os problemas associados à 

presença de autocorrelação espacial em conjuntos de dados foram apontados há muito tempo (Cliff e 

Ord, 1973; Sokal e Oden, 1978a,b). A autocorrelação espacial descreve a tendência de variáveis 

assumirem valores, em pares de locais a certa distância, mais similares (autocorrelação positiva) ou 

menos similares (autocorrelação negativa) do que esperado ao acaso (Legendre, 1993; Legendre e 

Legendre, 1998). Diversas discussões sobre a possibilidade de possíveis erros na interpretação de 

dados e conclusões erroneamente tiradas de análises que não consideram a autocorrelação espacial 
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surgiram na literatura ecológica (Legendre, 1993; Lennon, 2000; Diniz-Filho et al., 2003; Hawkins et 

al., 2007; Dormann et al., 2007).  

Porém, até pouco tempo grande parte das pesquisas ecológicas não levava em consideração os 

componentes espaciais, considerando apenas o efeito de fatores ambientais. Uma nova oportunidade e 

direção surgiram na ecologia com o início das discussões sobre os efeitos da autocorrelação quando 

Legendre (1993) trouxe o assunto novamente à tona em um dos artigos mais citados da literatura 

ecológica recente (1219 citações no ISI em 28 de Julho 2011). A grande contribuição desse artigo foi 

mostrar que a autocorrelação não deveria ser vista como um problema e sim como uma oportunidade 

de desenvolvimento de novas perguntas ecológicas. Uma nova forma de se estudar ecologia. A partir 

dali, diversos métodos têm sido propostos para incluir o espaço como um preditor na ecologia, 

levando em consideração os efeitos da autocorrelação espacial (Dormann et al., 2007). 

A autocorrelação em variáveis biológicas resulta de causas (físicas ou biológicas) que agem 

simultaneamente e aditivamente (Legendre e Legendre, 1998). Dois tipos de causas de autocorrelação 

espacial podem ser observados, dependendo de se os processos que geram a estrutura espacial na 

distribuição de espécies são endógenos ou exógenos (Kissling e Carl, 2008). Os processos endógenos 

são propriedades inerentes à própria variável, no qual o valor da variável resposta em um local 

depende dos valores de locais próximos. Os processos bióticos relacionados à distância, como a 

dispersão e reprodução são processos endógenos (Legendre et al., 2002 nomearam apenas os 

processos endógenos como "autocorrelação espacial"). Já os processos exógenos geram autocorrelação 

espacial por causas independentes das variáveis de interesse, na qual a variável resposta é estruturada 

espacialmente em função de variáveis explanatórias que são estruturadas espacialmente, como o vento 

e condições climáticas (Legendre et al. 2002 trataram os processos exógenos como processos com 

dependência espacial). A terminologia da literatura espacial é controversa, e comumente autores 

apresentam glossários de termos para evitar confusão (e.g. Peres-Neto e Legendre, 2010). 

O problema da autocorrelação espacial não se limita a distâncias lineares. As ligações entre 

pontos de amostragem podem ser complexas, como ao longo do sistema de drenagem em bacias 

hidrográficas (Ganio et al., 2005; Peterson et al., 2007), onde a distância pelo curso d´água pode 

descrever melhor as relações espaciais do que a distância em linha reta. Diferentes grupos 

taxonômicos podem se comportar de diferentes formas em relação a distâncias aquáticas. Para peixes, 

a distância pelo curso d’água pode ser mais importante, pois eles precisam percorrer esta distância 

para dispersar de um ponto a outro. Para lagartos, cobras, plantas e insetos aquáticos, a distância linear 

pode ser mais importante, já que estes organismos não necessariamente migram percorrendo a 

distância pelo curso d’água. Há também casos em que os organismos são dispersos pela água (e.g. 

anfíbios, peixes, insetos) ou possuem dispersores associados à água (e.g. algumas plantas). Nestes 

casos, ambas as distâncias, linear e pela água, podem ser relacionadas com as distribuições destas 

espécies.  
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É importante ter em mente que nenhum ecólogo deixa de reconhecer o nicho como um fator 

importante na estruturação de comunidades (e.g. Rosindell et al., 2011). Os defensores dos modelos 

espaciais e da teoria neutra apenas querem buscar uma forma de facilitar o entendimento de outros 

processos que controlam a distribuição de espécies, bem como geram modelos preditivos da 

distribuição de espécies. Em alguns casos, os modelos que contemplam a autocorrelação espacial 

podem possuir maior poder preditivo que os modelos não-espaciais (Currie, 2007). Os modelos não-

espaciais da dinâmica de comunidades dão apenas uma visão simplificada do mundo real e podem 

ajudar a entender grandes problemas de interações entre espécies. Porém, para muitas espécies em 

muitas comunidades a localização dos indivíduos no espaço importa e, portanto, é desejável entender 

as consequências disso na dinâmica de comunidades (Law e Amarasekare, 2005).  

Modelos espaciais partem de modelos simples, não espaciais. Uma linha de pensamento sobre 

a dinâmica de comunidades preconiza a existência de manchas com condições favoráveis a certas 

espécies inseridas em uma matriz de ambientes não adequados, onde a dispersão é frequente entre 

manchas. Os modelos de dinâmica de manchas são similares, mas a dispersão entre manchas é tida 

como sendo rara e a dinâmica dentro das manchas é mais importante. Outra linha preconiza que todos 

ambientes são adequados, contudo, algumas manchas são mais favoráveis a algumas espécies, que 

dominam essas manchas. Contrário a estes, a teoria neutra de Hubbell (2001) é baseada na 

equivalência ecológica entre todas as espécies, e a variação na abundância deve-se a fatores 

estocásticos como deriva genética e dispersão aleatória (Holyoak et al., 2005). Teorias a parte, a ideia 

central é entender como os fatores que controlam a dinâmica de comunidades muda com a mudança de 

uma escala mais restrita (indivíduos e comunidades locais) para escalas mais amplas 

(metacomunidades) e aplicar este conhecimento em ações práticas como delimitar reservas e criar 

planos de manejo adequados a cada caso. 

Atualmente existe uma grande quantidade de modelos e análises para lidar com o problema da 

autocorrelação espacial (Dormann et al., 2007). Conforme discutido por alguns autores (Guisan e 

Thuiller, 2005; Dormann et al., 2007), não existe um modelo exatamente certo para todos os casos. 

Com isso, é necessário avaliar qual modelo melhor satisfaz os objetivos propostos. Dormann et al. 

(2007) sugerem o uso de diferentes métodos, pois não existem informações mecanísticas suficientes 

que suportem a escolha a priori de algum método, embora a escolha sempre esteja ligada às questões e 

escalas de interesse (Diniz-Filho et al., 2007). 

Duas correntes principais surgiram na análise de dados de comunidades que tentam fazer 

inferências sobre a distribuição de espécies em relação aos fatores neutros e aos fatores relacionados 

ao nicho das espécies. Uma dessas correntes analisa os dados em forma de matrizes de distância 

(Tuomisto e Ruokolainen, 2006) que definem a dissimilaridade ou a distância entre pares de locais 

amostrados. As dissimilaridades podem ser calculadas em relação à composição de espécies (mede 

quão diferentes dois locais são em relação às espécies presentes), ou em relação aos fatores ambientais 

que caracterizam cada local amostrado (mede a diferença ambiental entre dois locais). Nestes casos a 
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distância ou dissimilaridade na composição de espécies é analisada em relação à distância ambiental 

(representando o nicho) e/ou em relação à matriz de distâncias geográficas (representando o espaço, ou 

a dispersão limitada). As análises mais comuns da abordagem utilizando matrizes de distância são o 

Mantel e o Mantel parcial (Mantel, 1967) e a regressão de matrizes (Tuomisto e Ruokolainen, 2006).  

A outra abordagem visa a utilização dos dados brutos, ao invés de utilizar as matrizes de 

distância calculadas a partir dos dados brutos (Legendre et al., 2005). Nessa abordagem, a tabela de 

dados das espécies é analisada em relação à tabela de dados ambientais e em relação à tabela de dados 

geográficos (espaciais). A forma de gerar os dados espaciais é bastante variável, mas em geral usa-se 

os dados de latitude, longitude e seus polinômios (Legendre e Fortin, 1989; Borcard et al., 1992; 

Legendre e Legendre, 1998) ou autovetores que são gerados a partir da matriz de distâncias 

geográficas (Borcard e Legendre, 2002; Dray et al., 2006; Griffith e Peres-Neto, 2006; Blanchet et al., 

2008b). Os autovetores são considerados melhores, pois, além de serem ortogonais, os autovetores 

podem representar uma gama maior de padrões espaciais que os padrões representados pelos 

polinômios. 

Muita confusão existe entre essas duas abordagens, principalmente em relação à quais 

questões elas podem ser usadas para responder (Legendre et al., 2005, 2008; Tuomisto e Ruokolainen, 

2006, 2008; Laliberté, 2008; Pélissier et al., 2008). De fato, o debate sobre qual dessas análises deve 

ser utilizada ainda não terminou. Muito debate também tem sido criado em torno da partição de 

variâncias em estudos de ecologia (Smith e Lundholm, 2010; Gilbert e Bennett, 2010; Landeiro e 

Magnusson, 2011). Embora não haja um consenso sobre quais técnicas utilizar, a partição de 

variâncias tanto para a abordagem de dados brutos quanto para matrizes de distâncias continua a ser 

bastante utilizada. 

Em geral, discute-se cerca de três hipóteses gerais sobre as forças que controlam a distribuição 

de espécies em florestas tropicais. A primeira diz que a diversidade alfa é alta, mas a diversidade beta 

é baixa, o que faz com que a distribuição de espécies seja uniforme ao longo de grandes áreas. A 

segunda entra no escopo da teoria neutra de Hubbell (2001), na qual as espécies seriam distribuídas 

aleatoriamente, porém espacialmente autocorrelacionadas devido à dispersão limitada das espécies. A 

terceira e mais difundida é a que sugere o controle ambiental na distribuição de espécies, segundo a 

qual existiriam manchas com condições ambientais homogêneas e adequadas a certas espécies 

(Vormisto et al., 2000; Tuomisto et al., 2003; Hopkins, 2007; Schulman et al., 2007). 

A hipótese de uniformidade é a que possui menos suporte empírico até o momento, enquanto 

as hipóteses de controle ambiental e de controle neutro são frequentemente apontadas como 

responsáveis por partes relativamente iguais de explicação, mas dependendo dos autores uma pode ser 

levemente maior que a outra (Condit et al., 2002; Tuomisto et al., 2003). Por exemplo, Tuomisto et al. 

(2003) observaram que em florestas de terra firme as diferenças florísticas são mais bem explicadas 

por fatores ambientais (diferenças de nicho), principalmente as características edáficas. No entanto, 

estas abordagens só perguntam o quanto das diferenças podem ser explicadas e ignoram o quanto das 
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distribuições originais não é relacionado com os fatores ambientais. Isto é, só compartilham a 

variância e não podem explicar a grande similaridade entre todas as áreas em vários parâmetros da 

comunidade. Apesar de ser óbvio que fatores ambientais afetam a distribuição de espécies, eles não 

são suficientes para explicar o grande número de espécies sintópicas na floresta tropical (Rosindell et 

al., 2011). 

Em geral, a estrutura uniforme das florestas tropicais e a grande diversidade dificultam a 

capacidade visual em distinguir "tipos de comunidades" (Vormisto et al., 2000). A Amazônia é 

caracterizada por uma condição climática e topográfica que possui características relativamente 

distintas de outros locais onde se estudam os efeitos da autocorrelação espacial em modelos de 

distribuição de espécies. A Amazônia possui pouca variação topográfica e climática, mesmo em 

grandes escalas, o que talvez faça com que fatores em pequena escala sejam mais importantes 

(características do solo, substrato). 

 

Conteúdo do Capítulo 1 

 

No primeiro capítulo fizemos uma revisão dos principais artigos científicos que tratam do 

assunto “autocorrelação espacial”. Discutimos quais os principais problemas relacionados a dados 

autocorrelacionados e possíveis formas para resolver esses problemas e ainda utilizamos alguns dos 

métodos mais utilizados em ecologia espacial para exemplificar alguns conceitos. Para exemplificar os 

diversos casos possíveis nós usamos rotinas de simulação de dados para criar dados com distribuições 

e padrões conhecidos de antemão, que posteriormente foram analisados usando diferentes métodos de 

análise. Os dois tipos de problemas comumente associados à presença de autocorrelação espacial são 

relacionados à probabilidade de erro tipo 1 e às estimativas dos coeficientes em modelos de regressão. 

Os problemas relacionados às probabilidades e testes de hipóteses são mais antigos e mais 

reconhecidos pela comunidade científica (Legendre, 1993; Dormann et al., 2007). Já os problemas 

relacionados às estimativas de coeficientes de regressão são mais recentes e tem gerado mais 

polemicas (Lennon, 2000; Diniz-Filho et al., 2003; Hawkins et al., 2007; Beale et al., 2007). 

Em geral, observamos que existem métodos que possuem grande precisão, porém baixa 

acurácia, assim como métodos com grande acurácia e baixa precisão. Nenhum método sozinho foi 

considerado melhor que os outros, mas, dependendo dos objetivos, alguns desses métodos podem ser 

mais indicados (Landeiro e Magnusson, 2011). Embora ainda não seja possível tomar uma decisão 

fácil e objetiva, é importante saber que algo precisa ser feito em relação à autocorrelação espacial 

(Dormann et al., 2007), principalmente em estudos que testam hipóteses e avaliam níveis de 

significância. 
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Conteúdo do Capítulo 2 

 

No segundo capítulo nós avaliamos duas questões relativamente recentes na ecologia. Uma 

mais metodológica e uma mais biológica. A questão metodológica consistiu em analisar uma 

característica comumente atribuída às análises baseadas em autovetores espaciais, sua grande 

flexibilidade em gerar padrões espaciais (Borcard e Legendre, 2002; Dray et al., 2006; Griffith e 

Peres-Neto, 2006). Os autovetores espaciais são variáveis espaciais criadas a partir de uma matriz de 

distâncias geográficas que representam padrões espaciais em diversas escalas, desde as escalas locais 

até as escalas mais amplas, global/regional. A questão biológica constituiu na avaliação de rotas de 

dispersão de organismos aquáticos (seguindo o curso d´água, ou em linha reta por terra). Para isso 

utilizamos dados de peixes, que se dispersam principalmente pelo curso d´água, e dados de insetos 

aquáticos da ordem Trichoptera, que dispersam a longas distâncias principalmente através do voo dos 

adultos. Para avaliar o efeito das rotas de dispersão nós utilizamos duas matrizes de distância entre os 

pontos amostrados, uma quantificando a distância pelo curso d´água de um ponto ao outro e a outra 

quantificando a distância em linha reta (distância pela terra ou Euclideana). 

O objetivo foi analisar qual dessas duas distâncias melhor descreve a variação na composição 

de espécies, esperando que os tricópteros fossem mais bem explicados pelas distâncias em linha reta 

enquanto os peixes pela distância pelo curso d´água. Em relação à questão metodológica, nós 

esperávamos que, devido à grande flexibilidade atribuída aos autovetores espaciais, a distância 

utilizada não faria diferença na hora de analisar os dados. Ou seja, os autovetores criados a partir da 

distância Euclideana gerariam padrões similares aos criados usando a distância pelo curso d´água, 

fornecendo resultados similares. Testamos isso usando os dados de peixes, de tricópteros e dados 

simulados (geramos dados de comunidades artificiais que se dispersam essencialmente pelo curso 

d´água). 

Em geral, observamos que as variáveis espaciais criadas com cada tipo de distância 

representavam padrões espaciais diferentes. Desta forma, a distância pelo curso d´água é muito mais 

adequada para ser utilizada com grupos que dispersam principalmente pelo curso d´água, como 

observamos para os dados de peixes e para os dados simulados. Ao contrário, a distância Euclideana é 

mais adequada para os casos em que se espera que a principal rota de dispersão seja feita em todas as 

direções. Outras formas de gerar matrizes de distâncias representando rotas de dispersão também 

podem ser geradas (e.g. Blanchet et al., 2008b), e provavelmente farão diferença ao serem utilizadas 

para gerar variáveis espaciais. 
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Conteúdo do Capítulo 3 

 

No terceiro capítulo  nós usamos dados de uma ordem de insetos aquáticos bastante diversa na 

Amazônia central. A ordem Trichoptera está entre as mais bem conhecidas ordens de insetos aquáticos 

da Amazônia (Pes et al., 2005; Pes, 2005) e suas espécies são bastante utilizadas como indicadoras da 

qualidade de água (Stuijfzand et al., 1999; Couceiro et al., 2006; Couceiro et al., 2007). Como visto 

no segundo capítulo, os tricópteros são capazes de migrar em todas as direções, portanto a distância 

Euclideana é um bom descritor espacial desse grupo. Nós avaliamos neste capítulo os fatores 

ambientais e espaciais que controlam a distribuição de tricópteros em 92 riachos distribuídos em três 

regiões da Amazônia central. Os dados utilizados foram retirados da tese de Doutorado de Ana Maria 

Oliveira Pes (Pes, 2005), que permitiu o uso destes dados para a produção do terceiro capítulo. A 

maioria dos riachos foi amostrada na reserva Ducke (39 riachos), em uma extensão espacial de 

aproximadamente 10 km. Nas áreas do PDBFF (Projeto Dinâmica Biológica de Fragmentos 

Florestais) foram amostrados 21 riachos em uma extensão de aproximadamente 60 km. A outra região 

amostrada foi a de Presidente Figueiredo, onde 32 riachos foram amostrados em uma extensão de 

aproximadamente 110 km. 

Dada as diferentes extensões espaciais amostradas nós esperávamos que a área com maior 

extensão, Presidente Figueiredo, apresentasse a maior heterogeneidade ambiental, bem como a maior 

diversidade beta. Portanto, esperávamos que em Presidente Figueiredo as variáveis ambientas e a 

diferenciação ambiental explicassem bem as diferenças na composição de espécies e a diversidade 

beta na região, respectivamente. Além disso, esperávamos que, devido á maior extensão espacial, as 

variáveis espaciais, bem como a distância geográfica, fossem bons preditores da comunidade e da 

diversidade beta, respectivamente. 

Neste capítulo nós também discutimos as diferenças no uso das análises com abordagem em 

dados brutos e as análises com abordagem em matrizes de distância (Legendre et al., 2005; Tuomisto e 

Ruokolainen, 2006; Legendre et al., 2008; Tuomisto e Ruokolainen, 2008). Em geral, observamos que 

o ambiente foi o melhor preditor da composição de espécies de tricópteros analisando os dados de 

cada região separadamente, bem como analisando os dados de todas as regiões em apenas uma análise. 

Não observamos nenhum padrão espacial ao analisarmos cada área separadamente, indicando que o 

ambiente é o mais importante nas três escalas espaciais analisadas, confirmando a qualidade do 

tricópteros como bons indicadores ambientais. Quando analisamos os dados de todas as regiões em 

conjunto nós observamos um forte efeito espacial, porém esse efeito praticamente desaparece ao 

removermos os efeitos ambientais, indicando a grande diferença ambiental e na composição de 

espécies entre as áreas. As análises feitas com as abordagens em dados brutos e em matrizes de 

distância forneceram respostas bastante similares, embora seja extremamente importante notar que 

elas avaliam e respondem questões diferentes (Legendre et al., 2008; Tuomisto e Ruokolainen, 2008). 
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Conteúdo do Capítulo 4 

 

No quarto capítulo nós avaliamos o padrão de distribuição de espécies de anuros em 72 

parcelas amostrais da Reseva Ducke. Neste estudo foram realizadas oito amostragens, cinco no 

período noturno e três no período diurno. Foram encontradas 29 espécies, das quais 20 possuem 

reprodução aquática e 9 possuem reprodução terrestre. Sete espécies com reprodução aquática foram 

encontradas apenas esporadicamente e por isso foram retiradas das análises. Mais detalhes sobre a 

coleta podem ser encontrados em Menin et al., (2007). Nós avaliamos o padrão de distribuição das 

espécies em relação aos principais fatores ambientais conhecidos por afetar a distribuição de anuros e 

em relação às variáveis espaciais que descrevem padrões espaciais em diferentes escalas. Os dados das 

assembleias de anuros foram divididos em três, um contendo todas as espécies, um contendo apenas as 

espécies com reprodução aquática e um contendo apenas as espécies com reprodução terrestre. 

Devido ao fato de que os anuros são compostos por espécies muito sensíveis ao ambiente, 

nossa hipótese foi de que o controle ambiental é mais forte do que o controle espacial. Em relação ao 

tipo de reprodução, nossa hipótese foi de que os dois grupos diferem quanto às principais forças 

ambientais e espaciais que controlam a distribuição de suas espécies. Nossa predição foi de que as 

espécies com reprodução terrestre são mais afetadas por fatores espaciais, pois sua distribuição é mais 

restrita por limitações de dispersão do que por dependência em disponibilidade de água. Por outro 

lado, nossa predição foi que os anuros com reprodução aquática são mais controladas por fatores 

relacionados ao nicho das espécies, principalmente àqueles relacionados com a disponibilidade de 

água. Caso estas previsões estejam corretas, as espécies com reprodução aquática podem ser mais 

adequadas para usos em estudos de monitoramento biológico e avaliação dos efeitos de alterações 

ambientais do que as espécies com reprodução terrestre, ou do que o uso dos dois tipos em conjunto. 

Observamos que nossos modelos explicaram cerca de 35% da variação na distribuição das 

assembleias de anuros. Quando analisamos todas as espécies, independente do tipo de reprodução, o 

padrão espacial foi mais representativo do que o padrão ambiental. Contudo, observamos que o tipo de 

padrão observado depende do tipo de reprodução das espécies. As espécies com reprodução aquática 

possuem um padrão ambiental forte (i.e. controladas por fatores relacionados ao nicho das espécies). 

Por outro lado, as espécies com reprodução terrestre possuem um padrão espacial ainda mais forte, 

indicando que a distribuição dessas espécies é controlada por fatores relacionados à dispersão limitada 

ou que os fatores ambientais que realmente são importantes para as espécies com reprodução terrestre 

não foram medidos neste estudo. Estes resultados podem ser bastante úteis durante o planejamento de 

estratégias de conservação e de estudos de monitoramento biológico e avaliação dos efeitos causados 

por alterações ambientais, pois as espécies com reprodução aquática podem responder muito mais às 

alterações ambientais do que as espécies com reprodução terrestre. 
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Conteúdo do Capítulo 5 

 

Nesse capítulo nós analisamos dados de 22 grupos biológicos amostrados na reserva Ducke. 

Destes 22 grupos, 15 são de plantas e 7 de animais. A ideia geral do capítulo foi de medir a 

congruência no padrão de distribuição dos diversos grupos, avaliando se é possível usar apenas um 

grupo, ou apenas alguns grupos, em estudos de biomonitoramento (uso de grupos substitutos). Nós 

também avaliamos se resoluções numéricas (abundância ou presença e ausência) e taxonômicas (nível 

de identificação) mais finas são necessárias. Ou seja, avaliamos se é necessário coletar dados de 

abundância ou se dados de presença e ausência, e se é necessário identificar em nível de espécie ou se 

a identificação em nível de gênero é suficiente para encontrar o mesmo padrão de distribuição ao 

analisar os dados. Os dados utilizados são de amostragens realizadas em um máximo de 72 parcelas e 

um mínimo de 30, onde as parcelas amostradas são sempre as mesmas.  

Nós também utilizamos dados ambientais e espaciais para avaliar se a congruência observada 

entre os diversos grupos é mais bem explicada pelo ambiente ou por variáveis espaciais. Os dados 

biológicos são referentes à abundância relativa dos organismos em cada parcela. Os detalhes amostrais 

e os conjuntos de dados (biológicos, ambientais e geográficos) estão disponíveis na página de dados e 

metadados do PPBio (http://ppbio.inpa.gov.br). 

Em geral, as variáveis ambientais foram bons preditores das comunidades de plantas 

analisadas, explicando em torno de 20 a 30 %. Em alguns casos, o padrão espacial foi mais forte que o 

ambiental, como para os sapos noturnos, ervas e para os arbustos do gênero Psychotria (Rubiaceae). 

As comunidades de animais, exceto sapos, não foram bem explicadas nem pelo ambiente nem pelas 

variáveis espaciais. As comunidades de sapos diurnos foram bem explicadas pelas variáveis 

ambientais, enquanto os sapos noturnos foram mais bem explicados pelas variáveis espaciais. 

Nós observamos que os grupos de plantas são os grupos onde existe maior concordância no 

padrão de distribuição. Em geral, os grupos mais concordantes foram aqueles que apresentaram 

padrões espaciais e/ou ambientais fortes, indicando que a distribuição desses grupos está associada aos 

mesmos fatores ambientais e/ou espaciais. A congruência entre os grupos de animais foi sempre baixa, 

exceto para sapos, indicando que estes grupos possuem uma distribuição similar a uma distribuição 

aleatória na escala espacial da reserva Ducke. Observamos também que a resolução numérica e a 

resolução taxonômica podem ser reduzidas sem grandes problemas para dados de presença e ausência 

e identificações em nível de gênero. Em especial, as lianas (da família Bignoniaceae), palmeiras, 

árvores da família Lecythidaceae e Fabaceae e as samambaias e ervas foram os grupos mais 

congruentes. Lianas foi o grupo com maior concordância, sendo um ótimo candidato a grupo 

substituto. Embora as lianas sejam difíceis de identificar e de contar no campo, a possibilidade de 

trabalhar com dados de presença e ausência e identificações em nível de gênero diminui a dificuldade 

de se trabalhar com lianas. Entretanto, palmeiras, ervas e samambaias são grupos relativamente mais 

fáceis de se trabalhar e que também possuem um alto nível de congruência com os outros grupos. 
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Objetivos 
 

Os principais objetivos deste trabalho foram os seguintes:  

i) Criar um texto de revisão sobre autocorrelação espacial com diversos exemplos 

ilustrando os principais conceitos relacionados e as principais formas de análise disponíveis (Capítulo 

1);  

ii) Discutir o uso de análises espaciais e a definição correta da matriz de distâncias que 

irá compor a análise, usando exemplos de organismos aquáticos onde a matriz de distâncias pode ser 

definida através do curso d´água ou através da distância em linha reta, pela terra (Capítulo 2);  

iii) Discutir as possíveis diferenças entre análises baseadas em dados brutos e em matrizes 

de distância bem como o efeito da escala espacial e a heterogeneidade ambiental das áreas amostradas 

(Capítulo 3);  

iv) Avaliar o padrão de distribuição de espécies de anuros em relação a fatores ambientais 

e a fatores espaciais. Avaliar se os padrões ambientais e espaciais observados nas assembleias de 

anuros dependem do tipo de reprodução das espécies (Capítulo 4). 

v) Avaliar se existe concordância no padrão de distribuição de espécies de diversos 

grupos taxonômicos indicando um possível grupo substituto para ser utilizado em estudos de 

monitoramento biológico. Avaliar se a concordância observada é causada por fatores ambientais 

(nichos) ou fatores não definidos (espaciais), que podem ser neutros ou de nicho. Avaliar se é possível 

reduzir a resolução taxonômica (de espécie para gênero) e resolução numérica (de abundância para 

presença e ausência) sem perder informações importantes sobre o padrão de distribuição das espécies 

(Capítulo 5). 

 



 

 

 

 

 

 

 

Capítulo 1 
 

Landeiro, V. L. & W. E. Magnusson, 2011. The geometry of spatial analyses: 

implications for conservation biologists, Natureza & Conservação 9: 7-20. 
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ABSTRACT 21 

 22 

Most conservation biology is about the management of space and therefore requires spatial 23 

analyses. However, recent debates in the literature have focused on a limited range of issues related to 24 

spatial analyses that are not always of primary interest to conservation biologists, especially 25 

autocorrelation and spatial confounding. Explanations of how these analyses work, and what they do, 26 

are permeated with mathematical formulas and statistical concepts that are outside the experience of 27 

most working conservationists. Here, we describe the concepts behind these analyses using simple 28 

simulations to exemplify their main goals, functions and assumptions, and graphically illustrate how 29 

processes combine to generate common spatial patterns. Understanding these concepts will allow 30 

conservation biologists to make better decisions about the analyses most appropriate for their 31 

problems. 32 

  33 
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INTRODUCTION 34 

 35 

Spatial ecology has increasingly attracted the attention of ecologists and conservationists, and 36 

spatial analyses are frequently used in biodiversity conservation planning (Diniz-Filho and Telles 37 

2002; Nams et al. 2006; Moilanen et al. 2008). For example, approximately 25% of the articles citing 38 

SAM software, a specialized spatial analysis software (Rangel et al. 2006), were concerned with 39 

biodiversity conservation (Rangel et al. 2010). Beale et al. (2010) listed 4 questions of interest to 40 

conservation biologists that potentially involve spatial analyses: (1) How does the spatial scale of 41 

human activity impact biodiversity or biological interactions? (2) How does the spatial structure of 42 

species’ distribution patterns affect ecosystem services? (3) Can spatially explicit conservation plans 43 

be developed? (4) Are biodiversity patterns driven by climate? The third question is probably of most 44 

immediate concern to conservation biologists, and has spurred the development of complex algorithms 45 

to help land-use decision-making processes, such as Marxan with Zones (Watts et al. 2009). The 46 

mathematics associated with this type of question are usually normative (Colyvan et al. 2009), and 47 

designed to optimize the chances of obtaining a consensus decision. 48 

Spatial ecology has opened many promising avenues of research for conservation. It has been 49 

used to extrapolate and predict species occurrence (Austin 2002; Betts et al. 2006; De Marco et al. 50 

2008), and may be used to predict the effects of global warming on biodiversity. However, one of the 51 

main strengths of spatial analysis in conservation is its capacity to describe the patterns of diversity at 52 

different spatial scales. Knowing what factors generate beta diversity, and at what spatial scales they 53 

act, can be of great importance to conservation planning (Legendre et al. 2005; Tuomisto and 54 

Ruokolainen 2006). Spatial analysis can be also used to identify patterns of genetic variability at 55 

different spatial scales and define operational units for conservation planning (Diniz-Filho and Telles 56 

2002). 57 

The rapid development and sophistication of spatial methods and their applications have 58 

enabled researchers to make predictions of species distributions and plan conservation efforts. For 59 

example, Bini et al., (2006) used simulation procedures to predict anuran species that could be 60 

discovered in the Cerrado biome by 2050, and showed that the predicted distributions lead to different 61 

priorities for placement of reserves than those based on currently known distributions of species. Some 62 

researchers have suggested that spatial interpolation to predict species distributions may be more 63 

effective than models based on environmental variables (Bahn and McGill 2007). 64 

Arguably, all conservation related questions should be embedded in a landscape context 65 

(Metzger 2006). Chesson (2003) commented “Would it not be more useful to focus on how physical 66 

environmental variation is translated into patterns exhibited by organisms?” However, recent 67 

discussion of spatial analyses in the scientific literature has focused on descriptive models that produce 68 

the parameters that can be used as inputs to more applied models. Beale et al. (2010) asserted that 69 

“many ecologists … often believe that spatial analysis is best left to specialists. This is not necessarily 70 
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true and may reflect a lack of baseline knowledge about the relative performance of the methods 71 

available.” We suggest that, rather than being a problem of not understanding the relative performance 72 

of the methods, most conservationists focus on particular problems that can be approached with 73 

normative mathematics, and not on the problems in obtaining generally robust descriptive statistics 74 

that were derived from simulations using unrealistic ecological assumptions. 75 

Most recent comparative evaluations of spatial methods used computer simulations to evaluate 76 

the relative utility of different methods (Dormann et al. 2007; Beale et al. 2010). These simulations are 77 

often difficult for biologists to appreciate because they are couched in terms of distance space and 78 

matrix algebra. In this paper, we use simple geometric models to illustrate the concepts behind 79 

regression analysis of distance data, and discuss what the results imply in terms of ecological 80 

processes that may be of interest to conservationists. 81 

The leaders in spatial ecology usually explain ecology with the associated mathematics and 82 

statistics. However, ecologists and conservationists often find the explanations complex, due to the 83 

difference between space and most ecological variables. Ecological variables are generally treated as 84 

linearly additive by appropriate transformations or sampling procedures. That is, each variable 85 

represents a single dimension. However, space is usually measured in two or more dimensions in a 86 

coordinate system. The coordinates themselves do not necessarily represent the conceptual distance 87 

between two objects, which is usually the Euclidean distance. Some believe that space cannot be 88 

represented by linear additive combinations, and that joint analysis of spatial and ecological variables 89 

can only be undertaken by transforming the ecological variables to distances (Tuomisto and 90 

Ruokolainen 2006). Others claim that this procedure produces statistics that are difficult to interpret, 91 

and that space should be converted to linear additive components for inclusion in analyses (Legendre 92 

et al. 2005; Legendre et al. 2008). Although we are inclined towards the latter, we wish to avoid these 93 

difficult conceptual problems because most of the concepts in spatial analysis can be understood in 94 

terms of simple one-dimensional spatial models (e.g. distances along a transect), and it is easier for an 95 

ecologist to appreciate the conceptual problems if they are first presented in models in which space is 96 

described in only one dimension.  97 

 98 

Autocorrelation 99 

 100 

Autocorrelation, as the name implies, is the correlation of a variable with itself. This 101 

correlation could be in time or space. For example, values of a variable are temporally autocorrelated 102 

if the values of that variable at short time intervals are more or are less similar than expected for 103 

randomly associated pairs (Legendre and Legendre 1998). The same is true for spatial autocorrelation, 104 

in which values nearby are more similar than values from points separated by greater distances. There 105 

are several causes of spatial autocorrelation and this is the greatest source of confusion, because 106 

different definitions for spatial autocorrelation are used in relation to the process that generates it. For 107 
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example, according to Peres-Neto & Legendre (2010), autocorrelation results from “spatial structure 108 

due to the dynamics of the species (or their communities) themselves (e.g., via dispersal)”. Under this 109 

definition, spatial autocorrelation is not used for predictor variables but rather is used only for 110 

response variables that are autocorrelated by endogenous causes. The many definitions used in spatial 111 

ecology generate confusion, such that some authors have published their own glossary (Peres-Neto 112 

and Legendre 2010). The difference between the definition of Legendre & Legendre (1998), who 113 

defined autocorrelation in relation to pattern, and that of Peres Neto & Legendre (2010), who defined 114 

autocorrelation in terms of process, is important, and reflects on another important concept, 115 

“stationarity.”  116 

Stationarity is a requirement of many methods of analysis that specify that the mean, variance, 117 

and other statistical properties of the distribution be constant over the space or time. Fortin & Dale 118 

(2005) defined stationarity as “a process, or the model of a process, is stationary (or homogeneous) if 119 

its properties are independent of the absolute location and direction in space… the parameters of the 120 

process, such as the mean and variance, should be the same in all parts of the study area and in all 121 

directions ”. However, whether this refers to the underlying process or the resulting pattern is unclear. 122 

Consider an organism that colonizes a point in a previously empty space, and then reproduces. 123 

Assuming that the organism and its descendents have limited dispersal, after a few generations the 124 

density of the species can be represented by a single peak in the previously empty space (Fig. 1). The 125 

process that generated that peak was endogenous autocorrelation (we did not need information on 126 

anything but the density in neighboring sites in the previous generation to produce the peak), and the 127 

process was stationary (i.e. knowing the process, we only needed information on the densities in 128 

neighboring sites, independent on where we were in space). 129 

 130 

Figure 1. A peak of abundance representing the distribution of a species. Some factor 131 

associated with intrinsic biology of the species, such as reproduction or limited dispersion could create 132 

such pattern. 133 
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A problem arises when we only have the pattern and are unsure of the process. Imagine no 134 

endogenous autocorrelation, but that the peak in population density corresponds to a physical peak in 135 

the landscape, which might happen if the density of the organism were related to temperature or some 136 

other correlate of altitude. The pattern is identical, but the density of the organism is a function of 137 

temperature and not a function of the density in neighboring sites. In this case, a combination of 138 

endogenous autocorrelation and an external driving variable can generate exactly the same pattern. 139 

The literature can be confusing because the interpretation of autocorrelation and stationarity depends 140 

on the researcher’s assumptions about the underlying processes, and we generally only have 141 

information on the pattern. 142 

 143 

Stationarity in one or two dimensions  144 

 145 

Consider a response variable (Y) that varies with distance along a transect (T), as shown in 146 

Fig. 2A. An assumption of most spatial analyses is that the relationship between Y and space is 147 

stationary. That is, the variation of Y across T is the same independent of the observer’s position along 148 

the transect, and in any direction (i.e the relationship is independent of the position in T). That 149 

condition can be seen to hold for the data in Fig. 2A. Starting from any point, an increase in the 150 

distance along T of one unit, will increase the value of Y by a constant amount. This relationship 151 

applies independently of direction. Conversely, if we decrease T by one unit, we decrease the value of 152 

Y by the same constant amount. 153 

It is important to note that the only way for the observed relationship between Y and distance 154 

to be stationary is for the relationship between Y and T to be linear. Any nonlinear relationship will 155 

result in the effect of distance being dependent on spatial location (i.e. the value of T at which we start 156 

to measure the distance). This is illustrated in Fig. 2B, where the relationship between Y and T is 157 

nonlinear. If we start at point B and move 1 unit forward along the T axis to C, Y is reduced by 158 

~0.287. If we start at A and move four units forward along T, Y remains constant. In one dimension, 159 

the only way that the relationship between Y and distance can be stationary is for Y to have a linear 160 

relationship with distance. In two dimensions, the only way that the relationship between Y and 161 

distance can be stationary is if the value of Y can be represented in space by a flat plane with no 162 

curvature. Note that a small-scale stationary process, such as that described in Figure 1 can generate an 163 

apparently nonstationary pattern at a larger scale. 164 
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 165 

Figure 2. The difference between a stationary process and a stationary pattern. A) a stationary 166 

pattern, where the effect of distance along a transect is independent of location or direction. B) a non-167 

stationary pattern that could result from a stationary process acting over a limited time period. C) a 168 

pattern that could arise from a small-scale stationary process acting over a stationary pattern, such as 169 

reproduction with limited dispersal of the organisms illustrated in part A. D) magnification of A), a 170 

stationary process may create a non-stationary pattern. E) a stationary pattern similar to that in A), but 171 

the organisms are closer together. A small-scale stationary process, such as that illustrated in part C, 172 

does not produce a recognizably non-stationary pattern in this case, as seen in part F. 173 

 174 

If the relationship between the value of a variable and space is linear in one dimension (i.e. the 175 

pattern is unambiguously stationary), it does not matter whether we use a conventional analysis or an 176 

analysis based on distances. For instance, we could calculate the differences between the values of Y 177 

(δY) for each pair of points and regress this against the distances between the points. A Mantel test 178 

uses the absolute value of the distance, but as we are only considering one dimension, we could use a 179 

positive or negative sign to indicate direction. The value of the slope of the regression (the amount that 180 

the dependent variable increases for a 1 unit increase in the independent variable) is logically the same 181 

whether the dependent variable is Y and the independent variable T, or whether the dependent variable 182 

is δY and the independent variable δT. However, the values may only be the same if we use geometric 183 

mean regression for the second analysis, because we have artificially inflated the variance in T by 184 

using δT, and this biases the estimate of the slope downwards for least-squares regression (Zar 1996). 185 

The slope of the relationship is only representative of the “effect of distance” if the relationship with 186 
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the resultant variable is stationary. As with any simple regression, if the underlying relationship is not 187 

linear (i.e. the effect of space is a variable and not a constant), estimating a single slope parameter is 188 

meaningless. 189 

What this means for the construction of most conservation-related models is that  useful 190 

parameters are only obtained if that parameter is a constant, unless we are willing to move to 191 

likelihood methods or Bayesian statistics and try to generate a probability distribution for the values of 192 

the parameter. We will use simple one-dimensional models to illustrate the recent discussion in the 193 

literature, and evaluate the relevance of those discussions to ecologists undertaking conservation 194 

research.  195 

 196 

Stationarity of pattern and stationarity of process  197 

 198 

Note that a stationary process does not necessarily generate a stationary pattern (Fortin and 199 

Dale 2005). Let us imagine a secondary process that has a nonlinear relationship with space. For 200 

instance, each point on Fig. 2A could represent a value for a single individual. If that individual 201 

reproduces, and dispersal is limited, we may see a pattern like that on Fig. 2C, with similar values of Y 202 

(similar because of genetic similarity or maternal provisioning) at close by points in space. Although 203 

the process (reproduction with limited dispersal) is the same at each point (i.e. stationary), the 204 

resulting pattern is not stationary. This can be seen by amplifying the area around what were originally 205 

two individuals (Fig. 2D). Although individuals vary in Y, the mean value of Y does not increase 206 

between points A and B. However, the effect of the same difference in Y between B and C is much 207 

greater. This point is important. A stationary process at one scale does not necessarily generate a 208 

stationary pattern at larger scales, and many analyses assume a stationary pattern. 209 

We gave an example of a stationary process generating a nonstationary pattern in Fig 2A. 210 

Interpretation of a pattern generated by a nonlinear stationary process can be difficult, as can be seen 211 

from Hubbell’s (2005) neutral theory of biogeography. By using simulations analogous to those we 212 

used to generate Fig. 2C, but with many more potential species, Hubbell (2005) generated local 213 

communities that varied over a much larger metacommunity landscape. The overall analysis is very 214 

complicated, but the result of most relevance to spatial patterns is that this process led to similarity 215 

among local communities that decreased linearly with the log of distance. That is, the relationship of 216 

similarity (the complement of ecological distance) was nonlinear with distance, even though the 217 

process that generated that similarity was the same at each point. 218 

It would appear easy to deal with this situation. We could carry out a Mantel test of the 219 

relationship between similarity and log distance, but transforming a distance matrix has complex 220 

implications for interpretation. The rules we use in mathematics generally conform to Euclidean 221 

geometry, but the geometry of curved surfaces is much more complex, and manipulation of such 222 
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geometry is not a trivial task, even for geniuses, such as Einstein (Mlodinow 2001). If the “effect of 223 

distance” is not linear, the effect of a particular unit of distance (say the distance you walk from point 224 

1 to point 2) depends on the position of the observer relative to those two points. This is the theory of 225 

relativity, and not the sort of problem that most ecologists are thinking of when they ask “How much 226 

does distance matter?” 227 

The apparent effect of a secondary nonlinear process depends on the dispersal of the primary 228 

units (those generating the secondary response). The points in Fig. 2A were widely scattered, and we 229 

assumed that these were the only individuals in the population (i.e. not the only ones sampled). 230 

Therefore, the secondary process of reproduction produced clumps of points that reflected the 231 

autocorrelation. If the initial individuals were close together in relation to the extent of influence of the 232 

secondary process (Fig. 2E), there may be no obvious clumping (i.e. the pattern is stationary) after the 233 

action of the secondary process (Fig. 2F), even though the same mechanistic process generated the 234 

data. Pattern may be useful to indicate the probable action of a secondary process, but the absence of 235 

pattern is not necessarily evidence of the absence of that process. This is important because all spatial 236 

analyses are about detecting clumping and trying to determine what caused that clumping so that 237 

nuisance variables can be discounted (controlled) and interesting variables can be analyzed. 238 

If clumps can be identified a priori, it may be possible to select the most probable hypotheses 239 

and discard the most unlikely (Barnett et al. 2010). However, most stationary positive autocorrelation 240 

processes will lead to an essentially uniform distribution of the dependent variable if left to act long 241 

enough in a homogeneous landscape. Strong clumping is usually strong evidence that a stationary 242 

positive autocorrelation process is not acting alone. Assumption of an autocorrelation process may 243 

lead to erroneous biological conclusions when some other process causes clumping (Barnett et al. 244 

2010).  245 

 246 

SPATIAL ANALYSIS 247 

 248 

Clumping as an indication of the effect of space  249 

 250 

Most hypotheses about ecological communities attempt to explain spatial patterns (clumping). 251 

However, researchers seek independent evidence, and spatial proximity may cause pseudo-replication 252 

(Hurlbert 1984). Therefore, researchers face the quandary of forming hypotheses due to spatial 253 

clumping while attempting to avoid clumping to test those hypotheses. Space is not an ecological 254 

variable, but rather reflects some process that varies spatially (Diniz-Filho et al. 2003). Clumping may 255 

occur at any of a variety of scales, from large (Fig. 2A) to small (Fig. 2D) with many intermediate 256 

possibilities (Legendre and Legendre 1998; Legendre et al. 2002). It may be illogical to try to study 257 

many phenomena occurring at different scales in the same analysis (Fortin and Dale 2009), and all 258 
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spatial analyses can be considered attempts to isolate the effects of particular independent variables 259 

from other processes that cause clumping. 260 

General trends (which may be the only stationary patterns) might be excluded before 261 

undertaking spatial analyses, or removing effects of local patterns might be necessary. Regardless, the 262 

choice of which scales to study should be determined by the questions, not the analysis (Diniz-Filho et 263 

al. 2007; Fortin and Dale 2009). There is no scale at which only endogenous autocorrelation can be 264 

assumed, and endogenous autocorrelation does not necessarily occur only at one scale. Consider the 265 

distribution of individuals of a species of plant that is dispersed passively by gravity and also by birds. 266 

This will result in two scales of clumping, both of which are endogenous. If the extent of the study is 267 

small in relation to the extent of endogenous autocorrelation, the autocorrelation may be manifest as a 268 

broad-scale trend across the study area (Beale et al. 2010). Removal of such a trend to obtain 269 

“stationarity”, as is frequently recommended in time-series analyses, may be totally inappropriate. 270 

The first step in an investigation of the role of space in ecology is exploratory data analysis 271 

(EDA). In this step we do not invoke process and must only investigate pattern. Therefore, we use the 272 

definition of Legendre & Legendre (1998), which defines autocorrelation in terms of pattern, rather 273 

than that of Peres Neto & Legendre (2010), which defines autocorrelation in terms of process, because 274 

distinguishing endogenous from exogenous autocorrelation requires knowledge of the process. In this 275 

step, we are asking questions, such as “Are my data spatially autocorrelated?” “Is the response 276 

variable, the predictor variable, or both autocorrelated?” “If yes, what is the extent of autocorrelation?” 277 

“Are model residuals autocorrelated?” “Should I use a spatial analysis to take autocorrelation into 278 

account (see below)?” Measures of autocorrelation, such as Moran´s I and Geary´s c and their 279 

correlograms are used to explore these questions. Correlograms are used to detect statistically 280 

significant spatial structure (i.e, the pattern, not the process) and to describe its general features. 281 

Combined with maps, they are used to assess the magnitude and the pattern of autocorrelation in data 282 

sets (Legendre and Legendre 1998). However, it is not obvious what criteria should be used to indicate 283 

when space needs to be taken into account, and several authors recommend the use of spatial analyses 284 

on the basis that they will always improve interpretation (Dormann et al. 2007; Beale et al. 2007; 285 

Beale et al. 2010).  286 

 287 

Why undertake spatial analyses? 288 

 289 

When nearby values of variables are more similar than expected at random, a pattern of 290 

positive autocorrelation is assumed, and produces two major classes of problems in spatial analyses. 291 

The first is conceptual and related to the structure of the causal interpretation of the model being 292 

investigated. When we introduce "space" into the model, we are including it as surrogate for some 293 

biological or physical process, which induces spatial autocorrelation. If it is only a surrogate for a 294 

nuisance variable, then eliminating the effect of space will not affect our interpretation. However, if it 295 
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is also a surrogate for a variable we wish to investigate, removing the "problem" of space may 296 

eliminate an effect that we wanted to study. Therefore, before analysis, it is necessary to decide which 297 

aspects of space we want to include in the analysis, and which aspects we want to discard. This 298 

decision is biological/conceptual and often very difficult when we know little about the functioning of 299 

the biological systems. However, it is also the most important decision, because it will affect all of our 300 

interpretations (Legendre 1993; Legendre et al. 2002). 301 

The second class of problems is statistical/computational. Autocorrelated data can give the 302 

wrong estimates of degrees of freedom for conventional statistical tests and consequently gives 303 

inflated type I error rates (Legendre 1993). This effect is often called pseudoreplication, but it is very 304 

different from the pseudoreplication caused by confounding variables described in the previous 305 

paragraph. Spatial autocorrelation may also affect estimates of regression coefficients due to red shifts 306 

caused by spatial autocorrelation (Lennon 2000). 307 

Discussion of the points alluded to in the preceding paragraphs (mainly the one related to 308 

coefficient shifts) is recent, and filled with controversies (Lennon 2000; Diniz-Filho et al. 2003; 309 

Hawkins et al. 2007; Bini et al. 2009). The second class of problems has been the focus of most of the 310 

recent discussions in the literature (Diniz-Filho et al. 2003; Dormann et al. 2007; Beguería and Pueyo 311 

2009; Bini et al. 2009), but these aspects are also related to the practice of partitioning variance 312 

between interesting predictor variables and the possibly confounding factor "space" (Borcard et al. 313 

1992; Legendre 1993; Legendre and Legendre 1998). Partitioning variance between "space" and 314 

ecological predictor variables is the focus of research on niche versus neutral models of community 315 

dynamics (Peres-Neto et al. 2006; Legendre et al. 2009a; Legendre et al. 2009b; Peres-Neto and 316 

Legendre 2010), and the question of whether area or habitat is more important for reserve design. 317 

Before deciding which spatial analysis to use, one must answer the following conceptual 318 

questions: 319 

1) Do we only want to remove the possible effects of other variables that are spatially 320 

confounded with the predictor variable? 321 

2) Do we want to partition the variance in the response variable into that which appears to be 322 

associated only with the predictor variable(s) and that which may be associated with the predictor 323 

variable and/or other variable(s) that are confounded with spatially-structured environmental 324 

variation?  325 

3) Do we only want to use a spatial analysis to remove spatial autocorrelation in order to be 326 

able to use standard statistical tests?  327 

4) Do we want to describe spatial patterns in response and predictor variables, relating them to 328 

a specific spatial scale where they are most affected by autocorrelation? 329 

Some analyses do more than one of these simultaneously, but it is important that we recognize 330 

which problems are being resolved, because there is no general method that can solve all the 331 

conceptual and statistical problems simultaneously. 332 
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Where is space in my model? 333 

 334 

In general, the construction of an ecological model is a trade-off between complexity and 335 

utility (Levins 1966). In the best-case scenario, the predictor variables should be orthogonal to space 336 

and therefore not autocorrelated; however this rarely occurs in observational studies. In the simplest 337 

form of statistical tests, inclusion of spatial variables decreases spatial autocorrelation in the residuals, 338 

but reduces degrees of freedom. When modeling, our data might have autocorrelation patterns in the 339 

response variable, in the predictor variables, and/or in the errors (residual) of the model (Fig. 3). 340 

An assumption of most statistical tests is that the errors are independent and identically 341 

distributed (the so called I.I.D. of errors), and it is common practice to say that residuals results from 342 

all factors not included in model; e.g. soil pH, land use history (Diniz-Filho et al. 2003). The 343 

assumption of I.I.D. of residuals (errors) is necessary to generate the distributions of statistics under 344 

null hypotheses for most tests. In the "error model," residuals may be independent (first i in I.I.D.). In 345 

"residual" (ecological) models, residuals are known not to be independent because they have causal 346 

relationships with variables not included in model. At most, we can hope that they are independent of 347 

the variables included in the model. One of the external variables traditionally relegated to the residual 348 

variation is "space." 349 

 350 

 351 

Figure 3. The basic structure of a linear-regression equation. Autocorrelation might be present 352 

in the response (y) and/or in the predictor (x) variables, as well as in the errors (e). When present, 353 

autocorrelation might affect the estimate of p-values, though the existence of shifts in the estimates of 354 

the intercept (a) and the slope (b) is debatable (Lennon 2000; Diniz-Filho et al. 2003; Hawkins et al. 355 

2007). 356 

 357 

When “space” affects variables in the analysis, the residuals may have a spatial pattern. 358 

Consequently, the decision to use spatial methods may come as a result of an evaluation of residuals. 359 

If residuals are autocorrelated then spatial analysis is used. However, statistical tests are compromised 360 

Autocorrelation might 
be present at:

and may affect the 
estimate of: 

y = + xa eb + associated p-value
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only when both the predictor and response variables are autocorrelated (Legendre et al. 2002). 361 

Therefore, residuals can be spatially structured without inducing statistical bias (P.R. Peres-Neto 362 

Personal Communication). In fact, the residuals may remain autocorrelated even after the use of the 363 

appropriate spatial analysis (Beale et al. 2010). Therefore, the choice of the appropriate test should not 364 

be based only on analyses of residuals, but by assessing whether both response and predictor variables 365 

are spatially structured. 366 

Several solutions have been proposed to manage the spatial autocorrelation in ecological data. 367 

We distinguish among two groups of solutions: i) removers - autocorrelation is a problem that should 368 

be removed from data; and ii) includers - autocorrelation is a natural process that should be understood 369 

and studied as an ecological phenomenon, not as a statistical problem. Generally, "the removers" tend 370 

to delete sampling sites until the data are no longer autocorrelated (Legendre and Legendre 1998, 371 

describe this process, but do not recommend it, pp 14), or to apply some type of correction to obtain 372 

the geographically effective degrees of freedom (Dutilleul 1993; Dutilleul et al. 2008). “Removers” do 373 

not necessarily try to take out all of the autocorrelation, but may restrict analyses to data grouped in 374 

scales relevant to the question, and in which it is unnecessary to account for autocorrelation at other 375 

scales. The "inclusive methods" are based on statistical procedures that take spatial autocorrelation 376 

into account (Dormann et al. 2007), changing the way that the data are analyzed and interpreted 377 

(Legendre 1993). 378 

 379 

SIMULATIONS 380 

 381 

What the simulations mean 382 

 383 

In the following sections we will use simple models with space represented by a single 384 

dimension (distance along a transect) to illustrate the results of some of the simulations in the 385 

literature, and their implications for different types of analyses. Basically we will generate 16 types of 386 

simulated data (Fig 4) and analyze these data using simple Ordinary Least Squares (OLS) regressions, 387 

Simultaneous Autoregressive (SAR) models (error, lagged, and mixed), Generalized Least Squares 388 

(GLS), and Spatial Filtering Techniques (using three different procedures to choose spatial filters to 389 

use in the model). Details of simulations and analysis are in the supplementary material. The effects of 390 

spatial autocorrelation on our interpretations depend on its strength and extent (Beale et al. 2010). We 391 

will discuss that later, and start with simple combinations of large-scale (a linear trend across the 392 

transect – Fig. 2A), small-scale autocorrelation generated by local processes (such as in Fig. 2D), and 393 

no autocorrelation (random association with space). Either or both of the dependent and independent 394 

variables may have no, large-scale, small-scale, or large- and small-scale autocorrelations. The 395 

possible combinations and resulting patterns in the relationships between dependent and independent 396 

variables are shown in Figure 4. 397 
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We can group the 16 graphs in three general scenarios: (1) Autocorrelation in either the 398 

dependent or predictor variable, but not in both (Fig 4. B, C, D, E, I, M). (2) Both the dependent and 399 

independent variables are spatially autocorrelated, but they are orthogonal (independent in the sense 400 

that information on one relationship does not allow prediction of values generated by the other), and 401 

spurious relationships are unexpected for purely geometrical reasons (Fig 4 H, L, N, O, P). (3) Both 402 

variables are linearly related to space, resulting in a spurious relationship between them due to their 403 

common relationship with space. (Fig. 4 F, G, J, K).  404 

 405 

Figure 4. Sixteen combinations that can result from sampling different combinations of the 406 

structures described in Fig. 2A-D. We sampled 200 equidistant points, spaced by 5 units, along the 407 

transect. 408 

 409 
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These data were generated to avoid a causal relationship between the dependent and 410 

independent variables. That is, information about the independent variable was not used to generate 411 

the dependent variable. Therefore, the ideal statistical test would not indicate a relationship between 412 

the dependent and independent variables. If we apply a test of the relationship between the dependent 413 

and independent variables many times (we used 1000 times in our simulations), they should give an 414 

apparently significant result only once in twenty times, if we use the conventional critical level to 415 

reject the null hypothesis of 0.05. While we do not recommend an arbitrary 0.05 “significance” level, 416 

it is commonly used to estimate the frequency of type I error (how often the null hypothesis is rejected 417 

erroneously). 418 

Scenario 1. – All of the combinations in scenario 1 involving autocorrelation in the dependent 419 

variable (Fig. 4. A, B, C, D, E, I, M) induce autocorrelation in the residuals of a regression of the 420 

dependent variable on the independent variable (Table 1), but conventional statistical tests produce 421 

about the correct level of type I error (0.05). This is expected because statistical tests are compromised 422 

only when both the predictor and response variables are autocorrelated (Legendre et al. 2002). 423 

However, advocates of spatial analyses claim that spatial analyses should be carried out always 424 

because spatial autocorrelation may affect the analyses even when statistical tests do not detect 425 

autocorrelation at the appropriate significance level. We will not enter into this debate, but it clearly 426 

would be beneficial to have diagnostic statistics to indicate when autocorrelation in the variables is 427 

likely to lead to compromised statistical tests. 428 

 429 

Table 1: Results of ordinary least squares (OLS) regression models for 1000 simulation runs 430 

combining samples taken from our four scenarios (Fig. 4). Type I error rate / rate of times that 431 

the residuals were autocorrelated at the first distance class among 1000 simulation runs. 432 

  Environmental 

  Random Linear Linear+Contagious Contagious 

R
es

p
o

n
se

 

Random 0.059/0.065 0.045/0.04 0.047/0.041 0.054/0.053 

Linear 0.056/1.0 1.0/0.713 1.0/0.543 0.387/1.0 

Linear+Contagious 0.049/1.0 1.0/0.986 1.0/0.937 0.407/1.0 

Contagious 0.05/0.911 0.353/0.867 0.385/0.875 0.412/0.924 

 433 

 434 

Scenario 2. – Both the dependent and independent variables are autocorrelated, but the 435 

processes that lead to autocorrelation are independent for each variable, such that we would not expect 436 

a relationship between them for geometric reasons (i.e. they are geometrically orthogonal, Fig 4 H, L, 437 

N, O, P). This situation is probably rare in nature (Betts et al. 2009), and is not what worries most 438 

ecologists. However, this scenario has been used in simulations by most modelers (Dormann et al. 439 
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2007; Betts et al. 2009; Beale et al. 2010) because it gives a good example of how autocorrelation can 440 

give spurious statistical results, despite apparently orthogonal geometry. In this scenario, the null 441 

hypothesis of no relationship between the dependent and independent variables is true, but ordinary 442 

least squares (OLS) regressions indicate significant relationships (Table 1). Of the eight spatial 443 

methods frequently recommended, only three, those related to SAR methods, returned type I error 444 

rates close to the nominal 0.05 level (Table 2). 445 

 Scenario 3. – Both the dependent and independent variables have spatial relationships that 446 

lead to a spurious relationship between them (Fig 4 F, G, J, K). This is probably the most common 447 

case confronting ecologists and conservationists. If all clumping (autocorrelation pattern) in the 448 

dependent variable is due to the effects of independent variables, there is no statistical problem due to 449 

the autocorrelated pattern (Beale et al. 2010). However, with real data, the cause of clumping is being 450 

inferred, and is not known before analysis. The clumping could be due to endogenous autocorrelation 451 

(a process affecting only the dependent variable), due to independent variables included in the model, 452 

or other independent variables not included in the model. Researchers tend to assume that the spatial 453 

autocorrelation is totally attributed to endogenous processes (i.e. not due to habitat). However, that is a 454 

very sweeping assumption that should be supported by strong natural-history justifications. 455 

 456 

Table 2: Proportion of simulation runs that had a p-value ≤ 0.05 out of 1000. Row names are 457 

the analysis used and column names are the variables used in the model. Y indicates a 458 

response variable and X a predictor one. Subscript c indicates contagious, l indicates linear, 459 

and l + c indicates linear plus contagious. 460 

 Yc - Xl Yc - Xl+c Yc - Xc Yl+c - Xc Yl - Xc 

OLS 0.504 0.561 0.564 0.565 0.513 

SARerror 0.051 0.047 0.054 0.05 - 

SARlagged 0.064 0.058 0.062 0.08 0.07 

SARmixed 0.053 0.046 0.054 0.061 0.051 

GLS 0.241 0.409 0.417 0.405 0.399 

ME 0.577 0.618 0.653 0.685 0.6361 

SF 0.566 0.659 0.657 0.669 0.7746 

PCNM 0.573 0.832 0.837 0.708 0.102 

 461 

We used spatial confounding with a large-scale trend because it is easier to visualize, but 462 

confounding can result when autocorrelation is on a similar scale for the dependent and independent 463 

variables, independent of the scale of the autocorrelation. The problem of incorrectly estimated 464 

probabilities remains along with the extra problem of confounded effects. Hurlbert (1984) referred to 465 

the action of an unrecognized confounding variable as “demonic intrusion”. If the objective of spatial 466 
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analyses is to evaluate the possible effects of all spatially confounding variables by including them in 467 

the model as “space”, then space represents demonic intrusion. As we have seen, “space” is what we 468 

use to represent clumping. By including the effects of clumping, we are including the effects of all 469 

confounding variables that cause clumping.  470 

In this case, the most we can do is to separate the variability in the dependent variable into 471 

parts that are generated by different processes. Part can be unambiguously attributed to the non-spatial 472 

independent variables included in the model, and part can be unambiguously attributed to spatially 473 

aggregated effects, which could be due to endogenous processes, such as limited dispersal of 474 

organisms, or spatially aggregated predictor variables not included in the model. Part of the variability 475 

cannot attribute to anything (residual), and the rest could be due to either the spatial predictors or the 476 

other independent variables included in the model (Fig. 5). To separate the effects of space and 477 

predictor variables, we must model autocorrelation in the independent variable that corresponds to 478 

autocorrelation in the dependent variable. Borcard and Legendre (2002) has pioneered this type of 479 

analysis, mainly using a technique called Principal Coordinates of Neighbourhood Matrix - PCNM 480 

(see also Dray et al. 2006; Legendre et al. 2009a). However, any of the methods that take spatial 481 

autocorrelation into account in the independent variable may be used (Table 2).  482 

The down-side of taking into account the potentially confounding effect of space is that when 483 

we take out “space” we may be removing a true effect of the independent variable. This will affect our 484 

estimates of the regression coefficient for the independent variable. We have seen that, even when the 485 

effects of space and the independent variable are orthogonal, many of the spatial techniques, including 486 

PCNM, may provide unbiased estimates of the slope of the regression, but  with great cost in precision 487 

(Fig. 6). This is important, because an imprecise estimate of the regression coefficient will lead to 488 

imprecise variance partitioning (i.e. the amount of potential confounding). Because researchers 489 

normally do one or a few studies, and have only one or a few estimates of the regression coefficient, it 490 

may not be very relevant that if they had done 1000 studies, the mean estimate of the regression 491 

coefficient would have been close to correct. Worse still, some of the best methods for dealing with 492 

the statistical problem of high rates of type I error for scenario 2 (e.g. autorregressive models) produce 493 

strongly biased estimates of the regression coefficient in scenario 3. 494 

 495 
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 496 

Figure 5. Conceptual variation partitioning of OLS and SAR models. The first is the 497 

conceptual variation partitioning diagram, showing the environmental-only component, the 498 

environmental shared with the spatial component, the spatial-only component, and the unexplained 499 

variation. The remaining partitions are for A) OLS models, in which there is considered to be only the 500 

environmental component and the unexplained variance; B) SAR error, in which a spatial variable is 501 

created to account for the autocorrelated errors, so this model conceptually has no shared component; 502 

C) SAR lagged, in which a spatial variable is created to explain spatial patterns of the response 503 

variable, so there is a shared component between environmental variables and the spatial component; 504 

and D) SAR mixed models, in which two spatial variables are created in a way that the spatial 505 

component might be interpreted as two spatial only components, one related to the endogenous 506 

autocorrelation ρWY, and the other related to the exogenous autocorrelation γWX. 507 

 508 

 509 

Figure 6. Boxplots representing the differences found in the slope (standardized coefficients) 510 

between OLS1 estimated parameters from the other analysis run after the data being 511 

“pseudoreplicated”. The line inside the boxes is the median, the box indicates the first and third 512 

quartiles and whiskers which extend to the minimum and maximum values (points are outliers further 513 

from the mean than 1.5 times the box length). 514 
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There is also a conceptual problem with the exercise of attributing proportions of variance to 515 

“space”. Beside the fact that the result will be biased if there is a miss match between the scale of 516 

sampling and the scale of effect of predictor variables (de Knegt et al. 2010), the answer must be scale 517 

specific. The amount of variance due to any variable is not a characteristic of the biological system, it 518 

is a characteristic of the sampling scale. Any discussion of the proportion of variance attributable to 519 

factors causing endogenous autocorrelation should be prefaced by an explanation of why that 520 

particular scale is of interest for the conservation problem in hand.  521 

 522 

More complex simulations 523 

 524 

Beale et al. (2010) have carried out comprehensive simulations that are extensions of scenario 525 

2, with collinear predictor variables, model selection algorithms and application of regression 526 

techniques designed to address problems derived from the violation of assumptions. In general, their 527 

conclusions are similar to those presented here, although some methods that work well under simple 528 

scenarios are not improved by use of model selection algorithms. Model selection for collinear 529 

variables is an extremely complex subject and perhaps more polemical than selection of spatial 530 

techniques (Taper and Lele 2004). The two most complex scenarios presented by Beale et al (2010) 531 

were the scenarios in which none of the methods worked well and are useful to illustrate the 532 

limitations of spatial analyses in general. 533 

The first situation is where the relationship between the dependent and independent variables 534 

is nonstationary. As in Beale et al. (2010), we simulated no relationship between the dependent and 535 

independent variables on one side of the space (in our case, on one side of the transect) and a strong 536 

relationship on the other side (Fig. 7). The lines in Figure 7 illustrate the relationship we are trying to 537 

describe. It is clear why a global model cannot describe this situation. The regression coefficient is not 538 

a constant, and any model that ignores that will be misleading. This is independent of the possible 539 

autocorrelation in the residuals or any other statistical problem. The model is so badly specified that it 540 

is meaningless to compare the utility of the different methods. 541 

The second situation, which Beale et al. (2010) surprisingly considered worse than the first, is when 542 

the general model is correct, but the autocorrelation in the residuals is nonstationary. They modeled an 543 

increase in the extent of the autocorrelation across their spatial coordinates. This relationship is 544 

illustrated in one dimension in Figure 8. This situation is analogous to breaking the assumption of 545 

homogeneity of variance (heteroscedasticity) in a simple regression situation, with well-known 546 

consequences (incorrect estimates of type I errors). The estimate of the regression coefficient is 547 

generally not badly affected by heteroscedasticity in a simple regression, but estimates of slopes with 548 

collinear predictor variables and heteroscedasticity may be very inaccurate (Beale et al. 2010). 549 

Although we agree with Beale et al. (2010) that nonstationarity of the autocorrelation in the residuals 550 

is a grave problem, we believe that, unlike the error in model specification described above, it is not 551 
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inherently unsolvable, and, where individual clumps can be recognized, analyses such as those 552 

described by Barnett et al. (2010), which include different variances for each level of the predictor 553 

variable, may lead to improved spatial analyses, as they do for repeated-measures analyses. 554 

Most of the techniques we have discussed assume isotropy (the effect of distance is 555 

independent of direction). When the effect of distance depends on direction (usually), this needs to be 556 

taken into account in the analysis. Spatial filters are designed to capture any form of clumping, but 557 

most other analyses need information on the form and direction of the autocorrelation. Dendritic 558 

systems usually have connections that are not well modeled by Euclidean distance (Peterson & Ver 559 

Hoef 2010). Those authors describe how to take into account different forms of connectivity 560 

(dispersal), but as with most of the papers reviewed here, they only treated autocorrelation in the 561 

residuals, and not in the predictor variables (pseudoreplication sensu Hurlbert, 1984). We can expect 562 

further advances in modeling anisotropic systems in the near future.  563 

 564 

 565 

Figure 7. Example of a situation in which there was no relationship between the dependent 566 

and independent variables (response [e.g. regression slope] = 0]) on one side of the space (in our case, 567 

on one side of the transect) and there is a strong relationship on the other side. 568 

Transect  

Predictor 

Response  
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 569 

Figure 8. An example where the extent of autocorrelation is non-stationary, which might 570 

occur in a situation where dispersal is more limited on one end of the transect. This results in points 571 

clumps being more aggregated at small distances along the transect. 572 

 573 

CONCLUSIONS 574 

 575 

Where to go from here? 576 

 577 

Conservation biologists want to use the most powerful method, and recent studies of spatial 578 

analyses conclude that applying some of the techniques they describe is better than doing nothing 579 

(Dormann et al. 2007; Bini et al. 2009; Beale et al. 2010). However, conservation biologists must be 580 

clear about their objectives. Spatial autocorrelation is generally advantageous for specific normative 581 

studies, because it permits land-use zoning and the inclusion of considerations relating to costs of land 582 

acquisition and control of access (Watts et al. 2009). Many of the most promising spatial methods in 583 

conservation biology described in the introduction do not involve statistical problems of 584 

autocorrelation in the residuals, which has been the focus of much of the recent debate. It would be 585 

foolish to try to remove the effect of spatial aggregation before undertaking these studies. 586 

Although conservation biologists may be concerned about the possibility of unmeasured and 587 

unknown confounding variables (demonic intrusion) leading to spurious conclusions, this has not been 588 

the focus of most of the recent debate. Simulations were specifically designed to create autocorrelation 589 

in the residuals without collinearity between “space” and the independent (predictor) variables (de 590 

Knegt et al. 2010). If the researcher is worried about confounding variables, they should use 591 

techniques that model space in the dependent or independent variables. However, no particular 592 
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advantage may be obtained in allocating variance between “space” and environment, because, at most 593 

spatial scales of interest to conservation biologists, “space” generally just represents unknown 594 

environmental variables in the analysis. If a specific process, such as reproduction or dispersal, is 595 

thought to cause autocorrelation, it may be better to model that process, rather than calling it “space.” 596 

We have focused on simple examples, and assumed that sampling was undertaken at the scale 597 

appropriate for the questions. However, autocorrelation in the residuals is likely to be caused by 598 

sampling at a scale inappropriate to the question (de Knegt et al. 2010). In this case, removing 599 

autocorrelation from the residuals instead of using it to redefine the question will result in analyses 600 

that are as biased and inappropriate as OLS regression. 601 

If the researcher can assume that “space” does not represent confounding variables, and only 602 

wants to carry out valid statistical tests and estimate parameters (that cannot also be variables), then 603 

spatial techniques that focus on the residuals are the most appropriate and may greatly improve 604 

estimates (Beale et al. 2010 and references therein). Although we agree with Beale et al. (2010) that 605 

nonstationarity of the autocorrelation in the residuals is a grave problem, we believe that, unlike the 606 

model misspecification described in the previous paragraph, it is not inherently unsolvable, and, it may 607 

be possible to use covariates to model the residual structure (Zuur et al. 2009). Where individual 608 

clumps can be recognized, analyses such as those described by Barnett et al. (Barnett et al. 2010) may 609 

lead to improved spatial analyses, as they do for repeated-measures analyses. 610 

Recent studies in landscape ecology suggest that the configuration of landscape elements may 611 

be important in itself, and there may be nonlinear “threshold” effects (Metzger 2006). There has been 612 

only limited progress in landscape ecology because of the difficulty of replicating landscapes. Internal 613 

validation (such as standard statistical tests) assumes that the ecological relationships are well known 614 

(and generally linear) and can be extrapolated to other landscapes. However, real-world landscapes are 615 

generally so complex, and with so many nonlinear relationships, that extrapolation to other systems 616 

based on past knowledge of a particular system is risky because of the likelihood of essentially 617 

unpredictable phenomena ("black swans" in the terminology of Taleb 2007). Conservation biologists 618 

should seek more substantive replication (i.e. the repetition of the study by other researchers in other 619 

landscapes) in order to have confidence in their models. 620 
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SUMMARY 22 

 23 

1. The use of spatial variables is a common procedure in ecological studies. The technique is based 24 

on the definition of a connectivity/distance matrix that conceptually defines the dispersal of 25 

organisms. The shortest distance between two points is a straight line. Despite the fact that a 26 

straight line may not represent the easiest dispersal path for many kinds of organisms, straight 27 

line distances are often used to detect patterns. We argue that other types of 28 

connectivity/distance matrices will better represent dispersal paths, such as the watercourse 29 

distance for aquatic organisms (e.g. fish, shrimps). 30 

2. We used empirical and simulated community data to evaluate the usefulness of spatial variables 31 

generated from watercourse and overland (straight-line) distances.  32 

3. Spatial variables based on watercourse distances captured patterns that straight-line distances 33 

did not, and provided better representations of the spatial patterns generated by dispersal along a 34 

dendritic network. 35 

36 
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Introduction 37 

 38 

Understanding the factors controlling the distribution of lotic organisms is one of the main 39 

objectives of stream ecology. Traditionally, stream ecologists have related the biota to environmental 40 

predictors (e.g. physicochemical measurements and substrate characteristics) in order to understand 41 

and predict species distribution patterns (Cummins & Lauff, 1968; Townsend & Arbuckle, 1997; Buss 42 

et al., 2004; Yoshiyuki & Hajime, 2007). Recently developed statistical techniques allow us to study 43 

community distribution in relation to spatial predictors as well as environmental predictors (Borcard & 44 

Legendre, 2002; Griffith & Peres-Neto, 2006; Peres-Neto & Legendre, 2010). These have been pivotal 45 

to the study of metacommunities (Leibold et al., 2004; Holyoak, Leibold & Holt, 2005) because 46 

spatial connectivity among communities is a key aspect of metacommunity analyses. Additionally, the 47 

use of spatial predictors allows researchers to quantify, albeit indirectly, the role of dispersal in 48 

shaping beta-diversity patterns, an issue often overlooked when only environmental models are used 49 

(Bunn & Hughes, 1997). 50 

Spatial eigenfunction analyses are frequently used to represent the variable “space” in 51 

ecological studies, with the main objective of partitioning variance in response variables into that 52 

attributable to measured environmental variables, pure space, and shared effects of environment and 53 

space (Borcard & Legendre, 2002; Peres-Neto et al., 2006; Peres-Neto & Legendre, 2010). Spatial 54 

eigenfunction analysis comes under a variety of names (although they are all variations of the same 55 

theme; see Dray, Legendre & Peres-Neto, 2006 et al., 2006), including Principal Coordinates of 56 

Neighbour Matrices (PCNM), Distance-based Eigenvectors Maps and Moran's Eigenvector Maps. 57 

However, it is not always clear what space represents, and spatial eigenvectors represent any set of 58 

variables that causes clumping in the distribution of values of the response variable(s). Space is often 59 

meant to represent dispersal limitation or some other process that is largely independent of 60 

environmental predictors, such as those proposed in neutral models of community assembly (Hubbell, 61 

2001; 2005). However, space and environment are also highly interrelated (Tobler’s first law of 62 

geography: “Everything is related to everything else, but near things are more related than distant 63 

things”; e.g., Bjorholm et al., 2008). This spatial dependency decreases our ability to identify the main 64 

processes (i.e. niche based vs. dispersal processes) and underlying patterns of community structure 65 

(Gilbert & Lechowicz, 2004). Therefore, because clumping may also result from unmeasured 66 

environmental variables, the attribution of observed patterns to dispersal processes must be done 67 

cautiously (Diniz-Filho, Bini & Hawkins, 2003; Hawkins et al., 2007). 68 

Spatial eigenvector methods decompose the spatial variability into a set of explanatory spatial 69 

variables that represents independent propositions of how local communities are interlinked (Ramette 70 

& Tiedje, 2007). As the created variables are statistically orthogonal, they are not collinear. Standard 71 

methods to construct spatial variables (e.g. PCNM) are generally based on the use of a Euclidean 72 

distance matrix between sampling sites. This distance matrix is then submitted to a Principal 73 
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Coordinate Analysis whose axes (eigenvectors) are used as spatial explanatory variables in univariate 74 

or multivariate analyses (see Borcard & Legendre, 2002 for more details about PCNM). The 75 

eigenvectors associated with high eigenvalues represent broad scale patterns of relationships among 76 

sampling units, whereas those with low eigenvalues represent fine scale patterns (Griffith & Peres-77 

Neto, 2006). Euclidean distances may be appropriate for aquatic organisms that migrate over land, 78 

such as flying aquatic insects (Bilton, Freeland & Okamura, 2001). On the other hand, many 79 

organisms, such as fish and immature stages of aquatic insects, are mostly unable to migrate in this 80 

way. For these groups, the distance between two sites might be better defined by the length of the 81 

watercourse between two points (i.e., the distance along the network pathway; Ganio, Torgersen & 82 

Gresswell, 2005; Chaput-Bardy et al., 2009; Brown & Swan, 2010). In fact, several types of 83 

connectivity matrices among stream sites can be generated (Fullerton et al., 2010).  84 

Space per se cannot be considered an explanation of ecological variability (Leduc et al. 1992). 85 

Thus, a significant relationship between spatial variables (eigenvectors) and raw species data tables 86 

could indicate the existence of an underlying abiotic or biotic process with a spatial component. From 87 

an ecological point of view, a set of spatial variables derived from overland distances is likely to 88 

represent a large-scale gradient in climatic conditions and other abiotic factors, whereas a set of spatial 89 

variables derived from watercourse distances is more likely to relate to dispersal limitation. 90 

In order to increase our understanding of how spatial processes regulate biological 91 

communities, and increase the variance explained by statistical models, new analytical methods have 92 

been proposed to incorporate other kinds of connectivity among sites in stream networks, such as 93 

autocovariance models (Peterson & Ver-Hoef, 2010) and asymmetric eigenvector maps (Blanchet, 94 

Legendre & Borcard, 2008). It could be argued that the results of two analyses of variance 95 

partitioning, the first one based on spatial variables generated by using overland distances and the 96 

second by using watercourse distances (e.g. Beisner et al., 2006; Nabout et al., 2009), would be 97 

equivalent due to the flexibility of eigenfunction spatial analyses (Griffith & Peres-Neto, 2006). This 98 

is expected because, in both cases, several spatial variables with different spatial structures are 99 

generated. However, the equivalence of different types of connectivity matrices for spatial 100 

eigenfunction analyses has not been demonstrated. 101 

We investigated whether spatial variables derived from watercourse distances explain more of 102 

the variance in community structure than spatial variables based on overland distances for two groups 103 

of aquatic organisms (fish and immature stages of caddisflies) in first to third order streams in a 104 

tropical forest. We also generate artificial communities, in which spatial patterns were caused only by 105 

dispersal limitation, to evaluate whether spatial variables based on watercourse distances explain more 106 

of the variance in community structure than those based on overland (Euclidean) distances, when the 107 

model is essentially neutral (no effects of environmental variables). 108 

 109 
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Methods 110 

 111 

Empirical Field Data 112 

 113 

We used four sets of field data gathered in streams in Ducke Reserve (02º53`S, 59º58`W; near 114 

the city of Manaus, Central Amazon, Brazil). Three data sets include fish samples taken from 30 115 

stream sites (Fig. 1) on three sampling dates (Espírito-Santo et al., 2009). Six physicochemical 116 

variables were also measured: pH, conductivity, width, depth, dissolved oxygen and water velocity. 117 

Sampling details can be found in Espírito-Santo et al., (2009).  118 

The fourth data set concerns caddisfly samples (Pes, 2005) taken at 27 of the same sites (Fig. 119 

1), with three benthic sample units of 2.25 m
2
, separated by at least 5 m, at each site. Larvae were 120 

collected using a d-net and/or a Surber sampler (both with mesh size of 250 µm) and individuals 121 

attached to bedrock or stones were removed using tweezers and spatulas. Available substrate in the 122 

sample units was assessed, collecting leaves, sand and macrophytes using d-nets, and storing in plastic 123 

bags with 80 % ethyl alcohol (except stones and large woody debris). In the laboratory, the larvae 124 

were identified to morphospecies or, when possible, species. The same physicochemical variables 125 

were measured as for the fish datasets, except for dissolved oxygen. 126 

 127 

Figure 1. Location of the Ducke Reserve (RFAD) and of the sampling plots. Fish 128 

were sampled at 30 sites and caddisfly at 27. 129 

 130 

Simulated Data 131 

 132 

We drew manually an artificial stream network where 37 sites were placed haphazardly (Fig. 133 

2). The shape of this network is commonly observed in nature, including many branches and 134 

confluences, and has properties adequate for our objectives. The relationship between matrices 135 

generated using overland and watercourse distances among the sites was weak, and the correlation 136 
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between Euclidean and watercourse distances was relatively low, as observed for streams in the Ducke 137 

Reserve network (see Peterson & Ver-Hoef, 2010 for other ways to generate artificial stream 138 

networks). In our simulation, there was no difference between the capacities to disperse upstream or 139 

downstream. 140 

We used a spatially explicit, individual-based (see Zurell et al., 2010 for examples) simulation 141 

procedure to produce artificial community data. First we defined a pool of 50 species for the entire 142 

network and then randomly assigned S species to each site. Each site had a fixed carrying capacity of 143 

500 individuals that were equally distributed among the S species present at the beginning of the 144 

process. At each time step, each individual could give birth to a single offspring with a probability b 145 

and could die with a probability d. Each new individual could migrate to any site within a threshold 146 

distance, defined as the minimum distance along the network to keep all sites connected (minimum 147 

spanning tree; Legendre & Legendre, 1998). The probability of colonizing a new site was inversely 148 

proportional to the distance from the source site. The distances among sites considered in these 149 

simulations were watercourse distances. Thus, dispersal processes were restricted to follow the 150 

network pathways. We ran the simulation for 1000 time steps. At the end of each time step and when 151 

the total number of individuals (in any given site) was larger than 500, randomly selected individuals 152 

were removed from sites until the local population was reduced to 500.  153 

 154 

Figure 2. Artificial stream network used to simulate community data. Sampling sites were 155 

haphazardly placed. Watercourse and overland distances were calculated and used in the simulation 156 

process. The probability of colonization of a given site was inversely proportional to the distance from 157 

the source site through the watercourse corridor. 158 

159 

26

37

35

28

25

36
34

33

32

31

30

29

27

24

2322

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

21



44 

 

Data analysis 160 

 161 

Data on fish and caddisfly species composition were analyzed in relation to the six and five 162 

physicochemical variables, respectively, and in relation to two sets of spatial variables generated from 163 

watercourse and overland distances. All analyses were carried out in the R environment (R 164 

Development Core Team, 2009). PCNM was used to generate spatial variables, using the pcnm 165 

function from the vegan package (Oksanen et al., 2010). We used partial redundancy analyses (pRDA; 166 

Borcard, Legendre & Drapeau, 1992; Legendre & Legendre, 1998) to quantify the relative importance 167 

of environmental and spatial variables in explaining the variation in community composition. For 168 

these analyses, we employed the function varpart from the vegan package. We used a stepwise 169 

selection procedure to select spatial variables (eigenvectors) and environmental variables using the 170 

ordistep function from vegan. Community data were transformed prior to analysis using the Hellinger 171 

transformation (Legendre & Gallagher, 2001).  172 

The threshold value used in the PCNM analysis was the minimum distance that kept all 173 

sampling sites connected using a minimum-spanning-tree procedure. However, a plateau at the centre 174 

of the Ducke Reserve separates two drainage basins. The eastern basin is connected to the streams of 175 

the western basin only by long watercourse distances, passing through the Amazon and Negro rivers 176 

(Fig. 1). This long distance may act as a barrier for dispersal of organisms from streams of one basin 177 

to streams of the other. Conventional PCNM procedure connects streams of both sides of the reserve, 178 

so we used a second truncated connectivity matrix based on the Euclidean distances, in which the 179 

western and eastern basins were “manually” unconnected. We also used a watercourse distance matrix 180 

to generate the PCNM variables.  181 

Hereafter, the sets of spatial variables generated by the PCNM analysis, and which were based 182 

on the overland, overland with separation of the basins, and watercourse distance matrices will be 183 

referred as overland, overland-unconnected and watercourse eigenvectors, respectively. To evaluate 184 

the unique contributions of the PCNM variables generated by using these three distance matrices, we 185 

ran three partial RDA models for each of the three fish and caddisfly datasets, using environmental 186 

data and each set of eigenvectors as explanatory variables. 187 

We analyzed the simulated data using partial RDA in which spatial variables generated by 188 

watercourse and overland distances were used as two sets of explanatory variables. To quantify the 189 

shared variance explained by the two sets of spatial variables, we ran two stepwise selection 190 

procedures using the ordistep function to retain watercourse and overland eigenvectors to be used in 191 

the partial RDA. It is important to note that this procedure was used only to quantify the shared 192 

variance explained by the two sets of spatial variables.  193 

 194 
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Results 195 

 196 

The correlations between overland and watercourse and between overland and overland-197 

unconnected distance matrices were 0.49 and 0.46, respectively. The correlation between overland-198 

unconnected and watercourse distance was 0.62. In our artificial network the correlation between 199 

overland and watercourse distance matrices was 0.58. 200 

 201 

Empirical Field Data 202 

 203 

For all three fish databases, analyses based on watercourse distances produced adjusted R
2
 204 

higher than those based on Euclidean (overland) distances (Table 1). RDA models applied to caddisfly 205 

data produced lower adjusted-R
2 

than the RDA models applied to fish data. In general, models based 206 

on overland-unconnected distances (i.e. east and west basins unconnected) produced higher adjusted-207 

R
2
 than connected inter-basin overland distances. More spatial variables were retained in the analyses 208 

using watercourse distances, and these generally represented spatial structures at finer scales (i.e. 209 

eigenvectors with low eigenvalues). 210 

 211 

Table 1. Table of variance partitioning for fish and caddisfly data. Spatial variables represent spatial 212 

structures varying from broad (eigenvectors associated with high eigenvalues) to fine (low 213 

eigenvalues) scales. Spatial variables are shown in the order they were retained in the stepwise 214 

procedure (low numbers (e.g. 1, 2, etc.) represent variables with high eigenvalues). Values for each 215 

explained fraction are adjusted R
2
. Fractions are [a] pure environmental, [b] shared, and [c] pure 216 

spatial. Overland-U represents the spatial variables generated by using a Euclidean distance matrix in 217 

which east and west basins are unconnected. 218 

Data Distance 
Spatial variables 

retained 

Environmental 

variables retained 

Fractions 

[a] [b] [c] 

Fish dry 

season 1 

Overland 17,8 
Depth, Oxygen 

dissolved, Width 

0.178 0.075 -0.015
ns

 

Overland-U 1,17 0.152 0.101 0.035 

Watercourse 1,12,22,4 0.098 0.155 0.081 

Fish rainy 

season 

Overland 17 Depth, Oxygen 

dissolved, pH, 

Velocity 

0.307 0.03 -0.004
ns

 

Overland-U 1 0.297 0.04 0.035 

Watercourse 22,1,19,4,3,9,25 0.138 0.199 0.082 

Fish dry 

season 2 

Overland 17 

Depth, pH 

0.202 0.047 -0.017
ns

 

Overland-U 1,3,17,20 0.159 0.091 0.062 

Watercourse 12,1,22,9,4,20,19 0.077 0.172 0.088 

Caddisfly 

Overland 1,3 
pH, Depth, 

Conductivity 

0.073 0.014 0.024 

Overland-U 1,11 0.028 0.059 0.011
ns

 

Watercourse 1,11 0.035 0.052 0.022 
ns

 Non significant fraction (p > 0.05); all other testable fractions were significant at P ≤ 0.05. 219 
220 
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Simulation 221 

 222 

The high value for adjusted R
2 

(0.75) obtained by RDA is an indication that the simulation 223 

procedure was effective for our objectives (i.e., we were able to generate communities with spatial 224 

patterns related to our distance matrices). There was a considerable difference between the adjusted R
2
 225 

obtained with the spatial variables generated using overland and watercourse distances. Some spatial 226 

variables were redundant, but about 35% of the total variance explained was exclusively attributable to 227 

the spatial variables generated using watercourse distance (the distance used in the simulation). Only 228 

about 3 % of the variance was exclusively attributable to the overland eigenvectors (Fig. 3).  229 

 230 

Figure 3. Variation partitioning of simulated data. Shown are the adjusted R
2
 from three 231 

separate RDA models. The first included only watercourse eigenvectors, while the second included 232 

only overland eigenvectors. The third series of values was obtained by a partial RDA that included 233 

both watercourse and overland eigenvectors to obtain the shared fraction. Note that the exclusive 234 

portion of variation explained by overland eigenvectors was minimal (ca. 3%). Simulations were run 235 

for 1000 time steps and values are plotted in intervals of 20 time steps. 236 

237 
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Discussion 238 

 239 

Stream communities are affected by processes operating at different scales, from local to 240 

regional (Heino, Louhi & Muotka, 2004; Mykrä, Heino & Muotka, 2007; Roque et al., 2010). The 241 

long watercourse distance between the two Ducke Reserve basins might represent a physical barrier 242 

and constrain the dispersal of organisms. Such an effect was not detected by simple overland 243 

distances, and spatial variables generated by a watercourse-distance based eigenvector procedure 244 

explained much more of the fish community structure than the same procedure applied to overland 245 

distances. 246 

In contrast, caddisflies have flying adults that are able to disperse over land (Collier & Smith, 247 

1998; Wilcock et al., 2007) and, in their case, the spatial variables based on overland distances 248 

accounted for more of the variability in community structure. Moreover, the proportion of variability 249 

in caddisfly communities that was uniquely explained by spatial variables derived from watercourse 250 

distances was slightly lower than that for fishes. 251 

Although our results showed that watercourse eigenvectors explained much more variance 252 

than overland eigenvectors, the unconnected-overland eigenvectors also explained a significant 253 

fraction of the variance in fish data. However, this explained variance was almost completely shared 254 

with watercourse eigenvectors as shown by a partial RDA using both sets of spatial predictors 255 

(variance purely attributable to unconnected-overland was 0.4 % for the first dry season, < 0.1 % for 256 

the rainy season, and 4.9 % for the second dry season). Thus, because overland and watercourse 257 

distance matrices are correlated to some extent (0.49 to 0.62), both distance matrices provide spatial 258 

variables that are also correlated, causing a detectable shared component. For aquatic insects that have 259 

different dispersal modes (i.e., drifting along the watercourse during immature stages and flying 260 

overland at adult stages; Poff et al., 2006), the use of both types of distances might be necessary to 261 

explain species distributions. However, currently there is no tool to tease apart the shared component, 262 

so we cannot be confident if the variation explained by one of the two distances is spurious or not. It is 263 

important to keep this in mind when evaluating processes related to different types of distance 264 

matrices, as it is in the evaluation of gene flow by different dispersal routes (Chaput-Bardy et al., 265 

2009). 266 

Peres-Neto and Legendre (2010) discussed the influence of the number of spatial variables on 267 

the power to detect the exclusive effect of environmental predictors in a variation-partitioning 268 

framework. Although our results also highlight this effect (i.e., a reduction in the relative contribution 269 

of the environment), they were stable in relation to the number of variables in the sense that we 270 

detected a significant environmental fraction ([a], Table 1) in most cases. Most importantly for our 271 

discussion, however, the variability of the environmental fraction was also dependent on the type of 272 

distance matrix used. Thus, our results demonstrate that the number of spatial variables and the type of 273 

distance matrix used to generate spatial variables have a profound effect on the interpretation of 274 
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metacommunity models. For instance, the use of a simple overland distance matrix would suggest that 275 

a species-sorting model would be most appropriate (see Table 1), as found in several studies (e.g. 276 

Cottenie 2005; Vanschoenwinkel et al., 2007; Van der Gucht et al., 2007). On the other hand, the 277 

importance of dispersal-related processes in driving metacommunities structure increased 278 

conspicuously when the watercourse distance matrix was used (Table 1; see also Beisner et al., 2006 279 

for another analysis with fish data). In these cases, the results were consistent with a mixed (species-280 

sorting + mass effects) metacommunity, a pattern found in 29% of the 158 data sets analyzed by 281 

Cottenie (2005). 282 

Dispersal limitation appears to be the principal endogenous cause of spatial autocorrelation 283 

that is of interest to ecologists (Bahn, Krohn & O'Connor, 2008; Shurin, Cottenie & Hillebrand, 2009), 284 

and most of the discussion on the effect of “space” is in regard to dispersal limitation. However, 285 

spatial variables generated by eigenfunction analyses do not measure this directly, and much of the 286 

variance attributed to space may be due to the effects of unmeasured environmental variables (Diniz-287 

Filho et al., 2003; Hawkins et al., 2007). Also, Smith & Lundholm (2010), using simulated data, 288 

raised concerns about the use of variation partitioning as a method to tease apart the effects of niche 289 

and neutral processes, mainly due to the effects of the degree of dispersal limitation on both pure 290 

environmental and pure spatial variance fractions. When dispersal limitation is the primary mechanism 291 

creating species distribution patterns of lotic species, as in our simulations, spatial variables based on 292 

watercourse distances do explain more of the observed variance than spatial variables based on 293 

straight-line distances (i.e. overland eigenvectors). 294 

In the simulation study, about 60% of the variance explained was attributable to the shared 295 

component (i.e., the variability that either watercourse or overland eigenvectors was able to explain), 296 

but the exclusive variance explained by watercourse eigenvectors (note that simulated data were 297 

generated using an algorithm of dispersion only along watercourse corridors) was about 35%, while 298 

the exclusive variance explained by the overland eigenvectors was only about 3%, showing the 299 

importance of using the correct distance or connectivity matrix for eigenfunction spatial analyses. 300 

In this study, we assumed that dispersal limitation among sites was a simple function of 301 

distance along the watercourse. However, dispersal is not necessarily as easy in an upstream direction 302 

compared to downstream (Blanchet et al., 2008), or in small streams compared to large streams. If 303 

more were known about the natural history of the species, it might be possible to use more realistic 304 

distances and connectivity matrices. Even when organisms do not disperse along channel segments, 305 

other functions could represent matrix permeability, and account for differences in environmental 306 

conditions that could affect dispersal. For instance, Ver-Hoef et al. (2006) and Peterson et al. (2007) 307 

showed that spatial models that incorporate flow direction, as well as stream distance, were more 308 

adequate than models that only use stream distance. In an application of these models, Isaak et al. 309 

(2010) showed that spatial models significantly outperformed their nonspatial counterparts in 310 

predicting thermal habitats of salmonids. 311 



49 

 

We conclude that the use of Euclidean distances, despite their simplicity of definition, might 312 

not be the best choice for creating spatial predictors for eigenfunction spatial analyses. This is 313 

particularly important for aquatic systems, but may well apply to terrestrial systems depending on the 314 

environmental setting (e.g. fragmented or topographically variable landscapes) and on the vagility of 315 

the taxonomic group under study.  316 

 317 
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SUMMARY 24 

1. Many recent studies have quantified the relative importance of environmental variables and 25 

dispersal limitations in shaping the structure of stream communities. The effect of scale on the 26 

importance of these two factors has seldom been evaluated and the effect of niche properties, 27 

represented by substrate characteristics and stream properties, depend on environmental 28 

heterogeneity, which increases with the increase in spatial extent. Spatial processes causing 29 

spatial patterns, such as dispersal limitation, also depend on the scale of the study. 30 

2. We analyzed the distribution of caddisfly species in 89 Amazonian streams in relation to 31 

stream characteristics and spatial variables representing overland dispersal routes. The streams 32 

are distributed in three regions differing in spatial extent and environmental characteristics. 33 

We analyzed the data using partial Redundancy Analysis with two predictor datasets, one 34 

environmental and one spatial, to evaluate the variation in assemblage composition. We also 35 

separated caddisflies into good and bad dispersers to evaluate possible differences in 36 

responses of these two groups.  37 

3. The environmental component explained a higher proportion of variance in the assemblage 38 

composition than the spatial component. Spatial effects were evident only when analyzing 39 

data from the three regions together, although, the exclusive spatial fraction was quite low. 40 

Good dispersers responded similarly to the whole community, while poor dispersers were 41 

related to environmental variables only in one region and also were not related to spatial 42 

variables. 43 

4. Caddisflies were most affected by niche factors. The large environmental effect and small 44 

spatial effect conform to the use of these stream insects as good indicators of site properties 45 

and disturbances in monitoring programs. 46 

 47 

48 
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Introduction 49 

 50 

Most streams are environmentally heterogeneous at multiple spatial scales, from whole biomes to local 51 

substrates (Mykrä, Heino & Muotka 2007), and this heterogeneity generally regulates the patterns of 52 

distribution and abundance of stream organisms(Heino, Louhi & Muotka 2004). Substrate, 53 

limnological factors, biotic interactions, and frequency of spates are important factors influencing 54 

stream biota at all spatial scales (Bond & Downes 2000; Clausen & Biggs 1997; Heino et al., 2004; 55 

Olsen, Townsend & Matthaei 2001; Pringle 2001; Roque et al., 2010). In addition, due to higher, on 56 

average, connectivity, streams within drainages may be more biologically similar than streams in 57 

different drainages. The high similarity among communities inhabiting nearby streams may be due to 58 

both environmental similarity and the limited ability of species to disperse to distant streams in a 59 

metacommunity context. 60 

Two main types of factors can affect community compositions at local and regional scales. 61 

Local processes relate to species interactions and local environmental conditions, while regional 62 

processes are related to dispersal of organisms between communities in addition to environmental 63 

variables describing regional properties. In this context, two main frameworks have been used to 64 

discuss the control of species distribution (Brown et al., 2011). The idea that communities are 65 

principally structured in relation to niche properties is usually called species sorting (Cottenie 2005). 66 

Neutral theories treat individuals of all species as ecologically equivalent with identical dispersal 67 

capacity. According to this perspective, differences in distributions are created by random processes of 68 

mortality and colonization (Hubbell 2001). Determining the relative contributions of species sorting 69 

and neutral processes is currently the objective of many ecological studies (Logue et al., 2011). 70 

Variation partitioning analysis is frequently used to infer the relative importance of 71 

environmental factors and spatial variables in explaining the structure of biological assemblages 72 

(Peres-Neto & Legendre 2010 and references therein ; e.g. Peres-Neto et al., 2006). Partitioning the 73 

variation in assemblage data uses the species-data table as the response variable and environmental 74 

and spatial variables as predictors. Space is usually represented by a symmetric geographic distance 75 

matrix D containing n(n-1)/2 elements (where n is the number of sites). This matrix can be analyzed 76 

directly using partial Mantel tests (distance approach; Tuomisto & Ruokolainen 2006; Tuomisto & 77 

Ruokolainen 2008), but it is also possible to convert this matrix into orthogonal variables of length n, 78 

allowing the analysis of the species-assemblage data in its original form (the raw-data approach; 79 

Legendre, Borcard & Peres Neto 2005). The raw-data approach is usually based on eigenfunction 80 

analysis (e.g. Griffith & Peres-Neto 2006; Landeiro & Magnusson 2011; Peres-Neto & Legendre 81 

2010), which is considered the most flexible way to recover spatial patterns in the data (but see 82 

Landeiro et al., 2011). 83 

Eigenfunction analysis produces eigenvectors associated with large, intermediate, and small 84 

eigenvalues that represent, respectively, landscape wide trends (e.g., global), medium scales (e.g., 85 
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regional), and fine scales or patchiness (e.g., local). This flexibility comes with a cost for 86 

interpretation, but these methods are well suited to generate proxy spatial variables to represent 87 

dispersal and/or unmeasured environmental variables, which may be structured at different spatial 88 

scales (Blanchet, Legendre & Borcard 2008b; Landeiro et al., 2011). 89 

Aquatic insects are often used as indicators of environmental impacts, and this raises the 90 

question of whether differences in assemblage structure are due to the environment or are simply the 91 

consequence of the distances among sites. The expected effect of distance on differences among 92 

biological assemblages is nonlinear if one assumes a pure neutral model (Diniz et al., 2012; Hubbell 93 

2001; Hubbell 2005; Rosindell, Hubbell & Etienne 2011), so the effect of distance depends on the 94 

scale of the investigation. There are many questions that can be approached with distance analyses 95 

(Landeiro & Magnusson 2011), but the objective in environmental impact studies is simply to remove 96 

the confounding effect of space so that valid tests can be made concerning environmental impacts. 97 

Caddisfly (Trichoptera) larvae frequently have been used in monitoring programs and as 98 

bioindicators of organic pollution (e.g. Couceiro et al., 2007) and are important components of 99 

Amazonian streams, playing an important role in food webs (Walker, Henderson & Sterry 1991) and 100 

ecological processes, such as leaf breakdown (Landeiro et al., 2010; Landeiro, Hamada & Melo 2008). 101 

Landeiro et al. (2011) concluded that species of Trichoptera have good local dispersal abilities as 102 

adults, because community structure was related to Euclidean (overland) distances rather than 103 

watercourse distances in a single, relatively small (100 km
2
) region. Caddisflies are commonly used as 104 

bioindicators due to their relationships with environmental conditions (Rosenberg & Resh 1993), and 105 

because they are good dispersers at local scales (Bilton, Freeland & Okamura 2001; Collier & Smith 106 

1998), which might minimize distance effects and spatial pattern. However, the effects of distance 107 

depend on the scale of the study, which in turn determines the length of many environmental gradients 108 

(Gilbert & Lechowicz 2004). Environmental impacts may be limited to local scales, or may affect 109 

large regions. Therefore, the relative effects of distance and environment on community similarity 110 

should be evaluated over multiple spatial scales (Brown et al., 2011). 111 

We investigated the effects of spatial scale on the structure of assemblages of caddisfly larvae in 112 

89 Amazonian streams in three regions near Manaus (Brazil). These regions vary in spatial extent and 113 

in the spatial arrangement of sampling sites. We hypothesized that the importance of environmental 114 

and spatial variables would be higher in the analyses including all data than in analyses of the data for 115 

each region separately. We expected that the region with the lowest spatial extent would have low 116 

environmental heterogeneity and that assemblage composition would be poorly predicted by spatial 117 

variables. Conversely, data sampled at broader scales should reveal higher environmental 118 

heterogeneity and higher spatial effects (the latter due to increased effects of dispersal limitation). We 119 

also classified caddisflies into good and bad dispersal classes, predicting that good dispersers are more 120 

related to environmental variables and that bad dispersers are more related to spatial variables. We 121 

show that variation in species composition of Amazonian caddisfly is better predicted by 122 
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environmental than by spatial variables, even when only species considered poor dispersers were 123 

included in the analysis. These results are in agreement with the statements that caddisflies are reliable 124 

indicators of environmental impact in this region that holds so much of the world´s biodiversity. 125 

 126 

Methods 127 

 128 

Study area 129 

 130 

The data used in this study were obtained from 89 stream sites, between April 2002 and February 131 

2003, in Central Amazonia (see Fittkau 1964 for more details on Central Amazonia). We sampled 132 

black-water streams (i.e. streams with dark waters caused by the humic and fulvic acids leaching from 133 

decomposing leaves leaves) in areas that are not seasonally flooded (called “terra firme” forests in the 134 

Amazonian literature). In general, streams in Central Amazonia are characterized by nutrient poor, 135 

acid waters, and low daily and annual variation in water temperature, with annual and daily means 136 

close to 25 ºC (Sioli 1984). 137 

We sampled immature caddisflies at 89 sites distributed in three regions (Fig. 1). The first 138 

region included 39 sites in the Ducke Reserve (hereafter DR; 03º00'00''S; 59º52'40''W), a 10 × 10 km 139 

reserve on the edge of Manaus City. The second region is maintained by the Biological Dynamics of 140 

Forest Fragments Project (BD hereafter) located about 70 km north of Manaus (02º26'02"S; 141 

59º46'32"W). The BD comprises areas of old-growth and regrowth forests, as well as pastures. We 142 

obtained samples from 20 streams in the BD region. The third region was Presidente Figueiredo 143 

County (hereafter called PF), located about 120 km north of Manaus (02º01'02"S; 60º01'30"W), where 144 

we sampled 30 streams. The spatial extents, as defined by the most widely spaced sites in the regions, 145 

were about 10 km at DR, 40 km at BD, and 100 km at PF region (Fig. 1). 146 

Most streams in DR and BD have sandy bottoms, while those in PF have bedrock and stones 147 

(boulders, cobbles, pebbles, and gravel) in addition to sand. Streams in PF have fast-flowing waters 148 

and many waterfalls due to an ancient Tertiary plateau that is responsible for the sloped relief in 149 

relation to the more geologically recent, low-elevation, Quaternary formations underlying BD and DR. 150 

 151 

Sampling details 152 

 153 

Before sampling, the proportion of each substrate type (woody debris, leaves, roots, sand, 154 

macrophytes, stones [cobbles, pebbles, and gravel], and bedrock) was visually estimated following the 155 

method described by McCreadie & Colbo (1991). We took three sample units of 2.25 m
2
 at least 5 m 156 

apart within a stream reach of 50 m, and sampled all substrate available in each of the three sample 157 

units using a D-net (mesh size of 250 µm). In some cases, where the main substrate was composed by 158 

bedrock we used a Surber-sampler with the same mesh size. Caddisflies attached to bedrock and 159 
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stones were removed using tweezers and spatulas. Samples were stored in plastic bags and fixed in 160 

96% ethyl alcohol. In the laboratory, the caddisflies were separated under a stereomicroscope and 161 

designated to morphospecies or, when possible, to species.  162 

Physicochemical variables were also measured at each site. Water temperature was measured 163 

using a hand-held thermometer. Conductivity and pH were measured with a portable conductivity and 164 

pH meter. Water velocity (V; cm/sec) was estimated using the method described by Craig (1987). 165 

Stream discharge (D) was estimated as D = W×D×V, where W is stream width (m) and D is stream 166 

depth (m).  167 

 168 

Data analysis 169 

 170 

To test whether environmental heterogeneity differed among regions, we used analysis of 171 

homogeneity of multivariate dispersions (hereafter PERMDISP). PERMDISP is a multivariate 172 

analogue of Levene's test for homogeneity of variances and the statistic (average distance of group 173 

members to the group centroid) is tested by permutation (Anderson 2006). In addition, we tested 174 

whether the environmental characteristics differed among the regions using a non-parametric 175 

multivariate analysis of variance (npMANOVA; Anderson 2001). Environmental data (except pH) 176 

were log-transformed before analysis. Data in percentages were transformed to arcsine square root. 177 

Afterward, we standardized all variables to mean zero and unit variance. The Euclidean distances 178 

based on standardized environmental data were used in the PERMDISP and npMANOVA. 179 

Using the log(x+1) abundance data we calculated the Bray–Curtis index to represent the 180 

dissimilarity in species composition among streams. When using assemblage dissimilarities, the 181 

average distance to group centroid (i.e. multivariate dispersion) is a measure of overall species 182 

turnover, or beta diversity in the region (Anderson, Ellingsen & McArdle 2006). Therefore, we used 183 

the PERMDISP to evaluate if beta diversity differed among the regions (i.e. differences in multivariate 184 

dispersions). Tukey's test was used for pairwise comparisons between regions. We also used 185 

npMANOVA to test whether species composition differed among regions. 186 

Caddisflies migrate overland in the adult stages and, although in-stream migration through larval 187 

drift and upstream adult flight are well recognized for caddisflies (e.g. Petersen et al., 2004), a matrix 188 

of Euclidean (overland) distances between sample sites provides adequate descriptors of dispersal 189 

routes and spatial patterns (Landeiro et al., 2011). We analyzed the data using the raw data approach 190 

(Legendre et al., 2005), through a partial Redundancy Analysis (pRDA), to evaluate the relative 191 

contributions of environmental and spatial variables to assemblage patterns. The spatial variables used 192 

in the pRDA were obtained by means of an eigenfunction analysis using Principal Coordinates of 193 

Neighbor Matrices (PCNM; Borcard & Legendre 2002). The PCNM approach uses a truncated matrix 194 

of geographic distances in a principal coordinate analysis to generate the spatial variables that 195 

represent spatial patterns ranging from broad (low order PCNMs) to fine scales (high order PCNMs). 196 
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After the creation of the spatial variables, we ran separate RDA models for environmental and spatial 197 

variables and evaluated the significance of these models. In the cases where the full model was 198 

statistically significant (as indicated by 9999 Monte Carlo permutations) we used a forward selection 199 

procedure (Blanchet, Legendre & Borcard 2008a) to retain only the spatial and environmental 200 

variables most related to caddisfly-assemblages to be used in the pRDA. By using pRDA, we obtained 201 

the components of variance explained exclusively by the environmental variables [a], by the 202 

environmental variables that are spatially structured [b], uniquely by the spatial variables [c] and the 203 

unexplained variance [d]. We ran the pRDA and variance partitioning for data from all regions 204 

combined, and separately for each region. Values of variance partitioning reported for pRDA are 205 

adjusted R
2
 (Peres-Neto et al., 2006). Someone might argue that rare species have great effects on 206 

results of community analyses; therefore, we analyzed the data removing species that occurred in one 207 

to ten streams to evaluate possible effect in the results. 208 

In addition, we attempted to account for dispersal limitation of species classifying them as good 209 

and poor dispersers. The optimal way to classify species as good or poor disperser is based on genetic 210 

variation of population across geographic distance. However, this information is lacking for many 211 

parts of the world and generally is done for a few species. Our solution was to classify species 212 

exclusive to each region as poor dispersers and species occurring in all regions as good dispersers. 213 

Then we also analyzed the data of each area considering the dispersal ability of species. 214 

All analyses were done using the vegan (Oksanen et al., 2011) and packfor (Dray, Legendre & 215 

Blanchet 2009) libraries available for the R environment for statistical computing (R Development 216 

Core Team 2011). 217 

 218 

Results  219 

 220 

We collected a total of 98 morphospecies (Appendix 1), 69 from DR, 85 from PF, and 69 from BD. 221 

The average number of species per stream was 22.5 species, ranging from 2 to 39. On average, DR 222 

streams had a higher number of species per stream than PF and BD (Table 1). The number of 223 

exclusive species (considered poor dispersers) was highest at PF (18), and much lower in DR (8) and 224 

BD (4). Fifty one species occurred in the three areas and were considered good dispersers. 225 

 226 

Environmental and biological differences among the regions 227 

 228 

Assemblage composition and environmental characteristics differed among regions (npMANOVA; 229 

F2,86 = 8.07, F2,86 = 29.82, respectively, p< 0.001). Environmental variability (Fig. 2A) also differed 230 

among the regions (PERMDISP, F2,86 = 8.30, p < 0.001), where PF was the region with the highest 231 

environmental variability (average distance to centroid), followed by BD and DR (Table 1). However, 232 

PF and BD did not differ significantly in their environmental variability (Tukey post-hoc tests; p = 233 
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0.91), indicating that these regions are equally heterogeneous, while DR, the region with lower 234 

average distance to group centroid (i.e. less environmental heterogeneity), differed in environmental 235 

conditions from PF (Tukey; p < 0.001) and from BD (Tukey; p < 0.013).  236 

The average distance to group centroid based on assemblage dissimilarities (i.e. species turnover 237 

or beta diversity) also differed among the regions (PERMDISP, F2,86= 14.73, p <0.001, Fig. 2B). PF 238 

had the highest average distance to group centroid, followed by BD and DR (Table 1). PF differed 239 

significantly from BD and DR in average distance to group centroid (Tukey post-hoc test; p=0.005; 240 

p<0.001; respectively), but DR and BD did not differ significantly. 241 

 242 

Variation in assemblage composition 243 

 244 

In line with the results provided by npMANOVA, Principal Coordinate Analysis showed a clear 245 

pattern differentiating the caddisfly assemblage composition in PF streams from the other regions (Fig. 246 

2B). For the pooled dataset, the full environmental and the full spatial models (i.e. including all 247 

variables) were significant. The forward selection procedure retained 10 environmental variables and 248 

eight spatial variables in the reduced models (Table 2). At this large scale (the three regions together), 249 

24.3% of the variance was explained by the predictor variables. The exclusive fraction explained by 250 

the environment [a] was 11% and the spatially structured environmental variation [b] accounted for 251 

9.5%. There was a significant relationship with the spatial variables, but they accounted for only 3.8% 252 

of the variance in assemblage composition. The caddisflies were sensitive to substrate type, and the 253 

streams with large areas of bedrock and macrophytes were distinct from other streams in the same 254 

region. The DR and BD streams differed in other environmental features (Fig. 2A), but these 255 

differences were not important in predicting assemblage composition. 256 

The full spatial model was not significant for data from individual regions analyzed separately 257 

(i.e. there is no significant spatial patterns within regions). The full environmental model was 258 

significant in all regions. At DR, three environmental variables (discharge, conductivity, and 259 

percentage of stones) were retained in the reduced model, which explained 16.6% of the variance in 260 

assemblage data. At BD two environmental variables (depth and temperature) were retained and 261 

accounted for 14.3% of the variance in assemblage data. At PF, stream depth, width, temperature, and 262 

conductivity were the variables retained, accounting for 14.6 % of the variance. The variance 263 

explained exclusively by the environment was higher within regions (DR = 16.6%, BD = 14.3%, PF = 264 

14.6) than for pooled data (11%). However, the fraction [a+b] (environment [a] plus spatially 265 

structured environment [b]) was higher for the pooled data (Table 2). The removal of rare species did 266 

not caused great changes in the overall results (Table S1). 267 

The result of analysis including only common species (i.e. good dispersers) were similar to the 268 

results above, in which environmental patters are significant and lack of spatial patterns (Table 3). On 269 
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the other hand, exclusive species (i.e. poor dispersers) were related to environmental variables only in 270 

DR and spatial patterns were not significant in any region (Table 3). 271 

 272 

Discussion 273 

 274 

The three regions differed in environmental characteristics and caddisfly assemblages, and both beta-275 

diversity and environmental variability were related to spatial extent. Thus, as predicted by Anderson 276 

(2006), there was a positive association between biological and environmental variability. This 277 

association was mediated by spatial extent, because the relative importance of abiotic factors changes 278 

across spatial scales (Jackson, Peres-Neto & Olden 2001). However, assemblage structure was not 279 

better explained by environmental and spatial variables in PF, the region with largest spatial extent and 280 

environmental heterogeneity. For all regions, assemblage structure was better explained by 281 

environmental descriptors than by spatial variables. When the analysis were done taking into account 282 

dispersal abilities of species the results were similar to those for the whole assemblage, although the 283 

environmental patterns were significant only in DR region for poor disperser assemblage. Therefore, it 284 

appears that, at the scales we studied, caddisfly species are more dependent on species sorting factors 285 

(i.e. relationship between the environmental gradients and species composition) than on dispersal 286 

processes. Similar results have been obtained for other freshwater organisms, such as 287 

macroinvertebrates (Mykrä et al., 2007), snails (Hoverman et al., 2011), and bacterial community 288 

composition (Van der Gucht et al., 2007), as well as for terrestrial organisms, such as and plants 289 

(Gilbert & Lechowicz 2004; Ruokolainen et al., 2007; Tuomisto, Ruokolainen & Yli-Halla 2003), 290 

highlighting the “power of species sorting” mechanisms (Leibold et al., 2004; Van der Gucht et al., 291 

2007). 292 

Geomorphological and hydrological features may account for the differences in assemblage 293 

composition between regions in our study. For instance, most streams in the PF region contain 294 

bedrock and free stones as the main available substrates, whereas most BD and DR streams have 295 

sandy bottoms. Stream substrate has been recognized as an important factor controlling the 296 

distribution of caddisflies in other regions (Urbanic, Toman & Krusnik 2005; Wiggins 1996), as well 297 

as other aquatic insects (Boyero 2003; Buss et al., 2004; Siqueira et al., 2012). In our study, spatial 298 

patterning observed in the analysis using all data might be due to the lack of environmental variables 299 

describing regional patterns, while regional patterns were well described by the spatial variables 300 

generated with PCNM analysis. Indeed, the PCNMs retained for the pRDA model were those 301 

representing broad spatial scales (first order PCNMs; Borcard & Legendre 2002). However, given the 302 

lack of spatial patterns within areas, it is unlikely that the inclusion of spatially patterned variables 303 

would increase the coefficient of determination of our models.   304 

The dispersal modes of caddisflies are dependent on their life cycle stage. Larval stages disperse 305 

by drifting downstream, mainly during spate events where the dispersal distance is dependent on spate 306 
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intensity. Adults are known to disperse upstream by lateral flight to other streams, varying among 307 

species. We expected to observe spatial patterns caused by dispersal limitation in PF area because its 308 

high spatial extent, however, spatial patterns were not observed.” The lack of spatial effects in the PF 309 

region might be related to the hydrological characteristics of that area. In PF, streams are wider, with 310 

more rapids and higher water velocity, factors that increase the intensity of disturbances during spate 311 

events. Spate events might carry organisms for long distances and obscure the relationship between 312 

niche factors and dispersal ability trait. At DR and BD, the streams are smaller and streams overflow 313 

laterally during spates, rather than rushing downstream (Espírito-Santo et al., 2009; Pazin et al., 2006).  314 

Some streams sampled in PF are wider and have lower canopy cover than the other two regions, 315 

allowing high light availability and algal proliferation (Vannote et al., 1980). Accordingly, most 316 

species found in PF feed on algae, such as six species of the family Hydroptilidae and three species in 317 

the genus Smicridea [Hydropsychidae] (Merritt & Cummins 1996; Oliveira & Froehlich 1996; Pes, 318 

Hamada & Soares 2008) that were found only in PF streams. Atopsyche sp. [Hydrobiosidae] and 319 

Synoestropsis sp. [Hydropsychidae] also found only in PF, are generally associated with bedrock 320 

substrates in wider streams in Central Amazonia. 321 

Recognizing the role of niche and spatial effects in community composition is currently one of 322 

the main goals of several branches of ecology. According to Logue et al., (2011) “species-sorting is 323 

the only paradigm that can clearly be distinguished, metacommunities characterized by species-sorting 324 

processes can, however, be further scrutinized for high and limited dispersal; the origin of spatial 325 

variation can be difficult to assess”. Variation partitioning is affected by the lack of important spatially 326 

structured environmental predictors, which causes an overestimation of the pure spatial component [c], 327 

precluding its use as an absolute indicator of neutral processes (Laliberté et al., 2009).  328 

We used only environmental variables describing the variation at local scale (stream reaches), 329 

and inclusion of regional variables could improve understanding of species distributions and increase 330 

the percentage of variance explained (Roque et al., 2010). Galbraith et al. (2008) found that 22.4% and 331 

24.2% of the explained variance in caddisfly species distribution in Oklahoma and Arkansas streams 332 

was accounted for exclusively by regional environmental variables and by regional spatially-structured 333 

variables (shared component), respectively. However, the spatial variables generated with PCNM are 334 

expected to form clumps similar to those formed by regional environmental variables. The high 335 

variance explained exclusively by regional variables in the study of Galbraith et al. (2008) might be 336 

due the use of trend-surface analysis, a technique less flexible than PCNM to recover spatial patterns 337 

at local scales (Borcard & Legendre 2002; Griffith & Peres-Neto 2006). The lack of spatial component 338 

observed within regions indicates that inclusion of regional variables would probably not help to 339 

explain caddisfly species distribution within regions. However, the stronger spatial patterns for the 340 

data pooled from the three regions, indicate that inclusion of regional properties, such as drainage 341 

basins or geological formations, may be an appropriate strategy where potential environmental 342 

impacts cross regional boundaries. 343 
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The percentage of variance in species composition explained by environmental variables did not 344 

increased with the increase in environmental heterogeneity, but was similarly predicted by species 345 

sorting mechanisms (sensu Leibold et al., 2004). However, spatial effects, or dispersal limitation, were 346 

not observed even in PF, the area with high spatial extent. This was unexpected mainly for poor 347 

disperser assemblage, considering that PF covered a much larger area than the other regions. The 348 

strength of association between geographical distance and assemblage dissimilarity depends on the 349 

grain size and on the spatial extent. In general, large spatial extents should produce stronger 350 

relationships between assemblage dissimilarity and geographical distance (Nekola & White 1999). 351 

Brown & Swan (2010) and Heino et al. (2011), in studies carried out at a similar spatial extent (~100 352 

km ), observed low spatial effects and attributed their findings to the possibility that the study regions 353 

were too small in spatial extent for the detection of strong dispersal limitation. Thompson & 354 

Townsend (2006) and Maloney & Munguia (2011) also analysed data on macroinvertebrates at similar 355 

spatial extent, and found higher spatial effects, but Astorga et al., (2012) found that freshwater 356 

organisms are more controlled by environmental factors than by limited dispersal over distances up to 357 

1100 km in Finland, though the species with low dispersal abilities were more related to spatial 358 

distance. 359 

A possible reason for these different results is the differences in the dispersal ability of the fauna 360 

sampled in each region. In addition, there are other species traits, such as life-history and dispersal 361 

capacity, that should be accounted for in attempts to disentangle niche versus dispersal processes. 362 

Information on such traits is generally lacking for Amazonian caddisflies, and studies of genetic 363 

variation of populations might give the information on dispersal abilities. Another possible 364 

explanation is that these studies focused on the entire community rather than on a small subset of the 365 

freshwater community, for example, subsets of species with similar dispersal abilities (Brown et al., 366 

2011). Recognizing the role of niche and spatial effects in community composition is currently one of 367 

the main goals of several branches of ecology. There are several analytical issues that need further 368 

development, but more knowledge of species traits and genetic variability among populations could 369 

help to disentangle spatial and niche processes. Such species traits should ideally be incorporated into 370 

metacommunity analysis, however, this kind of information is lacking for many parts of the world, 371 

including the Amazon. Empirical studies of dispersal would provide the information necessary to 372 

adequately include dispersal processes in stream metacommunity ecology (Brown et al., 2011). 373 

Studying dispersal abilities through genetic measures might be the solution, but it is quite difficult and 374 

expensive, generally done with a few number of species (Miller, Blinn & Keim 2002; Wilcock et al., 375 

2007). 376 

 377 

Conclusion 378 

 379 
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Before a particular taxon can be used as an environmental indicator it is important to evaluate 380 

the effects of spatial scale and environmental heterogeneity on differences among assemblages. The 381 

movement of aquatic insects via different dispersal routes has received considerable attention (Bilton 382 

et al., 2001; Collier & Smith 1998). Downstream drift, upstream flight, and between-stream 383 

migrations through lateral migrations (Miller et al., 2002) increase genetic homogeneity and similarity 384 

of species composition among streams and stream reaches (i.e. decrease beta diversity). In the absence 385 

of environmental effects, dispersal ability of species is a major control of the turnover. Our results 386 

show that community composition was related to spatial processes when all sites are analyzed jointly. 387 

However, when we analyzed the data from each region separately, community composition were 388 

unrelated to spatial processes (even in PF that have spatial extent of more than 110 km, similar to the 389 

longer distance of the pooled data). Even when there were significant effects of spatial variables, 390 

environmental properties explained much more variation than spatial one. In temperate regions, 391 

caddisflies are considered to be useful indicators for biomonitoring due their sensitivity to aquatic 392 

conditions (Rosenberg & Resh 1993). In view of the higher environmental control (i.e. species sorting) 393 

observed, our results support the use of caddisflies as an indicator of water quality and environmental 394 

conditions, even in megadiverse tropical regions such as the Amazon. 395 
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Table 1: Results for the analysis of homogeneity of multivariate dispersions. Shown are the mean 587 

(±SD) distances to the group centroid. Last row shows the average number of species per stream at 588 

each region. 589 

  DR BD PF 

Spatial extent (decimal degress) 0.03±0.01 0.10±0.07 0.19±0.17 

Environmental dispersion 2.15±0.86 2.96 ± 1.39 3.08±0.91 

Assemblage composition dispersion 0.45±0.05 0.49±0.07 0.56±0.08 

Mean number of species per stream 24.6±6.0 20.1±7.1 21.6±6.9 

 590 

Table 2: Variation partitioning results based on partial RDA analysis. The final pRDA model using 591 

only the variables retained with the forward selection procedure is shown. Numbers for spatial 592 

variables indicate their order, where lower orders represent broad scale patterns. P spat and P env give 593 

the significance for the full spatial and full environmental models (i.e. using all variables available). 594 

The spatial and environmental variables are shown in the order they were retained in the forward 595 

selection procedure. [a] = environmental fraction; [b] = shared fraction; [c] = spatial fraction. The 596 

significance values for the environmental and spatial fractions are given. The full spatial models for 597 

DR, BD, and PF are not significant, therefore, the forward selection was not done. 598 

  

Full model 

significance   
Variables retained 

  
Fractions 

 Datase

t P env P spat   Spatial Environmental   [a] [b] [c] 

All 0.001 0.001 
 

1,2,6,9, 

3,18,7,24 

Width, sand, depth, litter, 

temperature, pH, stone, 

conductivity, macrophytes, 

bedrock        

 
0.11

*
 

0.09

5 
0.038

*
 

DR 0.001 0.34   - Discharge, conductivity, stone 
 

0.166
*
 - - 

BD 0.008 0.1   - Depth, temperature 
 

0.143
*
 - - 

PF 0.001 0.56   - 
Width, depth, temperature, 

conductivity  
0.146

*
 - - 

*
p < 0.001; - The forward selection was not done 599 

  600 
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Table 3: Variation partitioning analysis of species tables divided into exclusive species and species 601 

common to all regions. Results based on partial RDA analysis. The final pRDA model using only the 602 

variables retained with the forward selection procedure is shown. P spat and P env give the 603 

significance for the full spatial and full environmental models (i.e. using all variables available). The 604 

spatial and environmental variables are shown in the order they were retained in the forward selection 605 

procedure. [a] = environmental fraction; [b] = shared fraction; [c] = spatial fraction. The significance 606 

values for the environmental and spatial fractions are given. 607 

 

  

Full model 

significance   
Variables retained 

  
Fractions 

Dataset Region P env P spat 

 

Spatial Environmental   [a] [b] [c] 

Exclusive 

species 

DR 0.040 0.235   - Width, conductivity 
 

0.227
*
 - - 

BD 0.161 0.362   - - 
 

 - - 

PF 0.231 0.626   - - 
 

 - - 

Common 

Species 

DR 0.001 0.370  - Discharge, conductivity  0.160
*
 - - 

BD 0.031 0.198  - Depth, temperature  0.178
* 

- - 

PF 0.002 0.511  - Depth, width, sand  0.160
*
 - - 

*
p < 0.001; - The forward selection was not done  608 

609 
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610 
Figure 1: Map of Brazil and geographical location of sampling sites. Ducke Reserve (DR), Presidente 611 

Figueiredo (PF), and the reserves of the Biological Dynamics of Forest Fragments Project (BD). 612 

 613 

Figure 2: Principal Coordinate Analysis (PCoA), used in the PERMDISP procedure, illustrating the 614 

differences in A) environmental conditions and B) assemblage composition. The assemblage 615 

composition observed in PF differed statistically from those of DR and BD. The environmental 616 

dissimilarity matrix used in the PCoA was calculated using the Euclidean distance on standardized 617 

environmental data. The assemblage dissimilarity matrix used in the PCoA was calculated on 618 
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abundance data (x) transformed to log(x + 1). Polygons delimitate samples from the same sample 619 

region. 620 
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ABSTRACT:  1 

Anurans are one of the most endangered biological groups, and their sensitivity to environmental 2 

changes makes them a useful tool for biomonitoring programs. Species with close relationships to 3 

environmental variables are those more threatened by environmental changes. However, species 4 

without environmental associations that show patterns more related to spatial factors, such as dispersal 5 

limitation, might be less affected by environmental changes and less threatened by global warming. 6 

We evaluated the distribution of anurans in 72 plots in central Amazonia, relating them to 7 

environmental factors and other factors that induce spatial clumping. We predicted that species with 8 

aquatic reproduction would be more dependent on environmental conditions than species with 9 

terrestrial reproduction, which we predicted to be more affected by factors that induce spatial patterns 10 

unrelated to known environmental predictors. Combining all species in the same analysis, the spatial 11 

pattern was stronger than that induced by the environmental factors included in the analysis. However, 12 

the observed pattern was highly dependent on the reproductive mode of species. Species with aquatic 13 

reproduction were more related to the environmental variables, while species with terrestrial 14 

reproduction showed strong spatial patterns. These findings are relevant to development of 15 

conservation strategies and biological monitoring programs. Because species strongly influenced by 16 

environmental controls may be more sensitive to specific threats, such as conversion of riparian areas, 17 

whereas species that do not have restrictive needs for reproduction, but which show strong 18 

associations with forests could be better indicators of general environmental degradation associated 19 

with climate change or selective timber harvesting. 20 

Key words: anuran assemblages; Central Amazon; dispersal limitation; Neotropics; niche control; 21 

spatial patterns; variance partitioning, redundancy analysis 22 

 23 

  24 
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RESUMO:  1 

Anuros são um dos grupos biológicos mais ameaçados e sua sensibilidade às mudanças ambientais os 2 

torna uma ferramenta útil para programas de biomonitoramento. Espécies com distribuição 3 

relacionadas às variáveis ambientais são as mais ameaçadas por mudanças ambientais. Entretanto, as 4 

espécies sem associações ambientais e que mostram padrões mais relacionados a fatores espaciais, 5 

como dispersão limitada, podem ser menos afetadas por mudanças ambientais e menos ameaçadas 6 

pelo aquecimento global. Avaliamos a distribuição de anuros em 72 parcelas na Amazônia central, 7 

relacionando-os a fatores ambientais e a fatores que induzem agregação espacial. Previmos que 8 

espécies com reprodução aquática seriam mais dependentes das condições ambientais que espécies 9 

com reprodução terrestre, que previmos ser mais afetadas por fatores que induzem padrões espaciais 10 

alheios aos fatores ambientais. Combinando todas espécies na mesma análise, o padrão espacial foi 11 

mais forte do que o produzido pelas variáveis ambientais incluídas nas análises. Entretanto, o padrão 12 

observado depende muito do modo reprodutivo das espécies. Espécies com reprodução aquática foram 13 

relacionadas com as variáveis ambientais, enquanto espécies com reprodução terrestre mostraram 14 

padrões espaciais. Estes resultados são relevantes para o desenvolvimento de estratégias de 15 

conservação e para os programas de controle biológico. Pois as espécies fortemente influenciadas pelo 16 

ambiente podem ser mais sensíveis a ameaças específicas, como a conversão de matas ciliares, ao 17 

passo que espécies sem necessidades ambientais restritivas para a reprodução, mas que mostram 18 

associações fortes com as florestas, podem ser melhores indicadores de degradação ambiental, em 19 

geral associadas a alterações climáticas ou a extração seletiva de madeira. 20 

  21 
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INTRODUCTION 1 

AMPHIBIAN SPECIES ARE THREATENED BY MANY FACTORS INCLUDING habitat loss, habitat 2 

fragmentation, diseases and pollution throughout the Neotropics (Loyola et al., 2008; AmphibiaWeb, 3 

2011). About 32 percent of amphibian species are threatened or extinct (IUCN, 2010). Amphibian 4 

species are considered sensitive to environmental changes (e.g. Vallan, 2000), generally 5 

associated to their strong endemism and physiological constraints. Climate change is a major threat to 6 

amphibian biodiversity (Hero et al., 2006) and management actions are urgent (Shoo et al., 2011). 7 

The distribution of anurans is known to be affected by many biotic and abiotic factors, such as 8 

availability of breeding habitats (Zimmerman & Bierregaard, 1986), litter cover (Heinen, 1992), 9 

vegetation structure (Pearman, 1997), and structural diversity of habitats (Ernst et al., 2006). In 10 

tropical rainforests, topography, soil, leaf litter depth and vegetation are considered the major factors 11 

affecting anuran species distribution (Lieberman, 1986; Fauth et al., 1989; Allmon, 1991; Giaretta et 12 

al., 1999; Vonesh, 2001). However, anuran species with different developmental modes might respond 13 

to habitat disturbance in different ways (Loyola et al., 2008). In Amazon forests, the abundance of 14 

terrestrial breeding species is affected by topography and soil features (Menin et al., 2007), whereas 15 

the abundance and occurrence of aquatic breeding species are affected mainly by the distance from 16 

streams (Menin et al., 2011). 17 

In general, as in most studies with other taxa, only environmental constraints have been 18 

evaluated in analysis of anuran species distribution. However, spatial factors related to dispersal 19 

ability have been evaluated for a few species (Jones et al., 2006). Neutral theory of biogeography and 20 

biodiversity posits that the patterns of abundance and distribution of species can be understood by 21 

models that consider individuals as if they were equivalent in birth, death and dispersal rates, and in 22 

their competitive abilities. Therefore, species spatial distribution patterns, such as the distance decay 23 

of similarity in ecological communities, would be the result of stochasticity in dispersal limitation 24 

rather than to species niche properties (Hubbell, 2001; Rosindell et al., 2011). Therefore, spatial 25 

aggregations may occur for reasons other than direct environmental influences. Many authors have 26 

included spatial factors in their models, trying to tease apart the effects of niche properties from those 27 

of spatial patterns not directly related to the measured environmental factors through variance 28 

partitioning techniques (Borcard et al., 1992; Peres-Neto et al., 2006). It is important to emphasize that 29 

neutral theory tries to explain why there is so little variation among communities at local scales, while 30 

studies of variance partitioning focus only on that part of the community that varies spatially. 31 

Although many recent studies on metacommunity dynamics have investigated the role of spatial 32 

processes in light of the predictions given by the neutral theory (Linares-Palomino & Kessler, 2009; 33 

Bonada et al., 2011), few have done that with a special focus on conservation biology. 34 
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Here, we evaluate the environmental and spatial processes controlling anuran species 1 

assemblages at 72 plots in an Amazon forest. Besides estimating the relative role of these processes in 2 

controlling overall assemblages we separated the species with aquatic reproduction from those with 3 

terrestrial reproduction to evaluate whether they respond to the same factors. Because anurans are very 4 

sensitive to environmental changes we hypothesized that the environmental control would be higher 5 

than the spatial control, and that species with different types of reproduction would differ in their 6 

relationships with environmental and spatial variables. More specifically, we predicted that species 7 

with terrestrial reproduction would be more affected by spatial constraints, because their distribution is 8 

more restricted by dispersal limitation than by dependence on water resources, and that species with 9 

aquatic reproduction would be more controlled by niche factors associated with water availability.  10 

 11 

METHODS 12 

 13 

STUDY AREA.—Our study was undertaken in the Reserva Florestal Adolpho Ducke (RFAD, 02
o
55’ 14 

and 03
o
01’S, 59

o
53’ and 59

o
59’W), adjacent to the city of Manaus, Amazonas state, Brazil (Fig. 1). 15 

The reserve covers 10,000 ha of terra firme (non-flooded) rainforest, a well-drained forest not subject 16 

to seasonal inundation. The forest is characterized by a 30-37 m tall closed canopy, with emergents 17 

growing to 40-45 m (Ribeiro et al., 1999). The understorey contains abundant sessile palms 18 

(Astrocaryum spp. and Attalea spp.; Ribeiro et al. 1999). The climate is characterized by a rainy 19 

season from November to May and a dry season during the rest of the year (Marques Filho et al., 20 

1981). Mean annual temperature is approximately 26
o
 C (Marques Filho et al., 1981) and mean annual 21 

rainfall between 1985 and 2004  was 2489 mm. 22 

 23 

FIGURE 1: Location of Ducke Reserve adjacent to the city of Manaus in the Brazilian Amazon. 24 

Points indicate 1 km equidistant sample plots. 25 

 26 

 Manaus
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BIOLOGICAL DATA .—We sampled anurans during three diurnal samples (November–December 1 

2002, February–April 2003 and January–February 2004) and five nocturnal samples (November–2 

December 2002, March–May 2003, November–December 2003, January–March 2004 and April–May 3 

2004). Data were collected in 72 plots systematically distributed over a 64-km
2
 grid formed by 8-km 4 

long trails (Fig 1, see also Menin et al., 2007; 2008 for more information). Each plot was at least 1 km 5 

distant from any other. Plots were 250 m long and positioned to follow altitudinal contour lines, and 6 

thus minimized altitudinal and soil variation within each plot (Magnusson et al., 2005a). All plots 7 

were at least 1 km distant from the reserve edges. Surveys occurred only during the rainy season 8 

(November to May). 9 

Diurnal surveys lasted about 2 h per plot and were conducted between 08:00 and 16:00 h by two 10 

people walking along a 250 m x 1 m plot. Observers visually scanned and gently turned over the leaf-11 

litter, detecting individuals by visual encounter. The two first surveys were conducted by the same 12 

person (FW and field assistant), but in the third survey, a member was changed (two field assistants 13 

with a lot of field experience). Nocturnal samples were carried out by using simultaneous visual 14 

encounter surveys and auditory sampling (Heyer et al., 1994). We sampled each plot for about one 15 

hour between 18:30 and 22:00 h. The two observers stopped every 5 m and recorded the number of 16 

calling individuals of each species and searched the litter and vegetation for anurans. All individuals 17 

located visually or by their call within 20 m of the center line of the plot were recorded. All nocturnal 18 

surveys were conducted by the same two people (MM and field assistant). We produced separate 19 

datasets of abundance of anurans for diurnal and nocturnal surveys, then pooled the datasets from the 20 

two periods to form a single dataset. We also separated the species into those with aquatic 21 

reproduction and those with terrestrial reproduction, comprising thus tree datasets: all species, species 22 

with aquatic reproduction, and species with terrestrial reproduction. 23 

 24 

ENVIRONMENTAL AND SPATIAL PREDICTORS—We included the following environmental 25 

variables in our analysis: average slope across the plot, percentage soil clay content, number of trees in 26 

the plot, litter depth, distance to the nearest stream, and soil pH (see Menin et al., 2007 for more 27 

details). All data used in this work is freely available at http://ppbio.inpa.gov.br, where detailed 28 

metadata describing each data set can be found, including more detailed information on sample 29 

methods and measurements. 30 

Spatial variables were generated through a technique called Principal Coordinates of Neighbor 31 

Matrices (Borcard & Legendre, 2002). PCNM was based on a Euclidean distance matrix between 32 

sampling plots in which this distance matrix is submitted to a Principal Coordinate Analysis (PCoA) 33 

and the eigenvectors with positive eigenvalues are extracted. These eigenvectors (usually called 34 

PCNMs or spatial filters; Diniz-Filho & Bini, 2005; Griffith & Peres-Neto, 2006) represent distinct 35 

http://ppbio.inpa.gov.br/
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spatial patterns that are mutually orthogonal – they were used as our spatial predictor variables. 1 

PCNMs have been used as proxies representing spatial structures generated by environmental 2 

autocorrelation and biotic processes, such as dispersal, in studies on metacommunity dynamics 3 

(Nabout et al., 2009; Landeiro et al., 2011). PCNMs with high eigenvalues (i.e., PCNMs of low order) 4 

represent broad-scale patterns of relationships among sampling sites, whereas those associated with 5 

low eigenvalues (i.e., PCNMs of high order) represent fine-scale patterns. 6 

 7 

DATA ANALYSIS .—The environmental data was transformed to log (x + 1), except pH, and 8 

standardized to zero mean and unit variance before analysis. To evaluate the effects of environmental 9 

and spatial variables on the distribution of anuran species we used partial Redundancy Analysis 10 

(Peres-Neto & Legendre, 2010). The biotic dataset was transformed using the Hellinger 11 

transformation, following recommendations for this kind of analysis (e.g. Peres-Neto & Legendre, 12 

2010). The spatial variables were generated using Principal Coordinates of Neighbor Matrices 13 

(Borcard & Legendre, 2002). We used a forward selection procedure (Blanchet et al., 2008a) based on 14 

10,000 permutations to retain only the most important environmental and spatial variables affecting 15 

the distribution of anuran assemblages.  16 

Because models with a high number of variables (i.e. more variables retained in the forward 17 

selection procedure) has, artefactually, higher explanatory power than models with few variables, 18 

results of partial Redundancy Analysis were based on adjusted fractions of variation (Peres-Neto et al., 19 

2006). The total variation in the anuran assemblages was divided into four fractions: variation 20 

explained exclusively by environmental variables [a], explained variation that is shared between 21 

environmental and spatial variables [b], variation explained exclusively by spatial variables [c], and 22 

the unexplained variance [d]. All analysis were run using R functions (R Development Core Team, 23 

2011) available in vegan (Oksanen et al., 2011) and packfor (Dray et al., 2009) R libraries. 24 

 25 

RESULTS 26 

 27 

We collected 29 species of anurans, of which 20 species have aquatic reproduction and 9 have 28 

terrestrial reproduction. Seven species with aquatic reproduction were found only sporadically (i.e.in 29 

less than four sites) and were removed from the analysis. Therefore, we analyzed only 13 species with 30 

aquatic reproduction. 31 

About 39 percent of the variation of anuran assemblages was explained by the environmental 32 

and spatial variables (Fig. 2). Both environmental [a] and spatial [c] fractions were significant 33 

(p<0.001). The spatial component was higher than the environmental component (23.8% and 10% 34 

respectively) and the shared component was 5.3 percent. The environmental variables related to 35 
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anuran assemblages were distance to the nearest stream, soil pH, number of trees in the plot, and soil 1 

clay content. Nine spatial variables were retained for the partial RDA model.  2 

 3 

FIGURE 2: Variation partitioning results for anuran assemblages (all species). Results based in 4 

a partial Redundancy Analysis and values shown are adjusted R
2
. 5 

 6 

About 34 percent of the variation in the assemblage of anurans with aquatic reproduction was 7 

explained by both set of predictors (Fig. 3). Both environmental [a] and spatial [c] fractions were 8 

significant (p<0.001). Most of the variation (26.6%) in the assemblages of anurans with aquatic 9 

reproduction was explained exclusively by environmental variables (distance to the nearest stream and 10 

number of trees). Only three spatial variables were retained and accounted for only 4.9 percent of the 11 

variation. The shared variation was equal to 2.9 percent.  12 

About 40 percent of the variation in the assemblage of anurans with terrestrial reproduction was 13 

explained by the spatial and environmental variables (Fig. 4). Environmental [a] and spatial [c] 14 

fractions were significant (p<0.001). In contrast to the anurans with aquatic reproduction, the variation 15 

in the assemblages of anurans with terrestrial reproduction was better explained by spatial variables 16 

(eight spatial variables retained), accounting for 30.3 percent of the variation. The two environmental 17 

variables retained (soil clay content and pH) accounted for only 5.4 percent of the variation and the 18 

shared fraction was equal to 3.6 percent. 19 

 20 

0.100 0.053 0.238

Residuals = 0.608

Anurans (all species)

Environmental [a] Shared [b] Spatial [c]

Spatial variables retained

PCNMs:  2,3,1,37,4,7,10,30,46

Environmental variables retained

Stream.distance, pH, Trees, Clay
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 1 

FIGURE 3: Variation partitioning results for assemblages of anurans with aquatic reproduction. 2 

Results based in a partial Redundancy Analysis. Values shown are adjusted R
2
. 3 

 4 

FIGURE 4: Variation partitioning results for assemblages of anurans with terrestrial 5 

reproduction. Results based in a partial Redundancy Analysis. Values shown are adjusted R
2
. 6 

 7 

0.266 0.029 0.049

Residuals = 0.656

Anurans with aquatic reproduction

Environmental [a] Shared [b] Spatial [c]

Spatial variables retained

PCNMs:  1,5,37

Environmental variables retained

Stream.distance, Trees

0.054 0.036 0.303

Residuals = 0.606

Anurans with terrestrial reproduction

Environmental [a] Shared [b] Spatial [c]

Spatial variables retained

PCNMs:  2,3,1,37,10,4,7,30

Environmental variables retained

Clay, pH



85 

85 

 

DISCUSSION 1 

 2 

Our models explained about 35 percent of the between-plot variation in anuran assemblages. When all 3 

species were pooled, the spatial patterns were stronger than the effects of the environmental variables 4 

included in the analyses. However, the pattern was highly dependent on the reproductive mode of 5 

species. Species with aquatic reproduction were more associated with variation in environmental 6 

factors (i.e. probable niche control), whereas species with terrestrial reproduction showed spatial 7 

patterns that were not associated with the environmental variables included in the analyses.  8 

The environmental patterns are easily interpreted because they are associated with 9 

environmental variables included in the analyses. However, spatial patterns may arise from two main 10 

sources. Some spatially structured environmental variables, important for anurans, may not have been 11 

measured and, consequently, were not included in the models (Diniz-Filho et al., 2003; Landeiro & 12 

Magnusson, 2011). That is, in the absence of an important environmental variable in the analysis, the 13 

variation in species distribution due to that environmental variable will be attributed exclusively to 14 

spatial variables. Another possibility is that species are really not dependent on environmental 15 

constraints and the observed spatial patterns are due to dispersal limitation or other endogenous 16 

process such as differential reproduction (Fortin & Dale, 2005; Landeiro et al., 2011). Here, we 17 

measured environmental variables commonly found to affect anuran species distribution, so we 18 

believe that the spatial pattern observed in species with terrestrial reproduction is more related to 19 

intrinsic dispersal processes than to the lack of important environmental variables. 20 

In the Neotropical region, the main environmental characteristics that have been found to affect 21 

anuran distributions are vegetation structure, leaf litter depth, topography and soil features, such as pH 22 

and clay content. Some studies reported positive relationships between litter layer development and 23 

species richness or abundance of many species (Fauth et al., 1989; Giaretta et al., 1999; Vonesh, 24 

2001), probably related to a greater number of microhabitats (Fauth et al., 1989) or refuges 25 

(Lieberman, 1986), whereas other studies find no such effect on the anuran litter community (Allmon, 26 

1991; Menin et al., 2007). Here, we found no relationship between litter depth and anuran 27 

assemblages in the Ducke Reserve. Topographic characteristics, such as slope, are related to the 28 

abundance or occurrence of three of the anuran species with terrestrial reproduction we found in this 29 

study (Menin et al., 2007). However, this does not create a general pattern for the whole terrestrial-30 

breeding assemblage. 31 

In our study, terrestrial breeding anurans were related to soil features. Soil pH also influenced 32 

the abundance of terrestrially breeding anuran species when each species was analyzed independently 33 

(Menin et al., 2007). The early developmental stages of some species of amphibians can be severely 34 

affected by low pH because it affects ionic regulation of embryos (Pierce, 1985). Therefore, although 35 
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relationships with pH were not detected for all species when the analysis was run on each species 1 

independently, it appears that the distributions of terrestrially anurans are dependent on natural 2 

variation in soil pH. Effects of soil clay content in the abundance of some anuran species has been 3 

detected in Costa Rica (Watling, 2005), Australia (Woinarski et al., 1999) and Amazonia (Menin et 4 

al., 2007). Soils with high clay content are found distant from streams margins (riparian zones) and 5 

retain high water and moisture, allowing the reproduction of species in terrestrial nests. On the other 6 

hand, aquatic breeding anurans were affected by distance from streams and number of trees.  7 

Vegetation structure is generally assumed to be an important characteristic affecting riparian 8 

anuran species (Parris & McCarthy, 1999). The density of trees influences species richness and 9 

composition of terrestrial and arboreal anuran species in some tropical sites (Pearman, 1997; Parris & 10 

McCarthy, 1999; Ernst & Rödel, 2005; Ernst, 2006; Keller et al., 2009). In Central Amazonia, a high 11 

density of small trees was found in bottomlands (Castilho et al., 2006). Distance to the nearest stream, 12 

soil clay content and the slope of the terrain in the plot is related to the water availability, and sites 13 

near streams with low clay content and flatter terrains (through pond formation) can provide more 14 

oviposition sites for anurans (Keller et al., 2009; Menin et al., 2011). 15 

The conservation of anuran species can be highly dependent on life-history traits, such as the 16 

type of reproduction (Loyola et al., 2008). The inclusion of anuran developmental modes in analyses 17 

aimed to choose priority areas for anuran conservation results in a clear gain in comprehensiveness of 18 

the selection process. When compared to usual analyses that do not consider these life-history traits, 19 

the conservation of species that require an aquatic habitat for their reproduction is improved. 20 

Otherwise, priority area setting exercises tend to favor species with terrestrial development (Loyola et 21 

al., 2008).  22 

As the severity and frequency of droughts affecting the Amazon region are expected to increase 23 

(Lewis et al., 2011), associated with other potential environmental changes caused by global warming, 24 

the effects on anuran species might be severe for species dependent on aquatic habitats to reproduce, 25 

and for species that rely on humid soils for terrestrial reproduction. Most terrestrial-breeding frogs 26 

occur in humid areas (Duellman, 1995; 1999). Our results showed that species with aquatic 27 

reproduction are highly related to environmental conditions, mainly the distance to the nearest water 28 

source, indicating that their occupation in the landscape will be affected by changes in the availability 29 

of water sources. In addition, little of the beta diversity observed in terrestrially breeding frogs 30 

assemblages is associated with habitat variation (Menin et al., 2007). 31 

Zimmerman & Bierregaard (1986) suggested that frogs are not good indicator species for 32 

fragmentation studies because their distributions are largely determined by the presence of water 33 

bodies suitable for reproduction. However, that generalization does not apply to the terrestrially 34 

breeding species (Menin et al., 2007). The effects of climate change are likely to be different for 35 
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aquatic-breeding and terrestrial-breeding frogs. Whereas the distribution of aquatic-breeding frogs 1 

across the landscape are likely to be influenced by changes in the distribution of water bodies, aquatic-2 

breeding species are not likely to become locally extinct until almost all water bodies are lost, and they 3 

could potentially be maintained by artificial water sources. This probably explains why aquatic-4 

breeding species are common in the driest areas of Amazonia (Duellman, 1988). In contrast, there are 5 

few or no terrestrial-breeding species in the drier parts of Amazonia, suggesting that their limited 6 

dispersal abilities associated with requirements for humid climates might result in their being pushed 7 

completely off the landscape. Considerations about vulnerability of different species will have to take 8 

into account differences in the requirements of the guilds and the scale of the changes. 9 

These findings are relevant to development of conservation strategies and biological monitoring 10 

programs, because species strongly influenced by environmental controls may be more sensitive to 11 

specific threats, such as conversion of riparian areas. On the other hand, species that do not have 12 

restrictive needs for reproduction, but that show strong associations with humid forests could be better 13 

indicators of general environmental degradation associated with climate change or activities such as 14 

selective timber harvesting. 15 
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ABSTRACT 25 

 26 

The need for biodiversity conservation is increasing at a rate much faster than the acquirement 27 

of knowledge on biodiversity, such as descriptions of new species and mapping species distribution. 28 

As global changes are winning the race against the acquisition of knowledge, many researchers resort 29 

to the use of surrogate groups to aid in conservation decisions. Reductions in taxonomic and numeric 30 

resolution are also desirable, because they could speed up the acquisition of data using less effort, if 31 

little important information is lost. In this study, we evaluate the congruence in species composition 32 

among 22 taxonomic groups to evaluate if any of these groups could be used as surrogates for the 33 

others in monitoring programs. We also evaluated if the taxonomic or numeric resolution of possible 34 

surrogates can be reduced without greatly reducing the overall congruence. Congruence among plant 35 

groups was high, while the congruence among most animal groups were very low, except for anurans 36 

in which congruence values were only slightly lower than for plants. Liana (Bignoniaceae) was the 37 

group with highest congruence, even using genera presence-absence data. The congruence among 38 

groups was related to the environmental factors, specially soil clay and phosphorous contents. Several 39 

groups showed strong spatial clumping, but this was unrelated to the congruence among groups. The 40 

high congruence of lianas with the other groups suggests that it may be a reasonable surrogate group, 41 

mainly for the other plant groups analyzed. Although difficult to count and identify, the number of 42 

studies on the ecology of lianas is increasing. Most of these studies have concluded that lianas are 43 

increasing in abundance in tropical forests. Beyond the high congruence, lianas are worth monitoring 44 

in their own right because they are sensitive to global warming and the increasing drought frequency 45 

and severity in tropical regions. Our findings suggest that data on surrogates groups with relatively 46 

low taxonomic and numerical resolutions can be reliable shortcuts for biodiversity assessments, 47 

especially in megadiverse areas with high rates of habitat conversion where lack of biodiversity 48 

knowledge is pervasive. 49 

 50 

Keywords: Amazonia, Congruence, Mantel, Procrustean rotation, Spatial patterns, Surrogate groups 51 
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1. Introduction 54 

 55 

Reliable biodiversity data allowing the use of systematic conservation planning procedures 56 

(Margules and Pressey, 2000) are available only for a few areas worldwide. Conversely, most of the 57 

species-rich areas are plagued by the absence of biological information (e.g. Hopkins, 2007; Schulman 58 

et al., 2007). Brown & Lomolino (1998) and Lomolino (2004) coined the terms “Linnean shortfall” 59 

and “Wallacean shortfall” to summarize this problem. The first term refers to the lack of information 60 

about species identities, whereas the second is related with the lack of data on the spatial distribution 61 

of the species (see also Whittaker et al., 2005). 62 

The world is experiencing severe human-induced impacts (e.g. Hansen et al., 2000; 63 

Vörösmarty et al., 2010), so we may not have time to solve the Linnean and Wallacean shortfalls 64 

before the impacts on biodiversity become irreversible. In addition, carrying out inventories of all 65 

biodiversity of megadiverse regions of the planet, apart from being expensive and time-consuming, 66 

may be a quixotic task (Magurran and Queiroz, 2010). The huge diversity found in the Amazon would 67 

require an inordinately large number of taxonomists for a minimally reliable inventory of this diversity 68 

(Hopkins, 2007), and many tropical areas are still inaccessible, especially in the Amazon region 69 

(Schulman et al., 2007). 70 

Because of the Linnean and Wallacean shortfalls, most proposed systematic conservation 71 

plans are based on surrogate taxa, which are selected by the availability of data (Rodrigues and 72 

Brooks, 2007). However, the decisions taken for a particular surrogate group may not be the best for 73 

the conservation of all (unknown) biodiversity in a given area (Franco et al., 2009) and the 74 

effectiveness of these decisions are also scale dependent. Because of the uncertainty about the 75 

efficiency of the surrogacy approach, the number of studies testing for community congruence (cross-76 

taxon congruence) is increasing conspicuously (e.g. Paszkowski and Tonn, 2000; Su et al., 2004; 77 

Macía et al., 2007). Two communities are said to be concordant when beta-diversity or community 78 

structures exhibited by these communities are correlated (Lopes et al., 2011). Similar response to 79 

major environmental gradients is the most common mechanism underlying community congruence 80 

(Heino et al., 2003). A good surrogate group should be easy to sample, identify, and have a 81 

distribution pattern congruent with those of other taxonomic groups. Independently of other 82 

requirements, although rarely tested, concordance is a necessary property for the reliable use of 83 

surrogate groups. 84 

Besides the analysis of community congruence, a different set of studies has focused on how 85 

well biodiversity patterns, obtained with species-level data, can be reproduced by data on higher taxa, 86 

in order to improve the cost-effectiveness of monitoring programs and community analyses in general 87 

(e.g. Attayde and Hansson, 2001; Bertrand et al., 2006). The effects of taxonomic resolution on 88 
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biodiversity patterns can be tested by merging species into coarser taxonomic classes and by 89 

evaluating the similarity between ordination patterns depicted by both species-level and lower-90 

resolution data (Melo, 2005; Anderson et al., 2005). If the patterns are similar, then higher taxa data 91 

can be used to substitute species-level data (e.g. Terlizzi et al., 2003) that is more expensive and time 92 

consuming to obtain. The effects of numerical resolution (e.g., transforming abundance data into 93 

presence-absence data) on biodiversity patterns can be analyzed similarly (Melo, 2005; Carneiro et al., 94 

2010). The reliability of higher taxa data for conservation planning is also scale dependent and, in 95 

general, the effectiveness of surrogates increases with the increase of the spatial extent of the area 96 

under study (La Ferla et al., 2002; ter Steege et al., 2006). 97 

Studies in the Amazon region have found cross-taxon correlations between similarity matrices 98 

derived from plant groups (Vormisto et al., 2000; Ruokolainen et al., 2007; Macía et al., 2007), but 99 

studies evaluating the congruence between floristic and faunistic data are largely lacking (see Paavola 100 

et al., 2006; Qian and Ricklefs, 2008 for studies in other regions). Variation in faunistic similarity 101 

might be better predicted by floristic similarity than by environmental similarity matrices (Oliver et 102 

al., 1998). This is so because data on plant species composition integrate a number of important 103 

environmental factors and because of the direct relationships among animal and plants (Schaffers et 104 

al., 2008). 105 

Here we used comprehensive data on composition of different communities in a 100 km
2
 106 

Amazonian reserve to evaluate the congruence in the distribution pattern of 22 taxonomic groups. For 107 

those groups that could be used to predict the distribution of others, we also evaluated the degree to 108 

which biomonitoring assessments undertaken at this spatial scale can be simplified by using surrogate 109 

groups and reducing the taxonomic and/or numeric resolution. To the best of our knowledge, no 110 

previous study has examined the adequacy of surrogate groups, taxonomic and numerical resolution in 111 

the same study. 112 

 113 

2. Material and methods 114 

 115 

2.1 Study area 116 

 117 

This study was undertaken using data on 22 taxonomic groups collected at the Ducke Reserve 118 

of the Instituto Nacional de Pesquisas da Amazônia (INPA), located 26 km north-west of Manaus 119 

(Fig. 1). The area corresponds to site 1 of the Brazilian Long-Term Ecological Research Program 120 

(PELD), and is part of the Biodiversity Research Program (PPBio) of the Brazilian Ministry of 121 

Science and Technology (MCT). The reserve covers 10,000 (10×10 km) hectares of terra-firme 122 

tropical rain forest, with a closed canopy 30–37 m high and emergents growing to 40–45 m (Ribeiro et 123 
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al., 1999). A central plateau splits the reserve into two drainage systems (Espírito-Santo et al., 2009) 124 

with altitude ranging from 40 to 110 m asl. The mean annual temperature is 26°C and the mean annual 125 

rainfall is 2362 mm. Soils in the reserve are composed of marine sediments of the tertiary, 126 

representing a continuum from clayey soils at higher altitudes to sandier soil at lower altitudes (i.e. 127 

stream valleys). 128 

 129 

Figure 1. Location of Ducke Reserve in the Brazilian Amazon. Points indicate 1 km equidistant 130 

sample plots. 131 

 132 

2.2 Sampling design and datasets  133 

 134 

All datasets used in this study were gathered by research teams working in PPBio (see 135 

Magnusson et al. 2005 and http://ppbio.inpa.gov.br/Eng). The basic sampling design used in this 136 

program is based on the RAPELD protocol with a system of trails and permanent plots in which a 137 

diverse range of taxa can be sampled (see Magnusson et al., 2005; Costa and Magnusson, 2010 for a 138 

detailed description of the sampling design).The RAPELD grid in Ducke Reserve is a rectangle with 139 

sides of 8 by 9 km, resulting in 64 km
2
 of trails in which 72 plots separated by 1 km are spread (Fig. 140 

1). Each sample plot is 250 m long, with width varying according to the taxa or life stage being 141 

sampled. The center line of each plot follows an elevation contour line, thus minimizing altitudinal 142 

variation within plots. A detailed description of the sampling protocols used to collect the data on 143 

 Manaus

Ducke

12 km0

Manaus
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composition and abundance of the different taxonomic groups can be found in the metadata available 144 

together with individual datasets in the PPBio website (http://ppbio.inpa.gov.br/Eng). 145 

Most of the 22 datasets used were of plant groups: [of trees of  Burseraceae, 146 

Chrysobalanaceae, Euphorbiaceae, Fabaceae, Lauraceae, Lecythidaceae, Moraceae, Myristicaceae and 147 

Sapotaceae; Palms; Angiosperm Herbs; Ferns; shrubs of Piperaceae in the genus Piper and Rubiaceae 148 

in the genus Psychotria; and lianas (Bignoniaceae)]. Seven datasets were of animal groups: [diurnal 149 

anurans; nocturnal anurans; lizards; bees; ants; soil-and-litter meso-invertebrates; and mites of the 150 

Suborder Oribatida]. 151 

All organisms were identified to species or morphospecies, except for soil and litter meso-152 

invertebrates, which were identified to Class, Order or Family. Samples were taken in the same plots; 153 

but some groups were not sampled in all plots (30 to 72 plots were sampled for each group). 154 

Environmental variables are also available from the PPBio data repository (http://ppbio.inpa.gov.br). 155 

In this study, we used five environmental variables (soil clay, silt and phosphorus (P) contents, terrain 156 

slope and number of trees in the plot) that PPBio researchers found to be the most important in 157 

explaining patterns in community structure of the different groups analyzed in this study (e.g. Costa et 158 

al., 2005; Kinupp and Magnusson, 2005). 159 

 160 

2.3 Analysis of congruence 161 

 162 

We first analyzed the congruence among all datasets using species abundance data. 163 

Abundance data were transformed into log(x+1) prior to analyses to reduce the influence of outliers. 164 

To reduce the dimensionality of each dataset, we conducted a principal coordinate analysis (Legendre 165 

and Legendre, 1998) using the Bray-Curtis distances among sampling plots. The level of community 166 

congruence (between any two ordination solutions; i.e., between the eigenvectors extracted from the 167 

Bray-Curtis distance matrices) was quantified and tested for statistical significance by the Procrustean 168 

superimposition method and a Monte Carlo procedure (with 5000 permutations), respectively. The m
2
 169 

values (the goodness-of-fit statistic that measures the level of congruence between two ordination 170 

configurations) were transformed to Procrustes correlation (r) by calculating the square root of their 171 

complements (r = (1 – m
2
)) (Oksanen et al., 2011). 172 

Mantel tests are also commonly used in studies of community congruence (see Table 2 of 173 

Heino, 2010). For this reason, we also evaluated the levels of community congruence by estimating 174 

the standardized Mantel correlation (rM) between pairs of Bray-Curtis distance matrices. The 175 

significance level of each Mantel statistic was determined by comparing the observed value of rM with 176 

those obtained after 5,000 Monte Carlo simulations. Results from this test were similar and are 177 

presented in the Appendix. We present the results from Procrustean approach in the body of the paper 178 



99 

99 

 

because it has been shown to have higher power and lower type I error rates than the Mantel test 179 

(Peres-Neto and Jackson, 2001). 180 

We submitted the matrix of congruence (pair-wise congruence) to a second-stage Non-Metric 181 

Multidimensional Scaling (NMDS) analysis to construct a plot to further examine the congruence 182 

between datasets. We calculated the average congruence that each group had with the others and the 183 

group with the highest mean was considered the best surrogate. 184 

 185 

2.4 Putative causes of congruence 186 

 187 

We used a partial Redundancy Analysis (pRDA, Peres-Neto et al., 2006) to evaluate spatial 188 

and environmental patterns in each dataset (species abundance, using the Hellinger transformation). 189 

For this analysis, we used the five variables presented above as environmental predictors, while the 190 

spatial variables were the eigenvectors extracted, using an eigenfunction analysis (PCNM), from a 191 

matrix of geographic distances between plots (Borcard and Legendre, 2002). We used a forward 192 

selection procedure (Blanchet et al., 2008) to retain spatial and environmental variables to be used in 193 

the pRDA. The results of variation partitioning were based on adjusted fractions of variation (Peres-194 

Neto et al., 2006). Detailed descriptions of variation partitioning based on RDA can be found in Peres-195 

Neto & Legendre (2010) and references therein.  196 

Multivariate partitioning techniques have been extensively used to infer the relative roles of 197 

spatial and niche processes in structuring biological communities (Cottenie, 2005). However, these 198 

approaches were recently challenged by Gilbert & Bennet (2010), who indicated that different 199 

versions of these techniques produced biased estimates of the relative importance of spatial and 200 

environmental signals, and by Smith and Lundholm (2010), who showed that identical levels of 201 

migration and environmental control can produce very different variance components. We believe that 202 

these recent criticisms to multivariate partitioning techniques have raised an important debate, which 203 

is far from being settled. Thus, we used these techniques here cautiously and only as a way to detect 204 

either environmental or spatial signals, instead of trying to measure their relative importance in 205 

community structuring. We predicted that datasets with high environmental and/or spatial signals 206 

would have higher congruence between themselves than between datasets with low environmental 207 

and/or spatial patterns. We predicted that datasets with high environmental and/or spatial signals 208 

would have higher congruence between themselves than between datasets with low environmental 209 

and/or spatial patterns. 210 

We also regressed the mean level of congruence of each group with the environmental fraction 211 

[ab] and with the spatial fraction [bc] of the variance partitioning analysis. This regression enabled us 212 
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to determine how much of the congruence patterns were associated with shared responses to 213 

environmental and spatial factors and how much were simply due to other unstudied factors. 214 

 215 

2.5 Impacts of reducing taxonomic and numerical resolution  216 

 217 

After identify the taxonomic group with highest congruence with the others, we evaluated the 218 

impact of decreasing the numeric and taxonomic resolution of data on the levels of congruence. To 219 

accomplish this, we pooled species to genera (except for meso-invertebrates, Psychotria and Piper 220 

datasets) and/or converted abundance to presence-absence data. We used the Sorensen distance for 221 

presence-absence data in the association matrix for the PCoA that was used in the Procrustes and 222 

Mantel analyses. The same procedures were used to measure the levels of congruence between the 223 

group with the highest mean congruence (after reducing the taxonomic and numerical resolution) and 224 

all other groups. 225 

 226 

2.6 Computational tools 227 

 228 

All analyses were run in the R environment for statistical computing (R Development Core 229 

Team, 2011). Protest, Mantel tests, redundancy analysis, and variation partitioning analysis were all 230 

run using the functions protest, mantel, rda and varpart available in vegan package (Oksanen et al., 231 

2011). 232 

 233 

3. Results 234 

 235 

3.1 Analysis of congruence 236 

 237 

The highest level of congruence we found was between palms and lianas (r = 0.87; P < 0.005), 238 

while the lowest was between Burseraceae and mesofauna (r = 0.04; P = 0.99). In general, congruence 239 

was higher among plant groups (mean r = 0.51 ± 0.16 SD) than among animal groups (mean r = 0.24 240 

± 0.12 SD) and lianas was the group with the highest mean level of congruence (mean r = 0.60± 0.23 241 

SD, Fig. 2, see also Table A1 in The Appendix). The second stage NMDS represented well the 242 

relationships in the procrustean congruence among groups (Fig. 3), where groups with higher 243 

congruence were placed together. Almost all plant groups are close together in a cluster in which the 244 

groups with higher congruence form the center. Two plant groups (Euphorbiaceae and Lauraceae), 245 

which were poorly correlated with the other plant groups are spread around, together with the animal 246 

groups. 247 
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The ordination patterns generated by lianas (species abundance data) were virtually unchanged 248 

after the conversion of abundance to presence and absence data (Protest, r = 0.975, P < 0.001), after 249 

pooling species into genera (Protest, r = 0.857, P <0.001) or when changing genera abundance data to 250 

genera presence-absence data (Protest, r = 0.777, P = 0.001). 251 

 252 

3.2 Putative causes of congruence 253 

 254 

Most datasets of plants and those of anurans showed high environmental and/or spatial signals, 255 

while invertebrates and lizards had no significant spatial or environmental signals (Table 1). Lianas 256 

showed no spatial pattern, but had the second largest environmental signal ([a] = 0.253), being mainly 257 

associated with clay and P contents. The mean level of congruence, obtained for each group, was 258 

highly related to the environmental fraction [ab] (r
2 

= 0.56, p < 0.001, Fig. 4-a), but the mean level of 259 

congruence was not significantly related with the spatial fraction [bc] (r
2
 = 0.07, p = 0.24, Fig. 4-b).  260 

 261 

Figure 2. Procrustean rotation results for species abundance data (5000 permutations). 262 

Congruence among 22 community datasets was evaluated with the correlations in symmetric 263 

Procrustean rotations. This figure was constructed using the values presented in Table A1 in the 264 

Appendix. 265 
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Table 1: Variance partitioning analysis. Spatial filters (PCNMs) and environmental variables are shown in the 266 

order they were retained in the forward selection procedure. [a] = environmental fraction; [b] = shared fraction; [c] 267 

= spatial fraction; [a+b+c] = Total variance explained. 268 

  Environment PCNMs [a] [b] [c] 

Lianas clay,P - 0.289 - - 

Trees clay,P,slope,trees 1,2,3,37,24,6,30,38,8 0.086 0.038 0.033 

Palms P,clay,slope,trees 30,1,2,38,8,42,31 0.262 0.152 0.025 

Herbs clay,slope,P,trees 34,33,29,11,2,4,1,7,6,31,40,26,8,36,35 0.109 0.143 0.114 

Ferns P,slope,clay,trees 11,32,33,29,34,1,25,30,10 0.185 0.165 0.105 

Lecythidaceae clay,P 1,24,2,37,3,6,13 0.148 0.042 0.068 

Fabaceae clay,P,slope 1,2,3,44 0.094 0.002 0.028 

Burseraceae P,clay,slope,trees,silt 2,28,37,48,3,8,38,1,14,26,13,30 0.11 0.068 0.081 

Psychotria P,clay,slope,trees 32,2,1,3,9,37,6,5 0.142 0.079 0.176 

Sapotaceae clay,P,trees 3,2,1,8,45,5,6 0.054 0.034 0.045 

Moraceae clay,trees,P 2,30,47,37,1 0.104 0.041 0.036 

Piper clay,slope,P 1,40,4,2,6,44 0.143 0.046 0.089 

Chrysobalanaceae P,Clay 24,2,10,48 0.048 0.005 0.031 

Diurnal Anura  clay,slope,trees 1 0.218 0.005 0.053 

Myristicaceae clay,P,trees - 0.112 - - 

Euphorbiaceae P,slope 31,37,2,42 0.056 0.015 0.039 

Ants - 2 - - 0.043 

Noturnal Anura P,silt,trees,Clay 2,3,37,1,4,7,10,30,46,12,48 0.098 0.111 0.214 

Lauraceae P,silt 35,4 0.02 0.001 0.013 

Oribatida Clay 1,6,34,7,2,30,25,18,49 0.008 0.01 0.078 

Lizards trees,Clay 7 0.048 -0.003 0.018 

Bees Silt 5,7,4 0.012 0.013 0.087 

Mesofauna - 16,15,35,6,3,27,7,2,1,19,8,20,12 - - 0.219 
- 
 no variable was retained in the forward selection procedure. 269 
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 270 

Figure 3. An ordination plot from second-stage NMDS obtained from the matrix of 271 

congruence (evaluated with the correlations in symmetric Procrustean rotation – see Table 1) among 272 

22 community datasets. Stress = 20.41. 273 

 274 

3.3 Impacts of reducing taxonomic and numerical resolution 275 

 276 

Although not statistically significant (paired t-test = 1.087; df = 20; P = 0.29, mean of the 277 

differences = 0.005), the levels of congruence between lianas (the surrogate group with highest overall 278 

congruence) and other groups (especially herbs, palms, Chrysobalanaceae, Myristicaceae, 279 

diurnal/nocturnal anurans, oribatid mites and bees) were even higher after transforming the liana-280 

abundance data into presence-absence data. However, the levels of congruence between lianas and the 281 

other groups were statistically lower after grouping lianas species abundance data into genera-282 

abundance data (paired t-test = 3.389; P = 0.002, mean of the differences = 0.048) or after reducing 283 

both the taxonomic and numerical resolution of the lianas dataset (i.e., using the genera presence-284 

absence data; paired t-test = 4.141; P < 0.001, mean of the differences = 0.080). However, even using 285 

genera presence-absence data for lianas (i.e. the coarsest numeric and taxonomic resolutions), the 286 

mean level of congruence (mean r = 0.516, Table 2) was still better than the mean congruence found 287 

for palms (mean r = 0.515), the group with the second highest level of congruence (see Table A1 in 288 
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the Appendix). Thus, the ability of lianas to reproduce ordination patterns generated by other groups 289 

was largely maintained after the reduction of numerical resolution (abundance to occurrence), 290 

reduction of the taxonomic resolution (species to genera) or both (Table 2). 291 

Similar results were obtained using Mantel tests to evaluate the patterns of congruence (see 292 

Appendix 1). 293 

 294 

Table 2. Congruence between Lianas, at different taxonomic and numeric resolutions, with 295 

the other groups (species abundance, except for mesofauna). Congruence was evaluated using 296 

Procrustean rotations (5000 permutations). The mean congruence was high for all combinations of 297 

taxonomic resolution. 298 

 

Lianas 

Species Genera 

Abundance Ocurrence Abundance Ocurrence 

 

Palms 0.87 0.88 0.83 0.77 

Lecythidaceae 0.78 0.77 0.70 0.64 

Ferns 0.83 0.82 0.63 0.59 

Fabaceae 0.76 0.73 0.68 0.62 

Herbs 0.83 0.85 0.73 0.72 

Burseraceae 0.81 0.80 0.73 0.68 

Psychotria 0.78 0.76 0.68 0.62 

Piper 0.68 0.67 0.69 0.65 

Moraceae 0.74 0.70 0.72 0.65 

Sapotaceae 0.67 0.66 0.56 0.50 

Chrysobalanaceae 0.68 0.69 0.68 0.65 

Diurnal Anura 0.59 0.61 0.59 0.58 

Myristicaceae 0.55 0.56 0.47 0.40 

Ants 0.34
n
 0.32

n
 0.40 0.45 

Euphorbiaceae 0.69 0.67 0.63 0.57 

Nocturnal Anura 0.60 0.62 0.55 0.50 

Lauraceae 0.40 0.40 0.34 0.33 

Oribatida 0.35 0.36 0.31
n
 0.29

n
 

Lizards 0.24
n
 0.19

n
 0.16

n
 0.12

n
 

Bees 0.15
n
 0.20

n
 0.15

n
 0.19

n
 

Mesofauna 0.18
n
 0.17

n
 0.30

n
 0.32

n
 

  Mean 0.60 0.59 0.55 0.52 

  SD 0.23 0.23 0.23 0.23 
n
 Non-significant values (p > 0.05)   299 
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 300 

Figure 4. Relationship between the mean level of congruence values (Protest) calculated for each 301 

group with the environmental [ab] and with spatial [bc] fractions derived from the partial RDA 302 

analyses. [ab] and [bc] represent the adjusted R
2
 resulting from  RDAs between the biological matrices 303 

and the environmental predictor matrix and between the biological matrices and the spatial predictor 304 

matrix, respectively. 305 
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4. Discussion  307 

 308 

The distribution patterns of most of 15 plant group analyzed showed high congruence, while 309 

invertebrates and lizards had low congruence with other groups. Anurans showed high congruence 310 

with plants, but the values were slightly lower than those among plants. Based only on congruence, 311 

lianas (Bignoniaceae) would be the best candidate for a surrogate group. Although statistically 312 

significant, the decrease in the taxonomic and numeric resolution of lianas datasets did not greatly 313 

decreased the congruence with the other groups; the coarsest resolution of lianas (genera presence-314 

absence) had higher congruence values than the finest resolution of palms (species abundance data), 315 

the group with the second highest congruence.  316 

 317 

4.1 Congruence among groups 318 

 319 

The congruence in distribution patterns might be highly dependent on the geographic location 320 

and spatial extent of analysis (McKnight et al., 2007; Cabeza et al., 2008). McKnight et al. (2007) 321 

found that the congruence in beta diversity among amphibians, birds and mammals were generally 322 

stronger within the Neotropical than within the Nearctic realm. Thus, extrapolation of our results to 323 

regions beyond the Amazon should be done with caution. 324 

Based on Mantel tests, Ruokolainen et al. (2007) considered ferns (Pteridophytes) to be the 325 

best surrogate group for other plants. Our results based on Procrustean rotations (and Mantel, see 326 

Appendix A1) also identified ferns as a potential surrogate group, but several other groups of plants 327 

also had high values of congruence (e.g. palms, Lecythidaceae, ferns, Fabaceae, angiosperm herbs, 328 

Burseraceae), and lianas (Bignoniaceae) had the highest overall congruence. 329 

 330 

4.2 Putative causes of congruence 331 

 332 

Differences in distributional patterns between communities may be due to dissimilar responses 333 

to environment gradients, due to different dispersal abilities or both (Linares-Palomino and Kessler, 334 

2009). Conversely, similar responses to environmental gradients may be the main causes of 335 

congruence between groups of species (e.g. Paszkowski and Tonn, 2000). The high congruence among 336 

plant groups observed here might be explained by the environmental control because the variance-337 

partitioning analysis indicated that the variance associated with environmental variables was related to 338 

the mean congruence of each group. 339 

The main causes for the high congruence among plants might be associated with similar 340 

responses to soil characteristics. Variation in densities of most plants was associated with clay and P 341 
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content. Lianas showed the highest sensitivities to soil variation (28.9 % of the variance was explained 342 

by clay and P soil contents). In general, soil factors have been found to be better predictors of floristic 343 

patterns in the Amazon region than spatial factors (e.g. Tuomisto et al., 2003; Costa et al., 2005). 344 

Lianas generally have high dispersal ability (Macía et al., 2007), which might be responsible for the 345 

lack of spatial pattern observed. 346 

 347 

4.3 Lianas as a potential surrogate group  348 

 349 

Although lianas are considered a weed in silvicultural activities (Gerwing, 2001) and are hard 350 

to sample and count in the field, they have many interesting ecological characteristics that may make 351 

them useful as a surrogate group. The importance of lianas might be increasing in tropical forests, 352 

where they comprise about 25% of the woody stem density and species richness, reaching values as 353 

high as 44% in the Amazon forests (Schnitzer and Bongers, 2002). Lianas contribute to diversity and 354 

community structure, exerting profound effects on other growth forms, such as altering tree growth, 355 

species composition and reducing fecundity, fundamentally changing the functioning and 356 

physiognomy of tropical forests (Schnitzer and Carson, 2010). In general, lianas are more abundant on 357 

rich soils (Putz and Chai, 1987) and related with tree structure (Nogueira et al., 2011) at small scales. 358 

At large scales, lianas are associated with the seasonality of rainfall, being more abundant and more 359 

species rich in regions with strong seasonal droughts (Schnitzer, 2005), and reduction in rainfall may 360 

be favoring lianas in some tropical forests (Swaine and Grace, 2007). Schnitzer (2005) showed that 361 

lianas can growth seven times more in height than trees during periods of reduced water availability. 362 

Gap formation (Schnitzer and Bongers, 2002) and forest fragmentation (Laurance et al., 2001) also 363 

may increase the abundance and diversity of lianas. 364 

Proliferation of lianas may exacerbate biomass declines and seriously affect forest structure 365 

and functioning (Laurance et al., 2001) with considerable implications to the carbon cycle and for the 366 

biodiversity of tropical forests (Phillips et al., 2002). A volume of Forest Ecology and Management 367 

(vol. 190, 2004) was dedicated to discussion of the importance of lianas in tropical forest functioning, 368 

in which understanding the ecology of lianas was pointed out as crucial, not just for the understanding 369 

of basic ecological questions, but also for the management and conservation of tropical forests (Wright 370 

et al., 2004). Because the severity and frequency of drought events affecting the Amazon region are 371 

expected to increase (Lewis et al., 2011), the use of lianas as a surrogate group for other plants in the 372 

Amazon might be fruitful not just due to its surrogacy capability, but also because it is an indicator 373 

group for environmental changes. 374 

While lianas may be useful surrogates for biological variation at local scales, or as surrogates 375 

for environmental changes, their potentially high dispersal and close association with environmental 376 
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factors may make them less suitable as surrogates at wider scales for groups that have more limited 377 

dispersal, or for groups, such as the animal groups in this study, that show less local variation 378 

associated with soil characteristics. Very often, it is the local endemics that are of greatest 379 

conservation concern, and not the species with high dispersal ability and high adaptability to 380 

disturbance. Programs, such as the PPBio (http://ppbio.inpa.gov.br), are just starting to accumulate 381 

integrated data on many taxa and environmental variables at wider scales, so selection of surrogates 382 

for wider scales should be made with great caution. 383 

 384 

4.4 Effects of numerical and taxonomic resolution  385 

 386 

In our study, the reduction of the taxonomic resolution of lianas caused a significant decrease 387 

in the congruence of lianas with the other groups. However, the mean of the differences was low. In 388 

addition, even using low resolution data, the group composed by lianas was the best surrogate one (i.e. 389 

had the highest mean congruence). Therefore, the taxonomic and numeric resolution of lianas can be 390 

reduced without a greater loss of information, at least in the spatial scale of this study. These results 391 

are in line with previous studies showing that the use of data with low numerical and taxonomic 392 

resolutions may be reliable for plant groups (e.g. Prinzing et al., 2003; Torre-Cuadros et al., 2007) and 393 

for animal groups (e.g. Attayde and Hansson, 2001). Conversely, there is a tradeoff between the 394 

taxonomic resolution used and how clear cut the pattern is (e.g. the magnitude of the effect, Melo, 395 

2005) that should be taken into account before deciding what resolution to use.  396 

There is high variability at the species level at local and regional scales. Increasing the 397 

taxonomic level decreases the variability at local scales, but at regional scales it remains high 398 

(Anderson et al., 2005). This is in agreement with the idea that coarser taxonomic resolution could be 399 

effectively used for conservation purposes, in which regions of rapid species turnover require 400 

increased attention to the placement and size of conservation areas in order to protect biodiversity 401 

(McKnight et al., 2007). Therefore, reducing the numerical and taxonomic resolution could reduce the 402 

labor and costs of biodiversity sampling without losing important information.  403 

 404 

5. Conclusions 405 

 406 

Our study provides information on the use of surrogate groups at local scales in the Amazon. 407 

Plant groups were highly congruent at the scale studied, while animal groups had low congruence with 408 

other animal datasets and with plant datasets. The use of lianas as surrogate group might have many 409 

fruitful properties other than those related to a surrogate group. Because lianas grows fast in new gaps 410 

and during drought periods, they might be used as an indicator group of global climate changes, such 411 

http://ppbio.inpa.gov.br/
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as increased drought periods, while acting as a surrogate group for other purposes. In addition to the 412 

use of lianas as a surrogate group to simplify monitoring assessments, the use of liana’s presence-413 

absence data and genera level identifications also could reduce the costs and labor of monitoring 414 

studies. 415 

 416 
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Appendix A1 - Results for Procrustean rotation and for Mantel tests 

Table A1. Procrustean rotation results for species abundance data (5000 permutations). Congruence among 22 community datasets was evaluated with the 

correlations in symmetric Procrustean rotations. This matrix was used to run the second stage NMDS. The last two rows show the mean and standard 

deviation of congruence values obtained for each taxonomic group. Columns and rows are ordered from the highest mean value to the lowest. 

  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] 

[1] Lianas 

                      [2] Palms 0.87 

                     [3] Lecythidaceae 0.78 0.71 

                    [4] Ferns 0.83 0.74 0.69 

                   [5] Fabaceae 0.76 0.67 0.67 0.58 

                  [6] Herbs 0.83 0.79 0.64 0.69 0.6 

                 [7] Burseraceae 0.81 0.78 0.6 0.6 0.62 0.67 

                [8] Psychotria 0.78 0.77 0.6 0.62 0.63 0.57 0.61 

               [9] Piper 0.68 0.62 0.54 0.61 0.52 0.58 0.54 0.5 

              [10] Moraceae 0.74 0.62 0.59 0.53 0.59 0.52 0.63 0.48 0.46 

             [11] Sapotaceae 0.67 0.55 0.61 0.48 0.48 0.48 0.49 0.47 0.48 0.46 

            [12] Chrysobalanaceae 0.68 0.6 0.55 0.49 0.48 0.53 0.6 0.43 0.41 0.4 0.59 

           [13]  Anura-Diurnal 0.59 0.44 0.48 0.55 0.49 0.53 0.38 0.32 0.38 0.31 0.31 0.3 

          [14] Myristicaceae 0.55 0.42 0.51 0.41 0.4 0.39 0.41 0.41 0.3 0.4 0.52 0.43 0.24 

         [15] Ants 0.34n 0.26n 0.36 0.32n 0.34n 0.29n 0.33n 0.28n 0.35n 0.32n 0.46 0.2n 0.5 0.5 

        [16] Euphorbiaceae 0.69 0.49 0.4 0.49 0.38 0.38 0.36 0.34 0.53 0.32 0.33 0.22n 0.32 0.22n 0.37 

       [17] Anura-Noturnal 0.6 0.3 0.28 0.36 0.34 0.29 0.36 0.35 0.36 0.35 0.22n 0.24 0.2n 0.19n 0.34n 0.2n 

      [18] Lauraceae 0.4 0.31 0.32 0.25n 0.29 0.3 0.23 0.31 0.21n 0.17n 0.4 0.38 0.29 0.16n 0.28n 0.12n 0.17n 

     [19] Oribatida 0.35 0.26 0.29 0.31 0.24 0.17n 0.12n 0.33 0.12n 0.2n 0.26 0.24 0.22n 0.15n 0.18n 0.06n 0.16n 0.08n 

    [20] Lizards 0.24n 0.32 0.2n 0.24n 0.33 0.25 0.26 0.19n 0.26 0.25 0.21n 0.2n 0.26 0.14n 0.28n 0.2n 0.15n 0.13n 0.14n 

   [21] Bees 0.15n 0.2n 0.14n 0.12n 0.23n 0.26n 0.2n 0.09n 0.29n 0.25n 0.14n 0.2n 0.17n 0.09n 0.13n 0.1n 0.37 0.22n 0.27n 0.17n 

  [22] Mesofauna 0.18n 0.1n 0.12n 0.16n 0.21n 0.06n 0.04n 0.16n 0.11n 0.2n 0.13n 0.22n 0.16n 0.1n 0.25n 0.13n 0.15n 0.13n 0.64 0.18n 0.24n 

 Mean 0.6 0.52 0.48 0.48 0.47 0.47 0.46 0.44 0.42 0.42 0.42 0.4 0.36 0.33 0.32 0.32 0.28 0.24 0.23 0.22 0.19 0.17 

SD 0.23 0.22 0.2 0.2 0.16 0.21 0.21 0.19 0.16 0.16 0.15 0.16 0.13 0.15 0.09 0.16 0.11 0.1 0.13 0.06 0.07 0.12 
n
 Non-significant values (p > 0.05) 
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Table A2. Mantel correlation results for species abundance data. Congruence among 22 community datasets was evaluated with Mantel’s tests. The last two 

rows show the mean and standard deviation of congruence values obtained for each taxonomic group. Rows are ordered from the highest to the lowest mean 

value. 

 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] 

[1] Lianas 

                      [2] Palms 0.69 

                     [3] Burseraceae 0.67 0.75 
                    [4] Ferns 0.76 0.67 0.56 

                   [5] Herbs 0.66 0.72 0.57 0.63 

                  [6] Lecythidaceae 0.61 0.63 0.52 0.6 0.52 
                 [7] Piper 0.53 0.59 0.53 0.5 0.45 0.54 

                [8] Moraceae 0.57 0.52 0.51 0.4 0.41 0.5 0.5 

               [9] Psychotria 0.58 0.64 0.52 0.46 0.42 0.56 0.43 0.31 
              [10] Fabaceae 0.6 0.53 0.45 0.37 0.48 0.45 0.31 0.36 0.33 

             [11] Chrysobalanaceae 0.38 0.44 0.42 0.34 0.32 0.29 0.29 0.27 0.3 0.22 

            [12] Anura_2 0.47 0.35 0.35 0.44 0.24 0.35 0.23 0.23 0.37 0.28 0.23 
           [13] Sapotaceae 0.3 0.38 0.33 0.38 0.33 0.36 0.18 0.25 0.26 0.27 0.21 0.16 

          [14] Myristicaceae 0.35 0.3 0.27 0.19 0.28 0.21 0.28 0.24 0.17 0.17 0.18 0.11 0.21 

         [15] Lauraceae 0.24 0.29 0.27 0.26 0.25 0.28 0.26 0.19 0.22 0.16 0.17 0.1 0.2 0.12 
        [16] Anura_1 0.3 0.17 0.14 0.24 0.25 0.2 0.1n 0.09n 0.13 0.26 0.02n 0.16 0.12 0.11 0.09 

       [17] Euphorbiaceae 0.38 0.17 0.18 0.07n 0.18 0.13 0.2 0.17 0.06n 0.17 0.12 0.05n 0.11 0.13 0.07 0.03n 

      [18] Lizards 0.09n 0.11n 0.11n 0.13n 0.1n 0.11n 0.08n 0.2 0.05n 0.14 0.12 0.09n 0.13 0.01n 0.02n 0.06n 0.13 
     [19] Mesofauna 0.08n 0.11n 0.06n 0.11n 0.13 -0.01n 0.03n 0.08n -0.01n 0.12 -0.01n 0.02n 0.03n -0.04n 0.05n -0.04n -0.09n 0.03n 

    [20] Oribatida 0.07n 0.1n 0.09n 0.17 0.08n 0.02n -0.02n 0.04n 0.03n 0.12 -0.01n 0.03n 0.02n -0.02n 0.13 0.14 -0.05n 0.04n 0.34 
   [21] Bees -0.02n 0n -0.02n -0.12n -0.08n -0.13n -0.01n 0.02n -0.04n -0.06n 0.13n 0.06n -0.13n 0.01n -0.06n -0.09n -0.09n -0.1n 0.14n -0.04n 

  [22] Ants 0.15 -0.05n -0.03n -0.11n -0.02n -0.06n -0.04n -0.05n 0.03n -0.07n -0.08n -0.02n -0.02n 0.07n -0.06n -0.07n 0.12 -0.18n 0.03n -0.19n 0.14n 

 Mean 0.4 0.39 0.32 0.34 0.27 0.33 0.34 0.28 0.28 0.28 0.19 0.21 0.11 0.16 -0.02 0.11 0.2 0.15 0.05 0.07 -0.02 0.06 

SD 0.24 0.26 0.24 0.24 0.18 0.22 0.23 0.21 0.21 0.18 0.14 0.15 0.11 0.11 0.09 0.11 0.14 0.11 0.1 0.08 0.08 0.09 
n
 Non-significant values (p > 0.05)  
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Table A3. Congruence among Lianas at different taxonomic and numeric resolutions and the other 

datasets (species abundance). Congruence was evaluated using Mantel correlations. The mean 

congruence was high for all combinations of taxonomic resolution.  

 

Lianas 

Species Genera 

Abundance Ocurrence Abundance Ocurrence 

S
p
ec

ie
s 

ab
u
n
d

an
ce

 

Palms 0.69 0.72 0.70 0.57 

Burseraceae 0.67 0.69 0.67 0.51 

Ferns 0.76 0.73 0.65 0.49 

Herbs 0.66 0.68 0.66 0.59 

Lecythidaceae 0.61 0.62 0.52 0.38 

Piper 0.53 0.57 0.53 0.41 

Moraceae 0.57 0.60 0.57 0.46 

Psychotria 0.58 0.59 0.56 0.37 

Fabaceae 0.60 0.59 0.55 0.42 

Chrysobalanaceae 0.38 0.38 0.40 0.31 

Anura Nocturnal 0.47 0.49 0.41 0.26 

Sapotaceae 0.30 0.30 0.27 0.19 

Myristicaceae 0.35 0.34 0.35 0.33 

Lauraceae 0.24 0.23 0.21 0.15 

Anura Diurnal  0.30 0.30 0.34 0.30 

Euphorbiaceae 0.38 0.33 0.32 0.23 

Lizards 0.09
n
 0.07

n
 0.07

n
 0.03

n
 

Mesofauna 0.08
n
 0.06

n
 0.13

n
 0.15

n
 

Oribatida 0.07
n
 0.06

n
 0.09

n
 0.07

n
 

Bees -0.02
n
 0.01

n
 0.02

n
 0.06

n
 

Ants 0.15 0.11
n
 0.13

n
 0.16

n
 

  Mean 0.40 0.40 0.39 0.31 

  SD 0.24 0.25 0.22 0.17 
n
 Non significant values (p >0.05). 
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Figure A1. Mantel results for species abundance data (5000 permutations). Congruence among 22 

community datasets was evaluated with Mantel correlations. This figure was constructed using the 

values presented in Table A2. 
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Figure A2. An ordination plot from second-stage NMDS obtained from the matrix of congruence 

(evaluated with the Mantel tests – see Table A1) among 22 community datasets. Stress = 19.11. 
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Figure A3. Relationship between the mean level of congruence values (Mantel) calculated for each 

group with the environmental [ab] and with spatial [bc] fractions derived from the partial RDA 

analyses. [ab] and [bc] represent the adjusted R
2
 resulting from RDAs between the biological matrices 

and the environmental predictor matrix and between the biological matrices and the spatial predictor 

matrix, respectively. 
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Síntese 

 

Acreditamos que o capítulo um irá facilitar bastante a fase inicial de pesquisadores novatos na 

área de ecologia espacial. Os conceitos e problemas discutidos no capítulo 1, bem como as referências 

citadas, podem nortear bem o aprendizado da ecologia espacial. Nos capítulos subsequentes, 

acreditamos que as principais mensagens são de que os autovetores espaciais não são tão flexíveis em 

criar variáveis espaciais que representam diversas escalas espaciais como se imaginava (Capítulo 2). 

As abordagens de dados brutos e de matrizes de distância são usadas para responder diferentes 

questões, entretanto, caso sejam utilizadas da forma errada, as conclusões provavelmente serão as 

mesmas, minimizando os problemas gerados pelo seu uso errôneo (Capítulo 3). No Capítulo 4 

mostramos que os padrões de distribuição de diversos grupos são concordantes, indicando que o uso 

de grupos substitutos é uma boa forma para reduzir custos em estudos de monitoramento e criação de 

planos de manejo. Neste capítulo também é possível verificar que em escalas menores, como a 

extensão da reserva Ducke, os grupos de invertebrados não são boas ferramentas para 

biomonitoramento e criação de planos de manejo, pois nesta escala sua distribuição parece com uma 

distribuição aleatória. Ou seja, qualquer decisão tomada com base em invertebrados será tão eficiente 

quanto outra. Entretanto, o forte padrão ambiental e espacial observado para plantas nesta escala, bem 

como a concordância entre a maioria dos grupos, indica que os grupos de plantas podem ser boas 

ferramentas para serem utilizadas em estudos de biomonitoramento e em tomadas de decisões nestas 

escalas. 

Em geral, observamos que a maioria dos grupos analisados neste trabalho apresentou um 

padrão ambiental mais forte que o padrão espacial. Isso indica que na escala dos dados analisados, 

variando de aproximadamente dez a aproximadamente 120 km, as principais características afetando 

os organismos são relacionadas ao ambiente. Pode ser que acima dessa extensão a capacidade de 

dispersão das espécies pode ter um efeito maior na diferenciação das comunidades e 

consequentemente os padrões espaciais sejam mais fortes e evidentes. Porém, apesar do baixo efeito 

espacial, nós salientamos que sempre é importante avaliar os efeitos espaciais em estudos ecológicos, 

pois dados estruturados espacialmente podem levar a erros tipo 1 e consequentemente a conclusões 

errôneas sobre os conjuntos de dados. 
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