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Abstract
Survey costs and a lack of taxonomists are often the main impediments to biodiversity 
inventories. The use of a higher-taxon approach that is efficient in representing species pat-
terns within a short period of time is one way to overcome these constraints, especially if 
these responses are consistent at various spatial scales and sampling techniques. Here, we 
evaluated whether the use of pitfall trapping or Winkler extraction influenced the utility of 
genus as a surrogate to predict patterns of species richness and composition related to envi-
ronment. The study sites were spread along 10 degrees of latitude, covering phytophysiog-
nomies with different topographic characteristics. We recorded 450 ant species/morphospe-
cies distributed in 70 genera. Pitfall-traps captured a larger proportion of species (77–98%) 
and genera (71–100%) per site. Genus was efficient in predicting variations in richness, 
and assemblage composition detected at the species level, using pitfall-traps or Winkler 
extractors. The higher-taxon approach saved approximately 40% of the surveys costs. The 
negative effect of the species-genus ratio was detected only on species composition, but 
it did not affect the quality of predictions using genera. The results are consistent with 
the hypothesis that genus can be used as a proxy for broader sets of species independent 
of sampling technique or environmental heterogeneity. The use of pitfall-traps or Winkler 
extractors for genus-level identification proved to be cost-efficient and time-efficient and 
should work well in other regions requiring conservation effort and monitoring programs.
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Introduction

Complete biodiversity inventories are costly and difficult to obtain (Whittaker et al. 2005), 
leading to a growing demand for faster and more efficient techniques for monitoring actions 
(Ugland et al. 2008; Mandelik et al. 2010; Tulloch et al. 2011; Kessler et al. 2011). Higher-
taxon surrogacy, the use of taxonomic levels other than species, is a common approach 
for rapidly assess biodiversity (Gaston and Williams 1993; Oliver and Beattie 1993, 1996; 
Andersen 1995, 2002; Longino and Colwell 1997; Souza et  al. 2009, 2016). Taxonomic 
surrogacy is widely used in biodiversity monitoring of aquatic environments (Ellis 1985; 
Heino and Soininen 2007; Carneiro et al. 2010), but it is less often used in terrestrial envi-
ronments (Caruso and Migliorini 2006; Van Rijn et  al. 2015). There is no consensus on 
which taxonomic level to use as a surrogate (Jones 2008; Neeson et  al. 2013), but this 
approach has been widely used by researchers in conservation planning (Cardoso et  al. 
2004b) and biodiversity monitoring (Nakamura et al. 2007; Bevilacqua et al. 2012) in the 
last 20 years. These studies often use surrogates without testing their suitability either by 
pilot studies or based on what is already known about taxonomic diversity and community 
structure for a group and area of interest (Bevilacqua et al. 2012; Neeson et al. 2013; Van 
Rijn et al. 2015).

Several authors have postulated that genus resolution is a good candidate as a surrogate 
for species-level identification (Pik et al. 1999; Heino and Soininen 2007; Gallego et al. 
2012). Indeed, the ecological patterns revealed by genus level often mirror the ecological 
patterns of species locally (dos Ribas and Padial 2015) and over large areas (Souza et al. 
2016). However, other studies indicate that the use of genus as a surrogate failed to retrieve 
species-level information (Andersen 1995; Rosser and Eggleton 2012). This can occur due 
to reduced sample size, or an elevated number of rare species in the assemblages, resulting 
in inventories that do not reach the asymptote of the species accumulation curves (Neeson 
et al. 2013). Another factor that seems to affect surrogates’ performance is the variation of 
number of species per genus (Bevilacqua et al. 2012; Neeson et al. 2013; Van Rijn et al. 
2015; Driessen and Kirkpatrick 2017). These contradictory results call into question the 
usefulness of genus as surrogates (Van Rijn et al. 2015). Nevertheless, the use of higher-
taxon surrogacy remains attractive due to the possibility of economical taxonomic identifi-
cation (Gaston and Williams 1993; Williams and Gaston 1994; Gotelli 2004) and reducing 
the financial costs of biodiversity surveys (Souza et al. 2016). The cost (time and money) 
of biodiversity monitoring is a crucial factor for its viability (Margules et al. 2002) and this 
is particularly important for taxonomic groups that are extremely diverse and have small 
body sizes, such as arthropods (McGeoch 1998; Hodkinson and Jackson 2005).

Many strategies have been used to reduce labor and costs associated with sorting and 
identifying invertebrates. Investigators have used ecological responses based on predic-
tive variables that are correlated with assemblage composition (de Souza et al. 2012; Porto 
et al. 2016; Graça et al. 2017), sample rarefaction (Santos et al. 2008) and sets of more-
frequent species (Franklin et al. 2013) to validate the reduction of sampling effort. Other 
studies used functional traits to predict changes in community structure in response to 
environmental variation (French and Picozzi 2002; Gallego et al. 2012; Graça et al. 2016).

Ants constitute a hyper-diverse group that can usually be easily collected (Folgarait 
1998; de Souza et al. 2012), and can be used in management, monitoring and conserva-
tion programs (Kaspari and Weiser 2000; Underwood and Fisher 2006). Pitfall traps and 
Winkler litter extraction are the most used sampling methods for ground-dwelling ants in 
ecological studies (Agosti et al. 2000a, b; Bestelmeyer et al. 2000). For most environments, 
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these techniques can be complementary (Olson 1991; Fisher 1999; Souza et al. 2007), but 
often show some degree of redundancy (Parr and Chown 2001; Lopes and Vasconcelos 
2008; de Souza et al. 2012), suggesting that the reduction in the number of sampling tech-
niques may be a cost-efficient decision (de Souza et al. 2012). The most efficient sampling 
protocol should satisfy taxonomic, ecological and financial aspects of the investigations. 
For ants, environmental factors, such as topography (altitude and slope) and soil texture, 
generate microhabitat variability that can affect spatial patterns of ground-dwelling-ant 
assemblages at local scales (Vasconcelos et  al. 2003; Oliveira et  al. 2009; Mezger and 
Pfeiffer 2011) and can be used to validate the use of surrogate taxa or reduced-sampling 
methods.

In this study, we investigated the effects of two sampling techniques for ground-dwell-
ing ant species on the efficiency of genus as a higher-taxa surrogate over 1000 km in the 
Brazilian Amazon. We documented differences in species composition between the two 
sampling methods, and then measured the degree of congruence of the richness and com-
position data between species-level and genus-level identification. We hypothesized that, 
regardless of the chosen sampling technique, the coarser level of taxonomic information 
(genus) could be used as an efficient surrogate for species-level identification and that the 
use of genus-level identification would be able to retrieve information on species richness 
and composition in the gradient studied. We tested whether results based on genus-level 
identification revealed similar responses of the assemblages to local environmental gra-
dients to those detected with species. We also tested whether the responses obtained with 
genus in this study were affected by the number of species per genus, as some recent stud-
ies have suggested (Lovell et al. 2007; Bevilacqua et al. 2012; Neeson et al. 2013; Van Rijn 
et al. 2015; Driessen and Kirkpatrick 2017; Rosser 2017). Finally, we estimated the mon-
etary and time costs to use genus and species data to compare the cost-efficiency of using 
these two types of data in biodiversity-monitoring programs.

Methods

Study sites

We investigated the distribution patterns of ground-dwelling-ant assemblages in eight sites 
associated with the Brazilian Biodiversity Research Program (PPBio) along a gradient of 
1000 km (~ 10 degrees latitude), covering phytophysiognomies with different topographic 
and soil characteristics (open and dense rainforests, deciduous and semi-deciduous forests, 
and forested, seasonal and shrubby white-sand areas). Maracá Ecological Station (Maracá) 
and the Viruá National Park (Viruá) are situated in Roraima State (extreme north of Bra-
zil). Reserva Ducke (Ducke), the Amazonas University Experimental Farm (UFAM), 
Manaquiri, Orquestra, Campanã and Jari are located in Amazonas State (Online Resource 
1). All sites have seasonal rainfall, with rain concentrated from October to March in sites 
located in the Amazonas State (De Marques-Filho et al. 1981), and from July to September 
in Maracá and Viruá. Ducke was sampled in September 2006, Viruá and Maracá in Febru-
ary 2007, Manaquiri in November 2009, Orquestra, Campanã and Jari in November 2010 
and UFAM in September 2011, all during their respective dry seasons. The coordinates, 
vegetation type, elevation range, rainfall and spatial layout of the study sites are summa-
rized in Table 1.
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Sampling design

Ants were sampled in permanent plots with ten samples per sampling method. Some 
sites also had a smaller number of 250-m plots sampled with Winkler due to soil and/
or litter being soaked at sampling time. In total, we took 2520 samples from 252 plots 
(Table 1). We used the RAPELD sampling design (Online Resource 2), which is based 
on a system of trails and permanent plots where a diverse range of taxa can be sampled 
(Magnusson et  al. 2005, 2013; Costa and Magnusson 2010). The permanent plots are 
250-m long and positioned to follow terrain contours to minimize the effects of topo-
graphical variation within plots. In each site, plots were 1 km distant from each other 
and had the same standardized spatial design between-plot. Due to the area of each site 
studied, the number of 250-m long plots varied.

Ant sampling

Ground-dwelling ants were collected using pitfall traps and litter samples that were pro-
cessed in Winkler extractors. Litter-dwelling ants were sampled from 1 m2 litter in ten 
sampling stations located at 25 m intervals along the center line of each plot. Using a 
Winkler extractor with a 1 cm2 mesh sieve, the ants were extracted from the sifted litter 
hung in a mesh bag inside a cotton bag for 48 h. As a behavioral response to litter dry-
ing, the ants migrate from the suspended sample and fall into a container partially filled 
with alcohol at the bottom of the bag (Agosti et al. 2000a; Bestelmeyer et al. 2000). The 
litter-sampling procedures were undertaken between 8:00 am and 5:00 pm. A pitfall trap 
(diameter of 95 mm, depth of 8 cm, volume of 500 ml) without bait, was partially filled 
with water and detergent, and placed in each station after litter collection, and remained 
open for 48 h without interruption (see de Souza et al. 2012 for sampling details).

Pitfall traps are fast and easy to install (Bestelmeyer et al. 2000), but this technique 
does not work properly in overly humid, steep, or rocky areas (Gotelli et al. 2011). The 
advantage of Winkler extractor is that it can provide an indication of ant density (Parr 
and Chown 2001) and, unlike pitfall traps, does not require a second field visit for trap 
removal. The Winkler extractor samples proportionally more smaller and cryptic ants, 
while pitfall trapping is more useful to capture large and active species (Olson 1991; 
Parr and Chown 2001).

All ants were first identified to genus using the taxonomic keys provide by Baccaro 
et al. (2015), and then sorted to species. We used available taxonomic keys and compari-
sons with specimens in collections previously identified by experts. A unique identifica-
tion was given to each morphospecies based on morphological differences from related 
species. The morphotyping was the same for all collection sites. Undescribed species 
were also sorted into morphospecies. Voucher specimens are deposited in INPA’s Ento-
mological Collection. The raw data used here are available in Online Resource 3 and 
PPBio’s web site (http://ppbio .inpa.gov.br/repos itori o/dados ). The species list by sam-
pling technique and study site is available in Online Resource 4.

http://ppbio.inpa.gov.br/repositorio/dados
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Data analysis

Prior to analyses, the information of each sampling station was combined per plot. All 
analyses were run in the R environment for statistical computing (R Core Team 2017, 
version 3.4.3), using the vegan package 2.4-6 (Oksanen et al. 2018) and nlme package 
3.1-131 (Pinheiro et al. 2017).

Redundancy in sampling techniques

To determine the proportion of variance in the ant species composition patterns that was 
common to different sampling techniques, we used permutational multivariate analysis 
of variance (PERMANOVA) to compare the species compositions between sampling 
methods (Anderson 2001). The study sites were included as a random factor in the PER-
MANOVA model to control the possible spatial autocorrelation of the data. To avoid 
giving more weight to species sampled in large numbers, relative-frequency data (i.e. 
the number of sampling stations in a plot in which a species was collected) were used 
when constructing the taxa-composition matrix (Gotelli et al. 2011). Therefore, the rela-
tive frequency of a given species per plot varied between zero and ten for each method. 
We reduced the dimensionality of each species-data matrix (pitfall and Winkler) using 
nonmetric multidimensional scaling-NMDS (Minchin 1987), based on the Bray–Curtis 
dissimilarity index (Legendre and Legendre 2003), based on the best ordination from 
999 permutations.

Surrogate and richness

To estimate whether genus richness can predict species richness, we calculated the cor-
relation between the number of genera and the number of species found in each site 
studied by sampling technique. The number of species and genera were calculated by 
plots and correlations were measured within each study site. To measure the congruence 
between number of genera and number of species in the entire environmental gradient 
studied, we used a linear mixed-effects model (Laird and Ware 1982) and included the 
site as a random effect to control the effect of spatial autocorrelation in this analysis.

Surrogate and composition

To evaluate the congruence between the matrices of genus and species sampled with 
each sampling technique by site (n = 8), we initially reduced the dimensionality of 
each species-data and genus-data matrix (pitfall-trap and Winkler extractor separately) 
using NMDS (Minchin 1987), based on the Bray–Curtis dissimilarity index of rela-
tive-frequency data (Legendre and Legendre 2003). The congruence between the spe-
cies- and genus-level NMDS ordinations for each sampling method was quantified by 
Procrustes correlation, with 999 Monte Carlo permutations to test for statistical signifi-
cance (Peres-Neto and Jackson 2001). In this analysis, NMDS ordinations based on the 
matrices of species and genera were compared using a rotational-fit algorithm that mini-
mizes the sum of squared residuals between the ordinations. The statistic, called  m2 (the 
goodness-of-fit statistic that measures the level of congruence between two ordination 
configurations) was transformed to the Procrustes correlation coefficient (r) using the 
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following equation: r = √(1 − m2) (Oksanen et  al. 2018). We used paired t test to test 
whether there was difference in Procrustes correlation coefficient between the two sam-
pling techniques.

Relationships with environmental gradients

We investigated whether the use of genus as a surrogate for species maintains the same 
relationships detected between ant assemblages and environmental variables (altitude, 
slope, and percentage of soil clay content). The datasets and details of the sampling pro-
tocols (metadata) for each used variable are available in Online Resource 5 and the PPBio 
website (http://ppbio .inpa.gov.br/repos itori o/dados ). We selected these variables because 
they were sampled in a standardized way in the eight study sites and their effects on the 
richness and composition of the ant assemblages in the Brazilian Amazon were known 
from earlier studies (Vasconcelos et al. 2003; Oliveira et al. 2009; de Souza et al. 2012; 
Souza et al. 2016; Gomes et al. 2018).

We used redundancy analysis (RDA) to evaluate how much variance in the dependent 
variable (species or genus composition matrix) could be explained by the independent vari-
ables. RDA combines regression and principal component analysis (Borcard et al. 2011). 
We used the site scores weighted by species (SSWS) of the first RDA axis to indicate how 
sites are ordered along the main axis of the RDA (Legendre and Legendre 2003). We cal-
culated a Pearson correlation between the SSWS axes of genus and species for each sam-
pling technique. High correlations between SSWS axes of species and genus data for each 
sampling technique indicate that the assemblages respond in a similar way to the environ-
mental gradient.

The effect of species‑genus ratio on surrogate responses

To evaluate if there is loss of information when using genera as surrogate of ant species 
due to differences in the number of species per genus, we used the species-genus ratio. 
The value of the correlation coefficient (between genus and species-level) of each metric 
evaluated (richness, composition, and SSWS axes) was correlated with the values of the 
species-genus ratio.

Time and financial resources

We estimated the absolute and relative (%) time and financial costs for species- and genus-
level identifications for each sampling technique used. We considered the costs as expenses 
with field and laboratory materials, field sampling and salary of team members. We con-
sidered the laboratory costs as those related to the sorting, mounting, and identification of 
ant specimens, as well as chemicals used for the conservation of the voucher specimens. To 
calculate the cost of salaries, we took into account the time of activities in the field and in 
the laboratory. All costs were measured for each sampling technique by site, the salary and 
scholarships were based on current Brazilian federal government payments. To estimate 
the costs in US dollars we used the average value of the currency conversion rates for Bra-
zilian currency (Real = R$), which was US $ 1 = R$ 1.94 (average annual resources from 
2006 to 2013; source: Central Bank of Brazil). Costs of laboratory equipment and accom-
modation buildings for field staff were not included, as there is no qualitative change in 
total cost (Gardner et al. 2008).

http://ppbio.inpa.gov.br/repositorio/dados
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Results

A total of 70,273 specimens belonging to 450 species/morphospecies of ants distributed 
in 10 subfamilies and 70 genera were collected using pitfall traps and Winkler extrac-
tor combined (Table S2). The greatest number of species was detected by pitfall traps in 
Ducke (208), followed by Maracá (196) and UFAM (167) (Table 2). Only at Manaquiri 
and Orquestra were more species and genera captured in Winkler extractors than in pitfall 
traps. The species-genus ratio was always higher in pitfall traps. The sites with the highest 
number of species per genus were UFAM and Ducke for both sampling techniques: the 
lowest ratios were in Orquestra and Jari with pitfall traps and Viruá and Orquestra with 
Winkler extractors (Table 2).

The species compositions (Fig. 1) differed among pitfall traps and Winkler extractors 
(PERMANOVA;  F1,250 = 1088.98;  r2 = 0.96; P = 0.001). Genus richness predicted overall 
species richness for both pitfall traps (r = 0.93) and Winkler extractors (r = 0.98) (Fig. 2).

The Procrustes correlation coefficients were statistically significant in almost all com-
parisons between genus- and the species-level matrix (Table 3). The Procrustes correlation 
coefficients were similar for both sampling techniques at all sites except in Viruá, where 
there is some discrepancy in the values. The correlations with species-level data sampled 
by pitfall traps and Winkler extraction were 0.79 ± 0.15 and 0.81 ± 0.12, respectively. The 
Procrustes correlation coefficients were not statistically different between the two sampling 
techniques (paired t-test,  F1,7 = − 0.0003; P = 0.998).

The correlation coefficients of SSWS axes did not differ between two sampling tech-
niques (ANOVA,  F1,14 = 0.013; P = 0.911), indicating that there was little or no difference 
in response between the sampling techniques. The correlation analyses of SSWS values 
indicated that the ant-assemblage composition was significantly related to environmental 
variables within sites, and genera and species had similar responses to the environmental 
gradients. In most cases, a significant correlation was detected (Table 4). Similar results 
were found with the r2 values of RDA, where genera and species responded similarly to the 
environment within each sampling technique. When a RDA result was significant for the 
species level, it was also significant for the genus level for a given sampling technique at a 
given study site. Statistically non-significant results were also congruent between sampling 
techniques. That is, all relationships detected from the species matrices of a given sam-
pling technique against environmental variables were also retrieved using genus resolution 
(Table 4).

The correlation analyses between species-genus ratios and richness correlation coeffi-
cients were not significant (Fig. 3a). The correlation analyses between species and genus 
ratios and Procrustes correlation coefficients were significant, indicating an effect of spe-
cies–genus ratio on differences in assemblage composition. However, all predicted cor-
relations (calculated by Procrustes between species- and genus-level matrices; i.e., x-axis 
values) were significant and higher than 0.7, even for those with the highest species-genus 
ratio (Fig. 3b). There was no detectable effect of species-genus ratio on SSWS values; the 
correlation analyses between species-genus ratio and correlation coefficients of SSWS val-
ues were not statistically significant (Fig. 3c). The responses of the correlations between 
the species-genus ratio and the richness, composition and SSWS values were similar for 
both collection techniques.

Use of genus-level identification saved about 40% of the time and financial resources 
when compared to species-level identifications in both sampling techniques. Winkler 
extractors have a higher monetary cost when compared to pitfall-traps. Regardless of 
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the level of identification used, pitfall trapping had the lowest monetary and time costs 
(Table 5).

Discussion

An important step before proposing the use of genus level as a surrogate of species level 
for ant-survey protocols is to assess whether the information attained changes depend-
ing on the sampling technique used, because the sampling method is often related to the 

Fig. 1  An NMDS ordination plot 
indicating differences in ground-
dwelling ant species associations 
between sampling methods 
(pitfall trap and Winkler extrac-
tion) in 268 plots distributed 
over eight study sites across the 
Brazilian Amazon
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Fig. 2  Correlation between the 
numbers of genera and species of 
ground-dwelling ants for pitfall-
trap and Winkler-extraction data 
used in eight study sites in the 
Brazilian Amazon. The statistical 
significance of models was tested 
using 1000 permutations. Both 
correlations were significant at 
P < 0.001. Open symbols and the 
continuous trend line refer to the 
pitfall-trap data, closed symbols 
and the dashed trend line refer to 
Winkler-extractor data
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assemblage composition sampled. Using a comprehensive ant survey of two sampling 
techniques that collect different ant assemblages, we showed that use of genus was efficient 
in predicting the information about richness, composition and ecological patterns detected 
at the species level over a gradient of 1000 km in the Brazilian Amazon and across differ-
ent vegetation types in the Brazilian Amazon.

There are different suggestions about the use of surrogates to replace the use of spe-
cies-level identifications for conservation planning. Several authors suggest that surrogates 
work well (Williams and Gaston 1994; Andersen 1995; Pik et  al. 1999; Ricketts et  al. 
2002; Su et al. 2004; Cardoso et al. 2004a; Sætersdal et al. 2005; Bhusal et al. 2014; Alves 
et  al. 2016), while others claim that they do not (Bilton et  al. 2006; Lawler and White 
2008; Gaspar et al. 2010; Neeson et al. 2013). These contradictory results may be due to 
differences between the number of species within the genera (Andersen 1995; Lovell et al. 

Table 3  Values of Procrustes 
correlation coefficients for 
comparisons between ant 
species- and genus-level matrices 
for the eight sites in the Brazilian 
Amazon

Significance levels: P ≤ 0.05*; P ≤ 0.01**; P ≤ 0.001***

Sites Procrustes coefficient between species 
and genus matrices

Pitfall Winkler

Ducke 0.749*** 0.708***
UFAM 0.699*** 0.707***
Manaquiri 0.800*** 0.823***
Maracá 0.734* 0.842***
Viruá 0.809*** 0.624
Orquestra 0.800 0.965**
Campanã 0.937* 0.815*
Jari 0.810 0.853*
Average 0.7945 0.8098

Table 4  Values of correlation coefficients for comparisons between site scores weighted by species (SSWS) 
of the first axis of RDA for matrices of species and genus levels of ant identification, and the proportion of 
variance in the ant-assemblage composition jointly explained by the environmental variables in redundancy 
analysis (RDA) for models within each site sampled by pitfall traps and Winkler extractors in eight sites in 
the Brazilian Amazon

Significance levels: P ≤ 0.05*; P ≤ 0.01**; P ≤ 0.001***

Site r of SSWS r of SSWS r2 of RDA Pitfall r2 of RDA Winkler

Pitfall Winkler Species Genus Species Genus

Ducke 0.936*** 0.925*** 0.2196** 0.2978** 0.1549 0.1865
UFAM 0.922*** 0.727*** 0.1429** 0.1471* 0.1568 0.1477
Manaquiri 0.094 0.076 0.4745 0.4123 0.4783 0.4833
Maraca 0.948*** 0.980*** 0.1924** 0.2890** 0.1802 0.2035
Virua 0.900*** 0.978*** 0.2171** 0.2513** 0.4206** 0.4636*
Orquestra 0.978** 0.975** 0.5057 0.5257 0.4196 0.3452
Campanã 0.571 0.980** 0.7523 0.9115 0.7371 0.8635
Jari 0.392 0.239 0.7877 0.8380 0.7164 0.6570
Mean 0.7175 0.7375
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2007; Rosser 2017). Probably because of the taxonomic hierarchy, the species and higher-
taxa data have a nested structure and must have some degree of correlation (Gaston 2000). 
Likewise, the studies were undertaken at different spatial scales, using various methods, 
statistical tests and surrogate groups, which makes it difficult to make comprehensive con-
clusions (Lawler and White 2008). To gain more consistent overall trends at meso or large 
spatial scales, standardized sampling methods are useful to describe biodiversity patterns 
(Andersen 1999; Reyers et al. 2000). It may be easier to reach a consensus on which sur-
rogates are best by evaluating studies conducted on meso or large scales (Balmford et al. 
1996; Rosser and Eggleton 2012), using standardized methods for data sampling and cov-
ering a wide environmental heterogeneity (Souza et al. 2016).

The use of taxonomic classification to genus proved to be reliable in predicting rich-
ness and composition patterns of species distributions independent of sampling technique, 
sampling area, geographic sites and vegetation type. Furthermore, the high congruence 
between the SSWS of RDA values obtained with species and genera of ants indicate that 
these two taxonomic classifications share similar ecological patterns. In all analyses, genus 
can be rated as a “good” or “excellent” surrogate (i.e. able to predict > 70% of the variation 
in species data with significant relationships), according to the criteria used by Leal et al. 
(2010), dos Ribas and Padial (2015) and Souza et al. (2016). Thus, genus-level data proved 
robust to major concerns raised in the literature.

To evaluate limitations of identification to genus as a higher-taxon approach, we used 
the species-genus ratio, which has often been reported (Bevilacqua et al. 2012; Neeson 
et  al. 2013; dos Ribas and Padial 2015; Van Rijn et  al. 2015; Driessen and Kirkpat-
rick 2017; Rosser 2017), and has been singled out as an important statistic to take into 
account for higher-taxa surrogacy studies (Prance 1994; Andersen 1995). Unlike other 
studies (Rosser and Eggleton 2012; Rosser 2017), we detected a weak influence of the 
number of species per genus on the correlation coefficient for species richness between 
sites, and the same low influence of species-genus ratio was also apparent in the compar-
isons with the correlation coefficients for SSWS values. Together, these results indicate 
that the predictions of genus level for species richness and environmental responses of 
Amazonian ants are little influenced by the species–genus ratio. This may be explained 
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by the use of standardized sampling techniques throughout the study (Andersen 1999; 
Reyers et al. 2000), standard morphotypes throughout the database (e.g. de Souza et al. 
2012), the spatial scale used (Souza et al. 2016), and the variance in the distribution of 
individuals among species (Neeson et  al. 2013), which minimized bias. On the other 
hand, we detected the effect of the number of species within genera on species composi-
tion (dos Ribas and Padial 2015; Rosser 2017), which could restrict the applicability of 
genus as a higher-taxon approach (Balmford et al. 1996). However, even with this effect 
of the species-genus ratio, all significant correlations between genus and species com-
position were higher than 0.7, so genus could still be considered useful for representing 
information about species composition in this database. Similar results were also found 
in communities from aquatic environments (dos Ribas and Padial 2015). This further 
highlights the robustness of genus-level data to known sources of bias.

Even with some studies indicating different results between regions (Andersen 1997; 
Heino 2014) or even weakening surrogate predictive power with increasing spatial scale 
(Cardoso et al. 2004a), our results are consistent across the spatial and environmental 
range studied. Regardless of the sampling technique used, we did not detect changes or 
reductions in the predictive capacity of genus as a surrogate for species, indicating that 
the congruence of these relationships is powerful enough to remain stable even with 
the environmental heterogeneity of the Amazon region. In the Brazilian Amazon, many 
different ant genera show convergent levels of variation in species richness and com-
position. That is, the mechanisms affecting ground-dwelling ant assemblages (species 
sorting and filtering) may be similar for species of different genera. A similar pattern 
was previously reported for Brazilian savannas as well (Vasconcelos et al. 2014). Genus 
has been shown to be an effective surrogate of species in several previous studies (Pik 
et al. 1999; Bilton et al. 2006; Heino and Soininen 2007; Mazaris et al. 2010; Gallego 
et al. 2012; Alves et al. 2016; Souza et al. 2016), but the assessment of the maintenance 
of surrogate responses between sampling techniques is still poorly explored. The con-
sistency in the results of this study is important, in places such as the Amazon basin 
where funding limits biodiversity studies (Costa and Magnusson 2010; Magnusson et al. 
2013). Brazilian science is facing one of its worst crises, with large cuts in research 
funding directly affecting capacity building and research (Escobar 2015; Angelo 2016, 
2017). Financing cuts is even more pervasive in places with costly logistics like the 
Amazon. In this context, some studies are already beginning to include cost analyses 
and suggest alternatives to save already scarce resources (e.g. de Souza et  al. 2012; 
Souza et al. 2016; Graça et al. 2017). The use of genus as a higher taxon substitute can 
save up to 40% of time and money, which is a substantial value, especially in times of 
low budgets for science.

The two techniques most used for sampling ground-dwelling ants showed congruent 
results for the use of genus in higher-taxon approaches. Identification to genus instead 
of species collected using these sampling techniques can potentially reveal ecologically 
important patterns while reducing time and costs for monitoring ecosystem health. Con-
servation and monitoring programs need data that can support management at mesoscales 
(100–100,000 km2). Thus, the time and money saved employing this protocol can be used 
to sample other areas, or include other strata (i.e. vegetation, subsoil or canopy) and to 
repeat monitoring of the same area. Taking into consideration the large spatial scale of our 
study (1000 km; ~ 10 degrees of latitude), the use of solely pitfall traps or Winkler extrac-
tors and genus-level identification proved to be cost-efficient and time-efficient and should 
work well in other regions requiring conservation efforts and monitoring programs. The 
results that we documented are especially important for the vast Amazon region, which 
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holds an iconic status in global conservation (dos Santos et  al. 2015) and where a large 
sampling effort of invertebrates is required.
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