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Introduction

The process of human-induced forest fragmentation 
increases the degree of isolation and biomass loss, and it is 
one of the most severe threats to biodiversity conservation 
(Laurance & Williamson, 2001; Laurance & Vasconcelos, 
2009; Betts et al., 2019). Overall, biodiversity reduction in 
the forest fragments responds to variations in the physical 
environment, including an increase in air temperature and 
luminosity closer to the forest edge (Vasconcelos & Laurance, 
2005). The edge effect is among the most striking changes in 
fragmented areas since they form an abrupt transition between 
the forest and the adjacent landscape (Laurance, 2004; Ries et 
al., 2004). Moreover, the changes caused by the edge effect 
can shape ecological processes and community structure well 
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beyond the border of the fragment (Laurance & Vasconcelos, 
2009; Ruffell & Didham, 2016; Luther et al., 2020).

At the edge, the environment is typically drier with 
greater thermal variation and more susceptible to heavy winds 
than areas inside the forest fragment (Laurance et al., 2000; 
Laurance & Williamson, 2001; Laurance & Vasconcelos, 2009; 
Marcon et al., 2012). Microclimate changes caused by forest 
fragmentation were evident up to 100 m into the forest interior 
(Corlett & Primack, 2011), but the effects on assemblage 
structure varied with taxa. Lower species diversity in forest 
edges was reported for frogs (Tsuji-Nishikido & Menin, 2011), 
birds (Nogueira et al., 2021), and small mammals (Pardini et 
al., 2005; Palmeirim et al., 2020). In the Central Amazon, soil 
invertebrates such as termites (Dambros et al., 2013), beetles 
(Silva et al., 2017), and ants (Carvalho & Vasconcelos, 1999; 
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Vasconcelos et al., 2006) also respond negatively to habitat 
fragmentation with a decrease of abundance and richness due 
to vulnerability and the changes in microclimate conditions 
along forest edges.

Ants are key ecosystems engineers (Folgarait, 1998) 
and have been used as bioindicators to evaluate habitat 
conditions resulting from land management actions or long-
term ecosystem changes (Underwood & Fisher, 2006; Griffiths 
et al., 2018). Factors such as higher light incidence, lower 
quantity of litter and the decrease in humidity closer to the 
fragment edge are correlated with a reduction of ant species 
diversity and variations in foraging activities (Carvalho & 
Vasconcelos, 1999; Vasconcelos & Laurance, 2005). 

However, ant species resilience is related to water 
availability, being higher in moist environments (Levings, 
1983; DeLabie & Fowler, 1993; Baccaro et al., 2013). In a 
Panamanian rainforest, Kaspari and Weiser (2000) found 
a 25 percent increase in ant visitation at baits in the wet 
season compared to the dry season and an over 200 percent 
increase in activity in a topographic gradient. Similar patterns 
of activity and diversity were found by Vasconcelos et al. 
(2003) and Baccaro et al. (2010) for ant communities in the 
Central Amazon. There is a natural moisture gradient related 
to topography in the Terra-firme forests of Central Amazonia. 
The valleys (lower areas) are more humid and sandier than the 
clayed soils of the plateaus (higher areas) (Kaspari & Weiser, 
2000; Baccaro et al., 2010). However, it is unclear how the 
constant moisture of valleys can minimize the disturbances 
caused by edge effects over the ant species. 

To predict the species resilience and how they interact, 
the functional diversity approach has been used to provide 
more mechanistic predictions of species responses (McGill et 
al., 2006; Petchey & Gaston, 2006; Mouillot et al., 2013). Trait 
patterns may be evaluated through functional groups or guilds 
according to their life history, to understand evolutionary 
processes and aspects of community ecology (Violle et al., 2007). 
Ant functional group are often used to explore responses to 
environmental disturbances (Leal et al., 2012; Baccaro et al., 
2013, González et al., 2018) and to predict local species co-
occurrence patterns (Silva & Brandão, 2010). 

In this context, our study evaluated how the diversity 
of ant species and functional composition of riparian areas 
(next to valleys) varied along with the distance from the forest 
and road-building edges in a Central Amazon fragmented 
forest. We expect that taxonomic diversity (occurrence and 
richness) of ant species would not be related to both edge 
distances (distance from the forest and road-building edges) 
in these riparian areas, suggesting that the greater humidity in 
the valleys could be acting as a buffer, decreasing the negative 
edge effects in the ant assemblages. We also hypothesize 
that changes in taxonomic composition of ant species along 
the forest gradient would be subtle. However, related to 
functional groups, we expect that     generalist species would 
be more abundant close to the edge of the fragment due to 

the adaptation to highly variable abiotic conditions (Wilson, 
1987; Vasconcelos et al., 2006). In contrast, the abundance of 
specialist species would decrease closer to the forest edges, 
considering the sensibility of specialist species in fragmented 
forests (Leal et al., 2012). 

Material and Methods

Study site

The study was conducted in a forest fragment at the 
campus of the Universidade Federal do Amazonas (03º 04 
‘34 “S, 59º 57’ 30” W), municipality of Manaus, Amazonas, 
Brazil (Figure 1). The total area is approximately 776 ha and 
comprises 592 ha managed for conservation (Marcon et al., 
2012). The fragment harbors areas of Terra-firme (including 
valleys and plateaus) and white-sand forests. The rainy season 
is between November and May, and the dry season is between 
June and October (Marcon et al., 2012).

Sampling design

The Program for Biodiversity Research (Programa 
de Pesquisa em Biodiversidade) installed and maintained 10 
riparian plots at the Universidade Federal do Amazonas forest 
fragment (Figure 1). The riparian plots (next to valleys) are 
250 m-long and were installed at 3 meters from the streams. 
The valley width, where the riparian plots were installed, 
ranged from 9.90 to 36.67 m. Valley width was based on 
the lowland areas around streams subject to flooding (Tsuji-
Nishikido & Menin, 2011). For more information about the 
riparian plots habitat, see Tsuji-Nishikido and Menin (2011).

Environmental predictors

We use edge distance and road-building distance as 
environmental variables to evaluate the edge effect on ant 
assemblages in the mesic environments. The plot distance 
to the nearest fragment edge and the nearest construction/
road was measured using Google Earth tools. The forest edge 
distance varied from 73 to 1114 m, and the road-building 
distance ranged from 65 to 499 m (Appendix - Supplementary 
material). Both distances were based on the center point of 
each plot.

Ant sampling

Ants were sampled using pitfall traps (Yi et al., 2012) 
and Winkler extractor methods (Lopes & Vasconcelos, 2008). 
We sampled ants in ten pitfalls and collected ten samples of 
1 m² of leaf-litter in each plot. The sampling stations were 
regularly spaced every 25 m. Pitfalls consisted of 500 mL 
plastic cups buried to the ground level, partially filled with 
alcohol 70% and detergent and were left in the field for 48 hours. 
Each litter sample was sifted through a coarse sieve (1 cm² 
mesh size). Posteriorly the leaf-litter material was placed into 
a mesh bag and suspended vertically for 48 hours. Ants and 
other arthropods fell in a small cup partially filled with 70% 
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alcohol, fixed at the bottom of the bag. Ants were sorted to 
genus level using identification keys (Baccaro et al., 2015) 
and to species level by comparing with specimens deposited 
in entomological collections and checking specific literature. 
Voucher specimens were deposited in the Invertebrates 
Collection of Universidade Federal do Amazonas. Ants were 
sampled in September 2012 in 10 permanent plots installed 
in riparian areas, next to valleys and small streams of Terra-
firme forests.

Functional group classification

Ant species were placed into functional groups from 
classifications for Neotropical ants (Groc et al., 2014). The 
functional group approach was based on foraging behavior, 
food choice, nesting sites, natural history information, and 
phylogeny of each group species with potentially similar 
lifestyles. The matrix was composed of seven groups 
comprising two groups of fungus-growers, three groups of 
omnivores, and two groups of predators (Groc et al., 2014): 
(1) Leaf-cutters, (2) Cryptobiotc attines, (3) Ground-dwelling 
omnivores, (4) Generalist omnivores, (5) Arboreal omnivores, 
(6) Ground dwelling generalist predators and (7) Ground 
dwelling specialist predators. 

Statistical analysis

We combined the Winkler and pitfall data to give a 
more reliable view of ant species richness and composition 
per plot. Given that ants are colonial organisms, we used the 
number of occurrences per plot as a measure of ant abundance 
(Gotelli & Chao, 2013). We used multiple linear regressions 

to detect the effects of the independent variables (both edge 
distance and road-building distance) over ant abundance 
and richness per plot. Sample-based rarefaction curves 
was constructed to estimate species richness using plots as 
sampling units (Colwell et al., 2012). Sample completeness 
was measured by sample coverage, the proportion of the total 
number of individuals that belong to the species detected in 
the sample (Chao & Jost, 2012). Interpolated and extrapolated 
values are based on Hill numbers generated in the iNEXT 
package (Hsieh et al., 2016). 

We used Permutational Multivariate Analysis of 
Variance (PERMANOVA) (Anderson 2001) and non-metric 
multidimensional scaling (Kruskal, 1964), based on Bray-
Curtis (occurrence data) and Sorensen (presence-absence data) 
distance measure to relate ant composition with both edge 
distance and road-building distance. While occurrence data 
give more weight to abundant species, presence-absence data 
gives more weight to rare or uncommon species. The p-value 
analysis was based on 999 permutations. Both PERMANOVA 
and NMDS (metaMDS function) were made using vegan 
package (Oksanen et al., 2013). 

We converted the occurrence numbers to proportions 
for controlling the abundance variation per functional group 
among plots. Posteriorly, we used the proportion of each 
functional group per plot as a dependent variable against 
sampling edge distance and road-building distance in beta 
regressions models. Beta regression models are less prone to 
distortions caused by lower and upper bounds of proportions 
(Espinheira et al., 2008). All statistical analyses were done in 
R (R Core Team, 2022).

Fig 1. Geographical location of the study area, campus of the Universidade Federal do Amazonas, Brazil with permanent 
riparian plots installed by the Program for Biodiversity Research (Programa de Pesquisa em Biodiversidade).
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Results   

We found 99 ant species/morphospecies belonging to 
34 genera from eight subfamilies in pitfall traps and Winkler 
extractor combined (Appendix – Supplementary material). The 
most representative subfamilies collected with the Winkler 
extractor were Myrmicinae (52 species/morphospecies), 
followed by Ponerinae (6), Formicinae (6), and Ectatomminae 
(5). For pitfall traps, the most representative subfamilies were 
Myrmicinae (43 species/morphospecies), followed by Ponerinae 
(8), Ectatomminae (6), and Formicinae (5). 

Species richness was higher using the Winkler extractor 
(73 species). Pheidole was the richest genera (12 species), 
followed by Strumigenys (9 species) and Crematogaster (8 
species). The most frequent species was Solenopsis sp. 1, with 
49 occurrences. A total of 63 ant species were recorded from 

Pitfall traps, with the richest genera being Pheidole (14 species), 
Solenopsis (6 species), and Crematogaster (5 species). The most 
frequent species was Ectatomma lugens, with 26 occurrences.

Ant occurrence did not vary over the edge distance 
or road-building distance (R2 < 0.01; F2,7 = 0.57; P = 0.58). 
Similarly, the number of species remained stable according 
to edge and road-building distance (R2 = 0.11; F2,7 = 1.58; 
P = 0.27). However, rarefaction curves with sample and 
coverage-based show that Winkler extractor and Pitfall traps 
combined have an accentuated increase in estimated number 
of species (~95%) than isolated methods to access sampling 
effort (Appendix – Supplementary material). 

The distance of forest edge and road-building distance 
were both related with ant species composition (Table 1), 
for presence-absence (Figure 2 and 3) and abundance data 
(Appendix – Supplementary material).

Dependent variable Predictors R2 F P

Abundance data
Road-building distance 0.157 1.530 0.029

Forest edge distance 0.174 1.699 0.010

Presence-absence data
Road-building distance 0.162 1.733 0.045

Forest edge distance 0.249 2.657 0.001

Table 1. Summary statistics of PERMANOVA using abundance (occurrence) and presence-
absence data of ant composition. The results were based on 999 permutations.

We grouped our species in seven of the nine functional 
groups proposed by Groc et al. (2014). We did not sample 
predatory ants belonging to raid-hunting predators and arboreal 
predators functional groups. In general, there was not a clear 
pattern between functional groups distribution, except by 
leaf-cutters and generalist omnivorous species. We found 
relatively more leaf-cutters ants on plots further from road-

building constructions. Contrary to our hypothesis, we found 
relatively fewer generalist omnivores closer to the forest 
edge (Table 2). There is an evident species turnover in the 
other functional groups along forest and road-building edge 
distances (Figures 2 and 3). However, it is not associated with 
an increase or decrease of a particular guild. 

Table 2. Summary of beta regression models for the relative abundance of ants for each functional group. 
Significative results are in bold.

Functional groups R2 Predictors b coefficient P

Arboreal omnivores
0.275

Forest edge distance -0.001 0.112

Road-building distance 0.001 0.508

Cryptobiotic attines
0.287

Forest edge distance < 0.001 0.120

Road-building distance < 0.001 0.953

Leaf cutters
0.434

Forest edge distance < 0.001 0.135

Road-building distance 0.002 0.003

Generalist omnivores
0.375

Forest edge distance 0.001 0.018

Road-building distance -0.001 0.053

Ground dwelling omnivores
0.061

Forest edge distance < 0.001 0.475

Road-building distance < 0.001 0.925

Ground dwelling generalist predators
0.065

Forest edge distance < 0.001 0.537

Road-building distance < 0.001 0.988

Ground dwelling specialist predators
0.049

Forest edge distance < 0.001 0.838

Road-building distance 0.001 0.467
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Fig 2. Turnover of ant species along a gradient of edge distance, showing species turnover from the forest edge to 
the inside of the forest, using presence-absence data. The x axis represents our plots and the y axis represents our 
dependent variables. 
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Fig 3. Turnover of ant species along a gradient of road-building distance, with presence-absence data. The x axis 
represents our plots and the y axis represents our dependent variables.
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Discussion

Overall, our results suggest a limited effect of forest 
or road-building edge effects on ant diversity. Only ant 
assemblage composition was related to forest and road-
building edge distance. There was also no strong pattern 
associated with functional group abundance. Both generalist 
and specialist predators were common along the edge 
distances investigated. Edge effects in fragmented forests 
are caused by biotic and abiotic factors that influence species 
diversity, and such changes depend on the fragment edge’s 
severity (Laurance et al., 2002; Laurance & Vasconcelos, 
2009). Some environmental predictors, such as moisture and 
temperature, are more variable 10 m from the forest fragment 
edge (Laurance et al., 2002). Both in forest edge or clearings 
next to road construction, tree falls are more frequent due to 
abrupt variations in microclimate as elevated wind turbulence 
and temperature variability (Kapos et al., 1997; Laurance et al., 
1997), and consequently greater solar incidence (Laurance et al., 
1997; Carvalho & Vasconcelos, 1999). These environmental 
changes can be even higher in urban forest fragments due to 
direct contact with city buildings and pavement (Dambros 
et al., 2013). However, in our study, we observed that the 
abundance and number of ant species did not vary according 
to the edge distance or road-building distance. Given that 
many ant species follow or are constrained by humidity 
(Kaspari & Weiser, 2000), moisture of riparian areas may be 
buffering the edge effects on ant diversity.

Species composition was related to both forest edge and 
road-building distances. By assessing isolated and continuous 
fragments in Central Amazonia, Carvalho and Vasconcelos 
(1999) found that ant composition was related to distance to 
the forest edge in fragmented areas. Physical factors such as 
litter depth decrease considerably at the forest edge, reducing 
indispensable nesting and foraging resources for ant species 
(Carvalho & Vasconcelos, 1999; Vasconcelos & Laurance, 
2005) and may explain the high species turnover detected along 
the forest or road-build edge gradient in our study. However, 
the lack of pattern of functional group distribution suggests 
that forest or road-build edge effects in valley areas are more 
subtle than in typical Terra-firme forests, in plateus gradient.

Moisture can influence the composition and activity 
of ant species, with an increase in ant activity and diversity 
in more humid seasons and habitats (Levings, 1983; Kaspari 
& Weiser, 2000; Vasconcelos et al., 2003). However, in 
valleys, the temporary accumulation or lateral percolation 
of water near small streams (Chauvel et al., 1987) may limit 
the establishment and growth of some ground-nesting species 
(Baccaro et al., 2013). Therefore, higher ant species richness 
found in more humid habitats may be related to an increase of 
generalist species associated with a decrease in the specialist 
predators, litter nest fungus growers, and other functional 
guilds (Baccaro et al., 2013). At the site scale, disturbance 
resulting from water-table fluctuation may account in part 

for only seven out of nine functional groups recorded. Part 
of the variation in species composition is related to forest 
edge or road-building distances, but there is no clear pattern 
of functional group distribution along these gradients. 
Species with very different habitat, nesting, and resource 
requirements, such as Cryptobiotic attines, Generalist 
omnivores, and Ground dwelling specialist predators, were 
found along the gradient. These results suggest a limited 
effect of forest or road-building edge distances on ant species 
assemblages in this fragment.

The forest and road-build edge effects show subtle 
effects on ant diversity, not related to ant species richness 
and abundance. The general lack of abundance patterns of 
functional groups along the gradient also reinforces a weak 
relation of forest or road-build edge effects on ant assemblages 
in these riparian areas. The well-known strong link between 
ants and humidity associated with higher and stable moisture 
found in valleys suggests that moisture may be buffering the 
pervasive effects of forest and road-building edge effects. 
Additional experimental studies are needed to elucidate and 
decouple the possible interactions between moisture and 
edge effects.
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