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Abstract
Aim: Distinguishing ecological and evolutionary processes that structure assemblages 
can provide a comprehensive vision of the variation in species turnover in hetero-
geneous regions. However, the causes of spatial variation in organism assemblies in 
most of the Amazon still require further studies. In view of this, our objective was to 
determine the relative roles of species interactions, categorical and continuous envi-
ronmental filters and isolation by distance in the taxonomic and functional composi-
tion of lizard assemblages.
Location: Amazonian rainforest.
Taxon: Lacertilia.
Methods: We sampled 14 sites along 880 km in the Madeira- Purus interfluvial re-
gion, central- south- western Amazonia. We used multiple linear models applied to 
distance matrices, spatial correlograms and partitioned variance to distinguish the ef-
fects of geographical distances from environmental distances on lizard assemblages. 
Additionally, to better understand the effects of environmental gradients and forest 
type on species traits, we used a combination of RLQ and fourth- corner analysis.
Results: Variance in taxonomic distance was mainly explained by a continuous en-
vironmental gradient that selects different species. Although we found no evidence 
of overdispersion or clustering of traits, functional distance was mainly explained by 
forest type and precipitation. The weak effect of geographical distance on lizard as-
semblages suggests that different environmental conditions have selected distinct 
subsets of species and functional traits.
Main Conclusions: We showed that the structural heterogeneity along an environ-
mental gradient in Amazonia has a significant impact on the taxonomic and functional 
composition of lizard assemblages. Environmental filtering along the interfluvial re-
gion has caused species turnover and determined differences in the functional char-
acteristics found between assemblages in dense and open forests. These results are 
relevant for conservation since local species or trait subsets change across the land-
scape and are therefore irreplaceable in the case of local extinction.
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1  |  INTRODUC TION

One of the main goals of community ecology is to investigate 
changes in species and trait richness and composition along en-
vironmental gradients. Non- random subsets from more diverse 
species pools emerge in response to environmental filtering (Kraft 
et al., 2007), competition (Santos et al., 2009; Vernes et al., 2005; 
Vitt et al., 2000), limited dispersal and demographic stochasticity 
(Hubbell, 2001). Distinguishing ecological and evolutionary pro-
cesses and mechanisms structuring assemblages is not an easy 
task (Cadotte & Tucker, 2017), because they generally result from 
hierarchically related environmental and historical factors (e.g. Dias- 
Terceiro et al., 2015; Peixoto et al., 2020). However, regardless of the 
ecological and evolutionary processes behind non- random assem-
blages, testing spatial heterogeneity in assemblage taxonomic and 
functional structure is useful for determining levels of biotic com-
plementarity and redundancy between sites (Diaz & Cabido, 2001; 
McGill et al., 2006), which makes it an efficient approach to con-
servation of local assemblies (Bueno et al., 2012; Faria et al., 2019; 
Fraga et al., 2011).

Species turnover is associated with elevation and environ-
mental variation in western Amazonia near the Andes (Noriega & 
Realpe, 2018). However, the causes of spatial variation in organis-
mal assemblages in the greater part of lowland Amazonia remain 
controversial. Large rivers, which block dispersal and gene flow 
(Cracraft, 1985; Ron, 2000), can generate complementary assem-
blages on opposite banks of rivers (Borges & Da- Silva, 2012; Juen & 
De- Marco, 2012; Ribas et al., 2012), but some studies have already 
shown that, for some taxa, there is little variation in communities 
along the banks, even though these rivers are considered the lim-
its of endemism for well- studied groups, such as birds (Santorelli- Jr 
et al., 2018).

Even in areas with no apparent dispersal barriers, neutral pro-
cesses can generate differences in assemblages that are separated 
by large distances (Hubbell, 2001), but the degree to which species 
turnover relates to neutral processes or to environmental filters that 
vary with distance has been disputed (Qian & Ricklefs, 2012). While 
neutral processes are expected to result in changes in the composi-
tion of communities, these changes should not result in consistent 
differences in the functional characteristics of assemblages because 
the neutral theory considers all species to be functionally equivalent.

Many studies have shown turnover of species assemblages in 
Amazonia (e.g. Fraga et al., 2018; Rojas- Ahumada et al., 2012), but 
the scale of those studies was too limited to detect neutral effects 
due to dispersal limitation. To increase the geographical coverage in 
an area with no obvious dispersal barriers, a multidisciplinary effort 
has been applied to provide an efficient sampling design to quantify 
dissimilarities among assemblages based on standardized sampling 
plots installed along the Madeira- Purus interfluvial region, in the 
Midwestern Amazonia (PPBio, 2020). The plot array covers 880 km 
of lowland Amazonian rainforest and strong gradients in climate and 
vegetation structure, with the vegetation predominantly consist-
ing of Dense Ombrophilous Forest (DOF) and Open Ombrophilous 

Forest (OOF). Both are evergreen rainforests that differ mainly 
by the denser understorey in the DOF, due to higher densities of 
shrubs, herbs, ferns, palm trees, epiphytes and lianas. Additionally, 
climatic seasonality is slightly more pronounced in OOF, where first- 
order streams can dry completely during the low- rainfall season 
(IBGE, 1997). These forest types also represent different portions of 
gradients in soil texture, vegetation cover and climate. Combinations 
of those gradients have been shown to be related to dissimilari-
ties among assemblages of plants (Bernardes & Costa, 2011), fish 
(Barros et al., 2013), snakes (Fraga et al., 2018) and bats (Marciente 
et al., 2015).

Lizards are considered model organisms for ecological stud-
ies because the functional significance of their morphological 
and behavioural traits has been studied intensively (Garland Jr & 
Losos, 1994; Gomes et al., 2016) and they are usually easy to sam-
ple. As most species are use only a small portion of the available 
thermal and vegetation structure gradients, they are considered 
to be sensitive indicators of variation in environmental conditions 
(Sinervo et al., 2010). In Amazonia, lizard assemblage structure may 
be predicted by gradients that determine the availability of foraging, 
resting, refuge and thermoregulation sites, such as canopy openness 
and light incidence (Lobão, 2008; Moraes, 2008), leaf- litter depth 
(Bittencourt, 2008; Pinto, 2006), prey availability (Lobão, 2008; 
Moraes, 2008), soil clay content (Pinto, 2006), elevation and slope 
(Lobão, 2008; Moraes, 2008), distance from waterbodies (Faria 
et al., 2019) and edge effects (Almeida- Corrêa et al., 2020). Since 
values of those gradients are not evenly distributed over heteroge-
neous landscapes, they may cause spatial mosaics of habitat quality 
and different local subsets of species and functional traits.

While distinguishing ecological and evolutionary processes be-
hind species turnover may not be simple, dispersion or concentra-
tion of functional traits among assemblages has been used to infer 
the relative strengths of competition or environmental filters in as-
semblage structure (Faith, 1992; Winter et al., 2013). These analyses 
are often undertaken using phylogenetic proximity as a surrogate 
for similarity in functional traits because phylogenetic lineages often 
conserve similar functional traits (e.g. Fraga et al., 2018). However, 
they can be carried out using direct measures of differences in func-
tional traits, since the traits measured explicitly carry a phylogenetic 
signal (Adams, 2014). This can be a useful strategy for conservation 
because phylogenetic diversity estimates may capture less func-
tional diversity than sets of species randomly selected from a pool 
(Mazel et al., 2018).

We modelled our hypotheses on assemblage- level dissimilarities 
considering different ways to disentangle environmental distances 
from geographic distances. One of the main problems in distinguish-
ing neutral effects resulting from geographic distance (Hubbell, 2001) 
from environmental filters is that sites separated by distances that 
are sufficient to cause measurable differences in assemblages usually 
also differ in environmental characteristics (Qian & Ricklefs, 2012). 
Similarity in taxonomic compositions of lizard assemblages could 
come about because the environment filters out species with cer-
tain functional traits (whether morphological or physiological), that 
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    |  3PEIXOTO et al.

may also vary with geographical distance (Fluck et al., 2020). In this 
case, we ask whether there should be strong correlations between 
differences in mean community trait characteristics and differences 
in environmental conditions. Alternatively, if species with all traits are 
present in all assemblages, the species composition of the entire as-
semblage is selected by environment or by geographically structured 
historical factors (e.g. barriers or different dispersal centres). In this 
case, there will be little correlation between differences in mean com-
munity trait characteristics and environment, despite the strong rela-
tionship between environment and taxonomic composition.

In this paper, we investigate how environmental gradients (forest 
type, vegetation cover, soil texture, climate) and geographic distance 
influence lizard species composition and functional traits (morphol-
ogy, thermoregulation, foraging mode) in the Amazonian rainforest. 
Our main objective was to distinguish the effects of dispersal lim-
itation and environmental filters on the taxonomic and functional 
compositions of assemblages.

2  |  MATERIAL S AND METHODS

Sampling sites are located along in the interfluve between the 
Madeira and Purus rivers, central- southwestern Brazilian Amazonia. 

The study area covers rainforests crossed by the BR- 319 fed-
eral highway, which connects Manaus to Humaitá, in the state 
of Amazonas, and on the west bank of the upper Madeira River, 
Rondônia state. The topography of the region is relatively flat and 
low (30– 60 m a.s.l.), and according to a classification proposed by 
the Brazilian Institute of Geography and Statistics (IBGE, 1997), the 
vegetation is predominantly covered by Dense Ombrophilous Forest 
and Open Ombrophilous Forest.

We sampled 14 sites (sites are made of aggregated plot repli-
cates, which we will call modules from now on), which were installed 
according to the RAPELD (Brazilian acronym for rapid survey plus 
long- term ecological research) method (Magnusson et al., 2005, 
2013). Each module is composed of two main 5- km long trails, par-
allel and separated by 1 km. We sampled nine modules within DOF 
and five modules within OOF (see Figure 1). Each module contains 
10 250 m- long, 10- m wide plots, following natural altitudinal con-
tours to minimize environmental heterogeneity within plots.

We found active or resting lizards using a combination of visual 
search (Campbell & Christman, 1982) along the centre line of each plot 
and leaf- litter sweeping and shelter inspection within a range of 1 m 
from the centre line of the plot. We collected data in 2010 between 
the late dry season and the middle of the rainy season (September– 
December). Leaf- litter sweeping and shelter inspection were used to 

F I G U R E  1  RAPELD sampling modules along the BR- 319 federal highway (M1– M11) and the upper Madeira River (M12– M15) in Brazilian 
Amazonia. The module M8 (in red) was not sampled because it was flooded during the rainy season. Different colours show patches of 
natural or anthropogenic landscapes, as detailed in the inset legend.
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4  |    PEIXOTO et al.

detect sheltered lizards and compensate for possible effects of sea-
sonal changes in weather over the sampling period on the activity of 
some species. Fossorial species are under- sampled in this study, since 
we did not use pitfall traps, which are inefficient in places with high 
water tables or rocky ground. We applied each method over 60 min 
per plot, with two simultaneous observers, 10 m apart, and we pooled 
the data from both observers to compose each sample.

Logistical constraints prevented us from obtaining temporal 
sampling repetitions and may have reduced our ability to find rare or 
very cryptic species. However, our data resulted from 140 sampling 
plots with a sample effort equivalent to 16,800 h × observers. When 
species were difficult to identify in the field, we collected a max-
imum of three specimens and killed them using a lidocaine- based 
anaesthetic, fixed them in 10% formaldehyde and stored them in 
70% ethanol. The specimens were deposited in the herpetological 
section of the zoological collections of the Instituto Nacional de 
Pesquisas da Amazônia, Manaus, Brazil.

2.1  |  Measuring taxonomic and functional 
trait distances

To quantify lizard assemblages we adopted the taxonomic nomen-
clature recognized by the Reptile Database (Uetz et al., 2020). Some 
species we sampled may be part of complexes composed of multi-
ple evolutionary lineages, but due to the lack of robust evidence to 
differentiate them based on morphology or geographic distribution, 
we considered them as single taxonomic entities. Exceptionally, the 
Blue- Lipped Lizard Plica umbra contains two subspecies (P. umbra 
umbra and P. umbra ochrocollaris) that have been considered distinct 
evolutionary lineages (Oliveira et al., 2016). We estimated taxo-
nomic distances among paired modules using the Bray– Curtis index, 
implemented in the vEgAn R- package (Oksanen et al., 2020).

To quantify lizard assemblages based on functional traits, we se-
lected traits that potentially represent interactions among lizards, 
biotic and abiotic habitat elements. We used morphometric traits 
reported in previous studies (Gómez- Ortiz & Moreno, 2017; Peña- 
Joya et al., 2020) because they can suggest important aspects of the 
diet of the species (e.g. prey size), habitat use and ability to disperse, 
forage, thermoregulate and escape from predators (Vitt, 1991; Vitt 
et al., 1997). We used a digital calliper to measure snout– vent length 
(SVL), head width, head height, anterior limb length (hereafter arm 
length), and posterior limb length (hereafter leg length). We mea-
sured 5– 15 individuals per species and transformed average values 
in proportions relative to SVL to reduce the effect of size. We used 
foraging mode (active, sedentary ambush, active ambush), because 
this trait reflects levels of exposure to predators, feeding frequency, 
fat accumulation rate and consequently defensive behaviour, which 
can impact reproductive success (Vitt, 1991). We gathered informa-
tion about interactions between species and microhabitat (terres-
trial, arboreal, cryptic, scansorial) and thermoregulation (heliotherm 
and non- heliotherm) because these traits represent direct interac-
tions between species and the available habitats (Vitt et al., 2001). 

We obtained species- level data on foraging mode, thermoregulation 
and interactions between species and microhabitat from the litera-
ture (Ávila- Pires, 1995; Vitt et al., 2008). We encoded all categorical 
traits in binary data as suggested by Petchey et al. (2007).

To estimate functional distances among paired modules, we 
used continuous trait means weighted by species abundance, im-
plemented in the fD R- package (Laliberté et al., 2014). For the bi-
nary traits, we weighted by proportions of each trait relative to the 
total species abundance per module. We estimated functional dis-
tances using the Gower index implemented in the vEgAn R- package 
(Oksanen et al., 2020), because this index has been described as ef-
ficient for mixed datasets composed of continuous, categorical and 
binary variables (Petchey et al., 2007).

2.2  |  Phylogenetic signal and trait dispersion

In addition to the ecological background for the choice of functional 
traits measured in this study, we quantified the phylogenetic sig-
nal carried by each trait. This gives an indication of the processes 
that structure a community. The phylogenetic relationships were 
based on a well- supported phylogenetic tree proposed by Pyron 
et al. (2013), which was based on 12 concatenated genes (five mi-
tochondrial and seven nuclear). We calculated K statistics based on 
Brownian motion (Blomberg et al., 2003), using the PicAntE R- package 
(Kembel et al., 2010) to calculate the strength and statistical support 
of the phylogenetic signal carried by each trait.

Since all traits measured in this study are dependent on 
phylogenetic relationships among the species sampled (see 
Figure S1), and that traits driving assemblage structure are con-
served over the phylogeny (Cavender- Bares et al., 2009), our in-
ferences based on functional distances can be interpreted from 
an evolutionary perspective. Additionally, we used the phylosor 
(1- phylosor) function of the PicAntE R- package to estimate phy-
logenetic distances based on fractions of branch- length shared 
among paired modules. By applying a simple linear regression 
given by functional distance =  a + b (phylogenetic distance), we 
found a positive relationship (r2 = 0.40, p < 0.00001), which in-
dicates that functional distance is a good proxy for phylogenetic 
distance in our study system, consistent with snake assemblages 
in Amazonia (Fraga et al., 2018).

We determined whether the phylogenetic (and therefore func-
tional) structure of lizard assemblages is characterized by phyloge-
nies more dispersed or clustered across modules than expected by 
chance. We used NRI and NTI, which compare observed and random 
values generated by a null model of mean pairwise distances (MPD) 
and mean nearest- neighbour distances (MNTD) respectively (Webb 
et al., 2002). Both indices return positive values for assemblages 
composed of more related species than expected by chance, and 
negative values for species more distant than expected by chance. 
We implemented NRI and NTI in the PicAntE R- package (Kembel 
et al., 2010), using a null model that randomizes the assemblage data 
with the independent swap algorithm (Gotelli & Entsminger, 2003), 
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    |  5PEIXOTO et al.

maintaining species occurrence frequency and richness. The p- 
values obtained were derived from 999 randomizations.

2.3  |  Environmental gradients

To measure environmental variables in the study area, we col-
lected information on vegetation cover and soil structure, such 
as the basal area of trees and clay content in the soil. Basal area 
is a measure of vegetation cover based on the cross- sectional 
area of trees at chest height, and we used the data collected over 
the study area by Schietti et al. (2016). Clay content in the soil 
was measured using a standard protocol based on particle se-
lection, which is part of the environmental sampling protocols 
of the Biodiversity Research Program (PPBio). Further details on 
methods and references can be found at: https://ppbio data.inpa.
gov.br/metac atui/data.

To quantify heterogeneity in precipitation across the study area, 
we selected variables available in the WoRLDcLim database (Fick & 
Hijmans, 2017), which comprised interpolated surfaces from mean 
values over 50 years (1950– 2000), and we extracted values per cen-
troid geographic coordinates of each module using the DivA- giS 
software (Hijmans et al., 2012). The mean annual rainfall had the 
greatest amplitude (1930– 2624 mm), so we used it as a proxy for the 
heterogeneity in precipitation in the study area (see Table S1).

Due to the high multicollinearity among environmental vari-
ables, both climatic and structural (Pearson r = 0.78– 0.92, variance- 
inflation factor = 5.59– 15.52), it was not possible to use them 
as independent variables in multiple parameter linear models. 
Therefore, to estimate the effects of environmental heterogeneity 
on taxonomic and functional distances, we converted basal area, soil 
clay content and precipitation into a matrix of Euclidean distances 
among paired modules. We call this an environmental gradient, 
which represents a distance- based estimate of the continuous spa-
tial environmental heterogeneity covered by the study area. We also 
classified the environmental heterogeneity by forest type, mainly on 
the basis of understorey openness (DOF and OOF). Subsequently, 
we performed a principal coordinate analysis (PCoA) applied to the 
functional distance and forest- type matrices.

2.4  |  Effects of environmental and geographical 
distances on lizard assemblages

We undertook all analyses in R 4.0.2 (R Core Team, 2020),  whose 
results can be seen in Figures S2 and S3. We used linear multiple 
regression on distance matrices to determine the effects of the 
environmental gradient, geographical distance and differences be-
tween forest types (DOF and OOF) on differences in taxonomic and 
functional lizard assemblages, separately. To evaluate the effects 
of geographical distance on the relationships between taxonomic 
or functional distances and environmental distances, we used par-
tial multivariate correlograms, which we implemented in the EcoDiSt 

R- package (Goslee & Urban, 2007). We constructed spatial correlo-
grams using taxonomic or functional distances as response matrices, 
environmental distances as an ancillary matrix, 1000 permutations 
and 10 classes of geographical distance.

We additionally used partial correlations based on type III sums 
of squares to partition the variance in the taxonomic distance es-
timates between unique contributions of environmental gradient, 
geographical distance, forest type and unexplained variance. All the 
data used in this study can be found in the Supporting Information.

2.5  |  Environmental filtering of species traits

To further investigate how environmental gradients affect the func-
tional traits of species, we applied a complementary, categorical ap-
proach (Dray et al., 2007). RLQ is a co- inertia analysis that relates 
environmental data (R) to functional traits (Q) using species relative 
abundances (L) as a link (Southwood, 1977).

We implemented RLQ in the ADE4 R- package (Dray & 
Dufour, 2007), which performs a correspondence analysis on the 
L matrix and evaluates covariance between the R and Q matri-
ces using a Hill– Smith PCA. To quantify environmental variation 
throughout the study area we applied a PCA on clay soil content, 
basal area and precipitation, and represented these gradients as 
three principal components axes. We did this separately for over-
all, arboreal and terrestrial assemblages, but in all cases, the first 
principal component axis mainly represented precipitation (99% of 
the captured variance), the second axis represented clay content 
(98%) and the third axis represented precipitation (99%). We also 
added forest type as a predictor variable and ran the analyses with 
species abundances standardized by the square root of total abun-
dance, as implemented by the Hellinger standardization available 
in the vEgAn R- package (Oksanen et al., 2020). Then, we tested 
two combined null hypotheses, namely (i) distribution of species 
with fixed traits is not influenced by environmental variables and 
(ii) distribution of species along fixed environmental conditions 
is not influenced by species traits, for which we assessed coeffi-
cients based on 49,999 permutations (Farneda et al., 2015; Núñez 
et al., 2019).

To evaluate the effects of geographic distance on the relation-
ships between species traits and environmental gradients, we used 
partial multivariate correlograms, which we implemented in the 
PGIRMESS R- package (Giraudoux, 2018). We constructed spatial 
correlograms based on 999 permutations, using the RLQ axes 1 and 
2 as response variables and 10 classes of geographic distance.

3  |  RESULTS

We found 27 species of lizards of 17 genera distributed in nine 
families (Table S2). Gymnophthalmidae was the richest family in the 
sample, represented by seven species. Among the most frequently 
sampled species were Norops fuscoauratus (85% of the modules, 
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n = 12), Chatogekko amazonicus (78%, n = 11) and Ameiva ameiva 
(71%, n = 10). Respectively, these species are a small arboreal anole, 
a tiny leaf litter gecko and a large terrestrial teiid.

3.1  |  Phylogenetic structure of lizard assemblages

There was no evidence of phylogenetic overdispersion, based on 
either NTI and NRI (p > 0.8 in all cases), and little evidence of phylo-
genetic clustering, since values more positive than chance (p < 0.05) 
were generated for only two modules, and only when considering 
the entire functional tree (Figure 2). These findings indicate that 
neither environmental filters nor competitive interactions could be 
predicted by phylogenetic proximity.

3.2  |  Effects of an environmental gradient and 
spatial autocorrelation

Although we expected a strong relationship between geographic 
distance and species composition of assemblages, taxonomic dis-
tance was not associated with either geographic distance or forest 
type. Taxonomic distance was associated only with environmental 
distance in all multiple linear models. Geographic distance did not af-
fect taxonomic or functional similarity of assemblages in any model 
(Table S3), but forest type and the environmental gradient had in-
dependent effects on functional distances (see Figures S2 and S3).

Taxonomic and functional distances were not independent, but 
26% positively related for the overall assemblages, 12% for arbo-
real assemblages and 22% for terrestrial assemblages (p < 0.0001 
in all cases). Therefore, to better understand the independent cor-
relations among variables, we carried out partial Mantel tests on 
all combinations of distance matrices. There were statistically sig-
nificant partial correlations (rm = 0.21– 61) for all variables, but cor-
relations with geographic distance after controlling for differences 
in environment or assemblage distances were generally weaker and 
mostly statistically not significant (Table S4). Terrestrial assemblages 
showed relatively strong effects of geographic distance, and al-
though controlling for geographic distance, functional or taxonomic 
distances did not remove the effects of the other variables.

Species differed in their abundance along the environmental 
gradient (Figure 3a), such as Loxopholis and Dactyloa tended to clus-
ter at one end of the gradient, but species of other genera, such as 
Kentropyx and Norops, occurred at opposite ends of the gradient or 
were spread along it. The assemblage- level trait means also differed 
along this gradient (Figure 3b), but most traits were more abundant 
in areas with more dense forest (Figure 3c). The PCoA showed that 
the difference in the trait means weighted by species proportional 
abundance were high enough to generate two distinct clusters that 
correspond to forest types (Figure 3d). For this analysis, we did not 
encode categorical traits as binary, to avoid inflating the variances 
captured.

The Mantel- based correlograms (see Figure 4) showed no spatial 
autocorrelation in taxonomic distance across 10 geographic distance 
classes (p > 0.1 in all cases). For functional distances, regardless of 
the assemblage coverage (overall, arboreal or terrestrial), there was 
positive spatial autocorrelation in only one distance class (rm = 0.68– 
0.76, p < 0.02 in all cases). This finding suggests that at Euclidean 
distances of approximately 178 km, lizard assemblages tend to be 
more functionally similar than chance, although spatial autocorrela-
tion in smaller distances was not detected. A cluster analysis based 
on similarities among modules in the measured environmental gradi-
ent revealed that some pairs of modules 170– 200 km apart are more 
environmentally similar to each other than geographically closer 
modules. Therefore, the spatial autocorrelation detected probably 
reflects similar habitat conditions which are not continuously dis-
tributed across the landscape.

Weak effects of geographic distance on taxonomic and func-
tional distances were supported by partitioned variances among 
predictor variables. Unexplained proportions of variance were rel-
atively high for functional distances (63%– 91%). However, the vari-
ances explained by geographical distance were usually lower than 
environmental gradient or forest type in all models (see Figure S4).

3.3  |  Environmental filtering for the composition of 
assemblages and species traits

The RLQ axes 1 and 2, respectively, captured 88.7% and 10.6% 
of the variance in trait– environment relationships for overall 

F I G U R E  2  Nearest Taxon Index (NTI) and Net Relatedness 
Index (NRI) values estimated for 14 sampling modules along the 
Amazonian Madeira- Purus interfluve. Positive values indicate 
lizard assemblages more clustered by phylogenetic proximity than 
chance, negative values indicate assemblages more overdispersed 
than chance. The phylogenetic hypothesis used is based on five 
mtDNA and seven nuclear gene fragments (Pyron et al., 2013).
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    |  7PEIXOTO et al.

assemblages, 89% and 10.9% for arboreal assemblages and 98.6% 
and 1.1% for terrestrial assemblages. For the overall assemblages, 
the Hill– Smith PCA summarizing the R matrix captured 47% of the 
variance in the environmental variables along its axis 1, which was 

mainly associated with differences in forest type and precipitation 
between sampling modules (Figure 5). According to the distribution 
of traits along the axis 1 derived from the Hill– Smith PCA applied to 
the Q matrix (which captured 48% of the original variance) and the 

F I G U R E  3  Direct ordination of sampling modules along an environmental gradient or forest types within the Madeira- Purus interfluve. 
(a) Ordination along an environmental gradient showing the variation in the absolute abundance of lizard species (height of the columns). (b) 
Ordination along an environmental gradient showing the variation in the functional trait means weighted by proportional species abundance. 
(c) Ordination along two categorical forest levels (dense and open) showing the variation in weighted functional trait means. (d) Distribution 
of modules along two principal coordinate analysis (PCoA) axes summarizing functional distances among pairs of modules. Numbers in 
parentheses are proportional variances captured by each PCoA axis in relation to the original distances. Ellipses delimit 95% inertia.
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8  |    PEIXOTO et al.

fourth- corner analysis, some variables affected certain characteris-
tics, and these correlations are shown by the positive or negative 
sign. Thus, relationships were found for head length and width (+), 
arm length (+), and the occurrence of species with cryptic habits (+). 
The Hill– Smith PCA axes 2 applied on the matrices R and Q captured 
30% and 29% of the original variances, respectively, and separated 
sampling modules by differences in clay content in the soil and basal 
area, differences in lizard body colour, thermoregulation mode and 
SVL. However, the combination of RLQ and fourth- corner analysis 
did not detect any significant relationship between species traits and 
environmental variables represented along this axis.

For the arboreal assemblages, the Hill– Smith PCA summarizing 
the R matrix captured 49% of the variance observed in the environ-
mental variables in its axis 1, which separated sampling modules 
mainly by soil- clay content, forest type and precipitation. Combining 
the Hill– Smith PCA axis 1 applied to the matrix Q (which captured 
61% of the original variance in the species traits) and the fourth- 
corner analysis revealed that these variables mainly affected arm 
length (+) and body colour (+ for brown colour, − for green colour). 
No relationship between species traits and environmental variables 
was detected along the RLQ axis 2.

For terrestrial assemblages, the Hill– Smith PCA summarizing 
the R matrix captured 42% of the variance observed in environ-
mental variables in its axis 1, which separated sampling modules 
mainly by forest type and precipitation. Combining Hill– Smith 
PCA axis 1 applied on matrix Q (which captured 99% of the orig-
inal variance in species traces) and the fourth- corner analysis re-
vealed that these variables mainly affected SVL (−), length and 
head width (+), arm and leg length (+), occurrence of cryptic (+), 
heliotherm (−), non- heliotherm (+), brown- coloured (+) and green- 
coloured (−) species. No relationship between species traits and 
environmental variables was detected along RLQ axis 2. Detailed 
results from the RLQ + fourth- corner analysis can be found in 
Table S5.

Spatial autocorrelation tests revealed that relationships between 
environmental variables and lizard species traits can be more simi-
lar than expected by chance (Figure 6). However, this finding is only 
applied when these relationships are represented by the RLQ axis 1, 
and within Euclidean distances less than 270 km. Complete results of 
spatial autocorrelation tests can be found in Table S6.

4  |  DISCUSSION

Phylogenetic similarity is often used to predict the effects of envi-
ronmental filters or competitive interactions on assemblage spatial 
structure (Fraga et al., 2018; Webb et al., 2002). The NRI and NTI 
estimates showed no evidence of lizard assemblages structured by 
phylogenetic clustering or overdispersion. This finding may be just 
a statistical artefact caused by the high sensitivity of these indices 
to the pool size of species that contribute to local assemblage (Kraft 
et al., 2007), or the evenness in which taxa are distributed over a 
phylogeny (Coronado et al., 2015). Alternatively, environmental fil-
tering and competition associated with the frequency at which traits 
occur in an assemblage operate through adaptive pressure over gen-
erations, which cannot be detected without explicit identification of 
genetic loci under selection pressure. Additionally, NRI and NTI were 
particularly inefficient to detect assemblage structure in our study 
because the distributions of some species or functional traits were 
clumped along the environmental gradient while others were widely 
dispersed, indicating that the occurrence of both processes in the 
assemblages could impede the identification of significant effects of 
phylogenetic relatedness on assemblage structure under a neutral 
scenario.

Separating effects of distance and environment on assemblage 
composition is often difficult, and there is probably no universal 
solution applicable to all cases. Similarity species composition of as-
semblages tend to decrease with distance, but this depends on the 
dispersal ability of the species (Hubbell, 2001). Environment tends 
to vary stochastically over short distances, but small distances are 
unlikely to affect dispersal (Ricklefs & Lovette, 1999). Over larger 
distances, there tend to be large environmental gradients in climate 
and vegetation structure, and this induces collinearity in predictors 
of distance and environment (Qian & Ricklefs, 2012). At intermediate 
distances (<178 km), our results showed that most of the variance in 
assemblage dissimilarities caused by geographic distances reflects 
discontinuous environmental similarities along the interfluve.

Amazonian squamates tend to have wide distributions (Ávila- 
Pires, 1995; Nogueira et al., 2019; Ribeiro- Júnior & Amaral, 2016) 
and probably have high- dispersal ability across generations, as 
observed by some genetic analyses for some snake species in the 
Madeira- Purus Interfluve (Fraga et al., 2017). In spite of this we 
found that although some geographic distance should be expected 
to affect functional and taxonomic distances among paired lizard 
assemblages, the measured environmental gradient was generally a 
more powerful predictor of taxonomic distances and forest type was 
a better predictor of functional distances.

F I G U R E  4  Spatial correlograms based on partial Mantel tests 
applied to lizard taxonomic and functional distances among 14 
paired modules along the Madeira- Purus interfluve, Brazilian 
Amazonia. Each Euclidean distance class is equivalent to 
approximately 89 km.
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    |  9PEIXOTO et al.

The similarity in composition of assemblages was explained 
by differences in environmental gradients. The environment 
seems to have a strong effect, with influence on morphological 
and physiological traits for some species in this locality. Although 
most of the species sampled in this study are widely distributed 
across Amazonia (Ávila- Pires, 1995; Ribeiro- Júnior, 2015; Vitt 
et al., 2008), they were locally restricted to fractions of envi-
ronmental gradients. Lizard species turnover along environmen-
tal gradients has been demonstrated in different regions within 

Amazonia, especially related to distance from water courses (Faria 
et al., 2019; Moraes et al., 2016; Pinto, 2006). In such a case, local 
trait similarity within each forest type apparently results from 
density- dependent dispersal, since individuals tend to colonize 
neighbouring patches of similar habitats as population growth 
renders habitats nearly saturated (Holyoak et al., 2005). This may 
indicate general unsuitability for lizards, or competition with other 
groups that eat invertebrates, such as frogs and birds, in particular 
segments of environmental gradients.

F I G U R E  5  Outputs from a RLQ + fourth- corner analysis applied to estimate the effects of environmental variables on lizard species traits 
along the Madeira- Purus interfluve, Brazilian Amazonia. The biplots show Hill– Smith PCAs (principal component analysis) summarizing 
environmental gradients and species traits, where vectors denote distances and directions from the centroid. The columns containing 
rectangles show positive (red), negative (blue) or non- significant (grey) relations between axes summarizing environmental variables and 
species traits. The analyses were run separately for assemblages composed of all sampled species (overall), only arboreal species and only 
terrestrial species.
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10  |    PEIXOTO et al.

The environmental heterogeneity within the Madeira- Purus 
interfluvial region predicts spatial structure of lizard assemblages, 
mainly for terrestrial species through biotic complementarity 
among forest types or precipitation. Different forest types have 
emerged along the interfluve mainly as a consequence of the geo-
morphological modelling resulting from the Andean orogenesis 
(Bispo et al., 2009; Hoorn et al., 2010), which has generated cer-
tain biogeographic regions in relation to lizard functional traits, 
and species associations. The vegetation structure for the lizards 
is directly responsible for the supply of microhabitats and avail-
ability of food, besides acting for the regulation of the air tem-
perature, and affecting direct solar incidence in forests (Silva & 
Araújo, 2008), and therefore may influence demographic patterns 
in assemblages. These thermoregulatory requirements are im-
portant for the physiological processes in tropical lizards, because 
they maintain several biological aspects of the species (Bergallo 
& Rocha, 1993; Huey & Slatkin, 1976; Ortega & Pérez- Mellado, 
2016; Pontes et al., 2018). Dense and very humid forests usually 
contain highly stratified vegetation cover, which should generate 
more stable microenvironments and select for traits such as arbo-
reality and passive thermoregulation (Magnusson & Silva, 1993). In 
contrast, OOF has relatively low plant density in the understorey, 
lower canopy levels and relatively low average rainfall, possibly 
making these environments conducive for occupation by helio-
thermic species (Silva & Araújo, 2008).

The effect of clay content on arboreal species may be an indi-
rect effect, because soil texture affects invertebrate prey density 
and water retention (Menger et al., 2017). In Amazonia, soils with 
higher clay content have been associated with lower groundwa-
ter (Schietti et al., 2016), which may contribute to the pattern of 
co- occurrence of the species locally. Precipitation, however, is 
almost never evaluated in the studies of the spatial structure of 

assemblages of Amazonian lizards (Pinto, 2006; Vitt, 1991), but it 
is also an important factor for the climatic conditions of the en-
vironment, necessary for thermoregulation of the species, apart 
from influencing invertebrates that compose diet of several spe-
cies (Rutschmann et al., 2016).

Our RLQ and fourth- corner analyses showed that head and 
limb size are highly associated with habitat use, probably because 
larger heads and longer limbs, respectively, generate greater ability 
to explore food resources and reach high speeds and higher loco-
motor performance in open forests (Vitt et al., 1997). In fact, it is 
widely known that relationships between morphological traits and 
environmental conditions can affect the permanence of species in 
habitats because they determine the ability to explore available re-
sources (Caldwell & Vitt, 1999). Similarly, environmental conditions 
can select body colours through the efficiency of thermoregulation, 
intraspecific communication and evasion of predators under dif-
ferent background colours (Diamond & Bond, 2013). Specifically in 
our study system, our models have shown that brown species tend 
to occur more often in open forests, while green species tend to 
occur more often in dense forests. This finding may be related to the 
higher density of green moss in tree trunks in dense forests, which 
generate a background colour that should give camouflage advan-
tages to green species. Therefore, the spatial distribution of colour 
morphs in our study area seems to be mediated by predation pres-
sure, although this result could only be detected when we split the 
data into terrestrial and arboreal assemblages.

Although large Amazonian rivers are commonly reported as 
vicariant barriers promoting biodiversity in Amazonia (Antonelli 
et al., 2010; Boubli et al., 2015; Haffer, 1997; Ribas et al., 2012; 
Simões et al., 2008; Smith et al., 2014), the current habitat hetero-
geneity within the Madeira- Purus interfluve, which is hierarchically 
dependent on historical processes operating at wider spatial scales 
(Peixoto et al., 2020), efficiently predicts lizard assemblages. Future 
studies should investigate physiological traits, such as temperature 
sensitivity and resistance to desiccation, or genetic loci under adap-
tive selection to assess whether climatic seasonality creates enough 
stress for ecophysiological barriers to inhibit some evolutionary 
lineages, which would limit phylogenetic and functional diversity 
(Coronado et al., 2015; Miller et al., 2013; Qian et al., 2013) within 
open forests.

Conducting multi- faceted biodiversity assessments can provide 
a comprehensive vision of the organization of ecological communi-
ties over space and time, so our results are relevant for conservation 
because they show complementary biodiversity among sites that 
reflect the level of complexity of this interfluvial region, which has 
several distinct ecoregions based on bioclimatic variables, drainage 
density, altitude and slope (Ximenes et al., 2021). Since local species 
or trait subsets change across the landscape, the local lizard diver-
sity is often unique, and therefore irreplaceable in the case of local 
extinction and degradation (Pressey et al., 1993). This is a special 
concern in the Madeira- Purus interfluve because the forests cov-
ering this region have been drastically disturbed by a federal high-
way crossing several reserves (Fearnside & Graça, 2006) and large 

F I G U R E  6  Spatial correlograms applied to test spatial 
autocorrelation in relationships between environmental variables 
and lizard species traits along the Madeira- Purus interfluve, 
Brazilian Amazonia, as estimated by a RLQ + fourth- corner analysis. 
Red circles are cases of significant spatial autocorrelation. Each 
distance class covers approximately 89 km.
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    |  11PEIXOTO et al.

areas that have been flooded by a large hydroelectric reservoir 
(Fearnside, 2014).

This study is the first to evaluate environmental effects on 
Amazonian lizard assemblages from different geographical scales 
and identify that the structural heterogeneity along an environmen-
tal gradient has a significant impact on the taxonomic and functional 
composition of lizard assemblages. Environmental filtering related 
to vegetation types, precipitation and edaphic gradients along the 
Madeira- Purus interfluvial has caused species turnover, and deter-
mined the differences found between assemblages in dense and 
open forests.
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