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Abstract

Investigating the role of historical and ecological factors structuring assemblages is relevant

to understand mechanisms and processes affecting biodiversity across heterogeneous hab-

itats. Considering that community assembly often involves scale-dependent processes, dif-

ferent spatial scales may reveal distinct factors structuring assemblages. In this study we

use arboreal and leaf-litter lizard abundance data from 83 plots to investigate assemblage

spatial structure at two distinct scales in southwestern Brazilian Amazonia. At a regional

scale, we test the general hypothesis that the Madeira River acts as a barrier to dispersal of

some lizard species, which results in distinct assemblages between river banks. At a local

scale, we test the hypothesis that assemblages are not evenly distributed across heteroge-

neous habitats but respond to a continuum of inadequate-to-optimal portions of environmen-

tal predictors. Our results show that regional lizard assemblages are structured by the upper

Madeira River acting as a regional barrier to 29.62% of the species sampled. This finding

suggests species have been historically isolated at one of the river banks, or that distinct

geomorphological features influence species occurrence at each river bank. At a local

scale, different sets of environmental predictors affected assemblage composition between

river banks or even along a river bank. These findings indicate that environmental filtering is

a major cause of lizard assemblage spatial structure in the upper Madeira River, but predic-

tor variables cannot be generalized over the extensive (nearly 500 km) study area. Based

on a single study system we demonstrate that lizard assemblages along the forests near the

banks of the upper Madeira River are not randomly structured but respond to multiple fac-

tors acting at different and hierarchical spatial scales.
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M, Kaefer IL, Lima AP (2020) Hierarchical effects

of historical and environmental factors on lizard

assemblages in the upper Madeira River, Brazilian

Amazonia. PLoS ONE 15(6): e0233881. https://doi.

org/10.1371/journal.pone.0233881

Editor: Stefan Lötters, Universitat Trier, GERMANY

Received: May 28, 2019

Accepted: May 14, 2020

Published: June 2, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0233881

Copyright: © 2020 Marques Peixoto et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: Data collection was financially supported

by Programa de Conservação da Vida Selvagem da

http://orcid.org/0000-0002-1509-0817
http://orcid.org/0000-0002-9900-4276
https://doi.org/10.1371/journal.pone.0233881
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233881&domain=pdf&date_stamp=2020-06-02
https://doi.org/10.1371/journal.pone.0233881
https://doi.org/10.1371/journal.pone.0233881
https://doi.org/10.1371/journal.pone.0233881
http://creativecommons.org/licenses/by/4.0/


Introduction

Investigating historical and ecological factors structuring assemblages may reveal patterns of

biodiversity distribution across time and space [1,2]. However, defining mechanisms and pro-

cesses that potentially affect assemblage structure is often highly dependent on the spatial scale

applied [3–5]. Such dependence results from the fact that assemblage composition (e.g. taxo-

nomic diversity) is influenced by complex hierarchical interactions among processes that

operate at multiple spatio-temporal scales [6]. In highly heterogeneous habitats such as the

Amazonian tropical rainforests the relative contribution of historical and ecological processes

to assemblage structuring is poorly understood for many taxa, mainly because multi-scale eco-

logical approaches depend on standardized sampling systems, which have been specifically

designed for such purpose [e.g. 7–12]. Regarding lizards, poor knowledge on assemblage struc-

ture also results from lack of refined data on individual species distribution [13], despite few

unpublished studies have shown assemblage spatial structure defined by environmental het-

erogeneity [e.g. 14–16].

At broad spatial scales (e.g. Amazon Basin), it has been suggested that many organisms are

restrictedly distributed by their inability to cross large rivers. From the classic studies of Alfred

R. Wallace on primate distribution across the Amazon Basin [e.g. 17], it has been known that

the Amazon River and some of its main tributaries (e.g. Madeira, Negro) may be important

biogeographic barriers to dispersal. Testing the Wallace´s hypothesis has revealed the riverine

barrier as a major factor explaining limited distribution of plants, frogs, birds, spiny rats, and

primates [18–26]. Additionally, studies have shown that gene flow reduced or blocked by a riv-

erine barrier may cause genotypic and phenotypic divergence in Amazonia [27–29]. Specifi-

cally for lizards, riverine barriers may cause intraspecific genetic divergence [27], although

they do not necessarily produce different morphotypes [30]. Interspecifically, species distribu-

tion regionally limited to a single river bank may cause distinct assemblage compositions

between banks [12,22,31].

At local scales, environmental predictors may affect species occurrence and abundance due

to the filter effect of the spatial variation in habitat suitability [32,33]. In general, it is expected

that habitat-specialist species find inadequate-to-optimum continuums of environmental con-

ditions for survival and reproduction [34]. Environmental filtering has been found in Amazo-

nia for plants, frogs, lizards, snakes, and birds [15,35–43]. For lizards, local assemblages may

differ due to variation in individual abundance or species turnover along gradients of distance

from water courses [31,44], elevation [45], climate seasonality [46], and number of trees

[43,47]. Additionally, lizard assemblages may be indirectly structured by species turnover

along gradients of canopy openness affecting the availability of thermoregulation sites [48,49],

understory-plant density affecting the availability of foraging sites for perching species [50],

and clay content in the soil affecting plant composition and food availability [43].

Integrating multiple spatial scales is relevant to estimating simultaneous effects of historical

and ecological factors on assemblage structure, especially in heterogeneous habitats such as

rainforests in Amazonia [51]. However, designing a sampling system which is efficient to

quantify assemblages and habitats at multiple scales may be challenging. The RAPELD [1]

method (Brazilian acronym for rapid sampling plus long-term ecological research) has been

shown to be efficient for this purpose in the region of the upper Madeira River [13], due to (i)

the adequate distribution of plot sets (5 km2 each) so that hypotheses based on the effects of

historical factors on regional assemblages may be tested (e.g. riverine barriers), and (ii) the

plots following altitudinal contours reduce within-plot environmental variation, which allows

them to be assumed as environmental units to test hypotheses based on environmental filter-

ing [1]. The rationale behind testing such hypotheses in southwestern Amazonia is that the
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Madeira River has been recognized as a barrier to dispersal of Squamata reptiles, which causes

species turnover along a longitudinal gradient [52], and the region covers two endemism

zones (Rondônia and Inambari) that are distinct regarding geological history and environ-

mental heterogeneity [53].

In this study we use plot-based lizard abundance data from the upper Madeira River (south-

western Brazilian Amazonia) to investigate patterns of assemblage structure at two distinct

spatial scales. At a regional scale, we test the hypothesis that lizard assemblages differ between

the river banks. We expect differences in species composition and abundance as a consequence

of the Madeira River historically limiting lizard dispersal. At local scale, we test the hypothesis

that environmental heterogeneity causes species turnover, because species are absent or occur

at low densities in suboptimal portions of environmental predictors. Specifically, we quantify

the filtering effects on lizard abundance driven by gradients of number of trees, soil nutrient

composition, shrub density, elevation, clay and sand content in the soil, and distance from the

river bank. We expect that analyzing assemblages from two distinct perspectives will provide

us with deep insights into factors that cause and maintain biodiversity at megadiverse regions

such as the upper Madeira River basin.

Materials and methods

Study area

The study area is located near the banks of the upper Madeira River (coordinates of the cen-

troid 08 ˚ 48004.0"S; 63 ˚ 56059.8"W), an important tributary of the Amazon River classified

as a white and muddy river with a total length of 1,459 km. The upper Madeira River extends

from the outskirts of Porto Velho (state of Rondônia) to about 600 km upstream, in southwest-

ern Brazilian Amazonia, and its width varies from about 0.5 to 10 km depending on the river

flow. The Madeira separates the Inambari and Rondônia endemism zones located along its

left (west) and right (east) margins, respectively [20]. We also sampled plots close to the Jaci-

Paraná River, a tributary on the east bank of the upper Madeira River (Fig 1).

In this study we quantified environmental heterogeneity as continuous gradients that may

be broadly classified for descriptive purposes in three main habitat types. They mainly differ in

canopy height, soil texture, understory-plant density, and species composition [following 54].

In the upland (terra-firme) forests habitats are never flooded by overflowing large rivers, the

canopy is 30 m high, and the understory-plant density and clay content in the soil often

depends on elevation [55]. The várzea forests are seasonally flooded by overflowing sediment-

rich rivers, which produces nutrient-rich soils that are water-saturated for long periods. The

canopy is 20 m high, and the understory is rich in bromeliads. The campinaranas are patches

of palm tree-rich forests growing on a white-sand soil, which is highly drained and nutrient-

poor [54].

The climate of the study area is tropical humid, with annual average temperature at 25.5 ˚C

and average precipitation at 2,287 mm. Precipitation is distributed throughout the year in

well-marked dry (May to September) and rainy (October to April) seasons. During the dry sea-

son, small streams can dry completely [56].

Sampling design. We collected arboreal and leaf-litter lizard abundance data in seven 5

km2 RAPELD sampling sites (hereinafter modules), that were installed perpendicularly to the

river bank. RAPELD [1] is a modification of the Gentry´s sampling method based on 1-ha

plots [57], with the main difference being that the RAPELD plot central lines follow the altitu-

dinal curves to reduce environmental variation within plots (PPBio—http://ppbio.inpa.gov.

br). We sampled three modules on the east bank of the Madeira River (East Jirau, Jaci-Paraná

and Morrinhos), and four modules on the west bank (West Jirau, Ilha das Pedras, Ilha dos
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Búfalos and Teotônio). The average distance between neighboring modules was 120 km. Each

RAPELD module was composed of two 5-km long parallel trails, separated by 1 km. We sur-

veyed seven 250 m plots (20 m wide) on each trail, totaling 98 plots (14 plots in each of the

seven modules). The plots were distributed along a gradient of distance from the river bank, at

0, 500, 1000, 2000, 3000, 4000, and 5000 m.

We were not able to find lizards in 15 plots, and the excess of zeros in the dataset prevented

us to reliably estimate pairwise distances among plots to summarize assemblage composition

(see Data analysis). Therefore, we excluded zero-valued plots and our analyzes are based on 83

plots.

Sampling effort and ethics

We sampled each plot in four different periods (24 February to 26 April 2010, 30 July to 19

August 2010, 5 November to 26 November 2010, and 13 January to 4 February 2011) to cover

large portions of the regional variation in temperature and precipitation along a year. We used

species’ maximum abundance values per plot in the analyzes.

We found lizards using active visual search, with two simultaneous observers positioned

10 m apart. In addition, we supplemented the sampling effort by sweeping the leaf litter and

removing debris in a 2 m strip following the center line of the plot. This approach was particu-

larly useful to increase the efficiency of sampling leaf-litter species (e.g. Alopoglossidae, Gym-

nophthalmidae). Search on the vegetation and on the leaf litter was systematically conducted

Fig 1. Location of the upper Madeira River, state of Rondônia, Brazil. Sampling 5 km2 modules (circles) near the

banks. Gray circles show modules in the Inambari endemism zone, blue circles are modules in the Rondônia

endemism zone. The acronyms summarize sampling modules´ local names: TO = Teotônio, IB = Ilha dos Búfalos,

IP = Ilha das Pedras, JL = West Jirau, JR = East Jirau, JP = Jaci-Paraná, MO = Morrinhos. In detail on the right side, the

standard configuration of each module, with 14 plots (squares), 250 m-long each, distributed along a gradient of

distance from the river bank (0–5,000 m).

https://doi.org/10.1371/journal.pone.0233881.g001
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in the first and second half of each visual sampling in the plots, respectively, thus constituting

two different and complementary methods. The searching time in each plot varied between 40

and 60 minutes and was always conducted during the day.

We collected data under RAN-ICMBio / IBAMA permit 13777–2. IBAMA and ICMBio

are institutes of Ministry of Environment, Government of Brazil. This permit was subject to

approval of all procedures for collecting lizard abundance data.

Environmental variables. We measured eight environmental predictors in each plot in

order to quantify spatial heterogeneity in habitat suitability. We quantified vegetation structure

by measuring (i) number of trees and (ii) shrub density. Those predictors potentially affect

abundance of tropical reptiles by influencing availability of foraging, resting, and thermoregu-

lation sites [58–60]. We also measured edaphic gradients related to soil texture, fertility, and

flat-level deviation, which are (iii) clay content, (iv) sand content, (v) nutrient composition

(soil pH, Calcium, Magnesium, Potassium, Zinc, and exchangeable Aluminum), (vi) elevation,

and (vii) terrain declivity. Those variables potentially affect lizard abundance by causing varia-

tion in the overall primary production [61] and availability of invertebrate prey [62]. Addition-

ally, we measured (viii) distance from the river bank, because it has been found as a major

factor structuring plant [36] and animal [31,38,39,41] assemblages in Amazonia. The methods

used to measure each predictor are described in detail in Appendix 1.

Data analysis

To quantify assemblage composition, we applied the Bray-Curtis index to estimate pairwise

distances in species abundance among plots. We reduced dimensionalities using Principal

Coordinate Analysis (PCoA) and represented assemblage composition by the first one or two

axes produced (see below).

At regional scale (riverine barrier effects) we modeled the PCoA using all data (83 plots).

The two first axes captured 30% (PCoA 1 = 16%. PCoA 2 = 14%) of the original variance in

species abundance, and we used them to represent assemblage composition. To assess assem-

blage structuring, we used Multivariate Analysis of Variance MANOVA to test differences in

assemblage composition (PCoA axes 1 and 2) between the river banks. We implemented a

MANOVA using the vegan [63] R-package [64].

Analyzes at regional scale revealed two distinct lizard assemblages between the river banks

(see Results). In addition, preliminary analyzes at local scale revealed that in two modules (Ilha

das Pedras and East Jirau) environmental predictors may affect assemblage composition in

opposite directions compared to the other modules (S1 and S2 Figs). These findings suggested

that the banks of the Madeira River and some of the sampling modules along the same river

bank are distinct environmental units, which contain distinct spatial structures of lizard

assemblage composition. Therefore, to assess assemblage structure at local scale we modeled

four distinct PCoA ordinations, using data from (i) the west bank, except for the module Ilha

das Pedras (37 plots), which captured 86% of the original variance (PCoA 1 = 0.50, PCoA

2 = 0.36); (ii) the east bank, except for the module East Jirau (23 plots), which captured 45%

of the original variance (PCoA 1 = 0.30, PCoA 2 = 0.15); (iii) the module Ilha das Pedras (12

plots), which captured 45% of the original variance (PCoA 1 = 0.32, PCoA 2 = 0.13); and (iv)

the module East Jirau (11 plots), which captured 85% of the original variance (PCoA 1 = 0.49,

PCoA 2 = 0.36).

The environmental predictors measured are expressed in different units and therefore in

different orders of magnitude, so we transformed them using the “scale” function of the vegan

R-package. This function subtracts mean values from each variable and scales centralized vari-

ables by dividing them by their standard deviation [63]. We used Mixed Linear Models to test
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the effects of scaled environmental predictors on assemblage composition based on data from

multiple sampling modules. By using this method, we were able to include sampling modules

as random effects to minimize potential abrupt differences in environmental predictors and

lizard assemblages among the modules analyzed in a same model [65]. We set up two different

groups of mixed models, according to the assemblage compositions summarized by PCoA for

the west and east banks of the Madeira River. Each group was composed of as many models as

necessary to test all possible combinations of environmental predictors, except for those pre-

dictors that were highly correlated. For instance, clay and sand content in the soil were not

used in a same model because they were highly correlated on both river banks (r� 0.93). In

addition, elevation was correlated with terrain declivity on both river banks (r� 0.78) and

soil-nutrient composition on the east bank (r = 0.66). The cut-off point was r = 0.51.

For the two modules that were analyzed separately (Ilha das Pedras and East Jirau), it was

not necessary to control random effects of sampling sites, so we tested the effects of environ-

mental predictors on the assemblage composition using multiple linear regression models. We

tested models with assemblage composition (PCoA 1) as dependent variable, and all possible

combinations of uncorrelated environmental predictors as independent variables.

To select the most parsimonious mixed-effects and multiple-regression models we ranked

all the models by the corrected Akaike´s Information Criterion (AICc) [66]. We refined the

model selection by penalizing nested models assuming ΔAICc < 2 as a cut-off point. All

selected models were validated by normal distribution of residuals (Shapiro-Wilk W> 0.95,

P> 0.05 in all cases).

For visually checking the distribution of lizard abundance values per species along river

banks and environmental predictors (only those that significantly affected assemblage com-

position) we plotted ordinated sampling plots. These graphs will be used in this study for

assessing how spread the distributions of abundance values are over the river banks and the

environmental heterogeneity measured.

Results

We found 27 lizard species, which are classified in 18 genera and 10 families. The most fre-

quently found species were Norops fuscoarautus (Dactyloidae), Gonatodes humeralis (Sphaero-

dactylidae), and Ameiva ameiva (Teiidae) (Table 1), which occurred in both banks of the

Madeira River, in 55, 49, and 30% of the plots respectively. Contrarily, Alopoglossus angulatus
(Alopoglossidae) and Enyalius leechii (Leiosauridae) were found in one single plot.

Regional assemblage structuring—Madeira River as a biogeographic

barrier

We found 19 species on both banks of the Madeira River, which is equivalent to 70.37% of the

total diversity sampled. This finding suggests that most of the species sampled are widely dis-

tributed throughout the study area. However, for several of the species found on both sides of

the river (e.g. Loxopholis percarinatum, Kentropyx altamazonica, Cercosaura eigenmanni, Plica
plica, Uranoscodon superciliosus, Copeoglossum nigropunctatum), plot-related frequency and

abundance were not even between the river banks (Fig 2). Additionally, five species (18.52%)

were restricted to the west bank–Alopoglossus angulatus, Norops tandai, Dactyloa transversalis,
Cercosaura bassleri, and Kentropyx pelviceps, and three species (11.11%) were restricted to the

east bank–Arthrosaura reticulata, Kentropyx calcarata, and Enyalius leechii. These findings

suggest two distinct assemblage compositions delimited by the Madeira River, which is

strongly supported by differences in the PCoA scores (based on 83 plots) between the river

banks (MANOVA Pillai Trace = 0.315, F1–81 = 18.40, P<0.001).
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Local assemblage structuring—The role of environmental predictors

On the west bank of the Madeira River (except for the module Ilha das Pedras) three mixed-

effects models were selected by ΔAICc < 2 (Table 2). All the selected models consistently

returned number of trees as a major gradient affecting assemblage composition (P< 0.001 in

all cases). Despite some species occupied large portions of the gradient of number of trees (e.g.

Ameiva ameiva, Norops fuscoauratus), species absence or low abundance in specific intervals

between 144 and 613 trees caused species turnover (Fig 3). According to the models selected,

Table 1. List of lizard species sampled in the upper Madeira River, Brazil. N = total abundance per species, East

and West = Madeira River banks filled with presence (1) and absence (0) data.

Family/Species N East West

Dactyloidae

Norops fuscoauratus (D’Orbigny, 1847) 103 1 1

Norops tandai (Wagler, 1830) 2 0 1

Norops ortonii (Cope, 1869) 2 1 1

Dactyloa punctata (Daudin, 1802) 27 1 1

Dactyloa transversalis (Dumeril, 1851) 9 0 1

Alopoglossidae

Alopoglossus angulatus (Linnaeus, 1758) 2 0 1

Gymnophthalmidae

Arthrosaura reticulata (O’Shaughnessy, 1881) 5 1 0

Cercosaura argulus (Peters, 1863) 5 1 1

Cercosaura eigenmanni (Griffin, 1917) 11 1 1

Cercosaura bassleri (Ruibal, 1952) 8 0 1

Iphisa elegans (Gray, 1851) 8 1 1

Loxopholis percarinatum (Muller, 1923) 10 1 1

Hoplocercidae

Enyalioides laticeps (Guichenot, 1855) 3 1 1

Hoplocercus spinosus (Fitzinger, 1843) 2 1 1

Leiosauridae

Enyalius leechii (Boulenger,1885) 2 1 0

Scincidae

Copeoglossum nigropunctatum (Spix, 1825) 14 1 1

Phyllodactylidae

Thecadactylus rapicauda (Houttuyn, 1782) 21 1 1

Sphaerodactylidae

Chatogekko amazonicus (Andersson, 1918) 12 1 1

Gonatodes hasemani (Griffin, 1917) 29 1 1

Gonatodes humeralis (Guichenot, 1855) 432 1 1

Teiidae

Kentropyx altamazonica (Cope, 1876) 14 1 1

Kentropyx calcarata (Spix, 1825) 37 1 0

Kentropyx pelviceps (Cope, 1868) 29 0 1

Ameiva ameiva (Linnaeus, 1758) 48 1 1

Tropiduridae

Plica plica (Linnaeus, 1758) 7 1 1

Plica umbra ochrocollaris (Spix, 1825) 21 1 1

Uranoscodon superciliosus (Linnaeus, 1758) 5 1 1

Total 868

https://doi.org/10.1371/journal.pone.0233881.t001
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Fig 2. Plots ordinated according to their position in the upper Madeira River (west or east bank). The heights of

the black rectangles are relative to species abundance values.

https://doi.org/10.1371/journal.pone.0233881.g002

Table 2. Summary of the results returned by linear mixed-effects models. The models were set up using data from the west (Teotônio, Ilha dos Búfalos, and West

Jirau) and east (Morrinhos and Jaci-Paraná) banks of the upper Madeira River. The models were selected by ΔAICc< 2. Shapiro-Wilk tests were applied on the residuals

from each model to test normality. Bolded p-values show cases in which the null hypothesis was rejected.

Margins Fixed effects AICc Weight df t p Total variance Shapiro-Wilk

West Number of Trees and Elevation 12.89 0.314 Intercept:2.18 -6.92 <0.001 54% P = 0.109

Trees:3.01 18.8 <0.001

Elevation:1.43 -0.31 0.76

Sand and Number of Trees 12.88 0.309 Intercept:3.39 -14.69 0.001 69% P = 0.066

Sand:1.86 -0.19 0.84

Trees:3.29 18.8 <0.001

Clay and Number of Trees 12.88 0.305 Intercept:1.00 -9.07 <0.001 76% P = 0.153

Clay:9.76 0.10 0.91

Trees:3.27 18.88 <0.001

East Elevation and Margin distance 2.0 0.412 Intercept:2.30 6.37 <0.001 71% P = 0.782

Elevation:2.30 -6.27 <0.001

Margin:2.30 1.72 0.09

Number of Trees and Elevation 2.0 0.400 Intercept:2.30 5.92 <0.001 72% P = 0.413

Trees:2.10 18.8 0.10

Elevation:2.30 -0.31 <0.001

https://doi.org/10.1371/journal.pone.0233881.t002
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assemblage composition was not affected by elevation (P = 0.76), and soil-content of sand

(P = 0.84) or clay (P = 0.91).

Three multiple-regression models were selected for Ilha das Pedras sampling module

(Table 3), all of them containing elevation as an independent variable. This predictors signifi-

cantly affected assemblage composition according to a model constructed with soil sand con-

tent as an additional independent variable (P = 0.05) (Fig 4). However, the effects of elevation

on the assemblage composition were marginally significant in models containing number of

trees (P = 0.06) and soil clay content (P = 0.07) as independent variables.

On the east river bank (except for the East Jirau module) two models were selected as most

parsimonious. Both models consistently showed strong effects of elevation on assemblage

composition (P< 0.001 in both cases). This finding suggests species turnover along an eleva-

tional gradient of 69.12–100.59 m (Fig 5). According to the same models, distance from the

river bank (P = 0.09) and number of trees (P = 0.1) did not affect assemblage composition.

Two multiple-regression models were selected for the East Jirau module. Both models con-

sistently returned distance from the river bank (Fig 6) as a relevant gradient affecting assem-

blage composition (P< 0.001 in both cases). Soil-content of sand (P = 0.24) and clay (P = 0.13)

did not affect assemblage composition.

Discussion

At regional scale, we found that lizard assemblages are spatially structured by differences in

assemblage composition between river banks. This finding is consistent with large Amazonian

Fig 3. Plots ordinated according to their position relative to the number of trees measured in the west bank of the

upper Madeira River, state of Rondônia, Brazil. The heights of the black rectangles depict the relative species

abundances.

https://doi.org/10.1371/journal.pone.0233881.g003
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rivers acting as dispersal barriers for several organisms, which have caused different species

subsets composed of plants [18], diurnal frogs [12], birds [19,21,22], and primates [24]. At

local scale, we showed that lizard assemblages are spatially structured by species turnover

along environmental predictors. However, a set of environmental predictors cannot be

assumed as generalized predictors among sampling sites. Our overall results are broadly con-

sistent with those obtained for frog assemblages sampled in the same plots [12], which suggests

Table 3. Summary of the results returned by linear mixed-effects models. The models were set up using data from the Ilha das Pedras (west river bank) and East Jirau

(east river bank) modules to test the effects of environmental predictors on lizard assemblage composition. The models were selected by ΔAICc< 2. Shapiro-Wilk tests

were applied on the residuals from each model to test normality. Bolded p-values show cases in which the null hypothesis was rejected.

Margins Variables AICc Weight Std. error t P F r2

West Number of Trees and Elevation 15.7 0.31 Intercept:8.76 0.00 1.00 2.746 0.37

Trees:9.19 0.90 0.39

Elevation:9.19 -2.06 0.06

Sand and Elevation 15.8 0.29 Intercept:8.81 0.00 1.00 2.66 0.37

Sand:9.21 0.85 0.42

Elevation:9.21 -2.18 0.05

Clay and Elevation 16.2 0.25 Intercept: 1.21 0.1 1.10 2.45 0.35

Clay:6.12 -0.64 0.53

Elevation:1.88 -1.98 0.07

East Clay and Distance from the margin 6.5 0.655 Intercept: 5.69 0.00 1.00 15.42 0.81

Clay: -1.05 -1.69 0.13

Margin:2.89 4.63 <0.001

Sand and Distance from the margin 7.9 0.367 Intercept: 2.30 5.92 <0.001 13.07 0.78

Sand:8.81 1.28 0.24

Margin:2.85 4.15 <0.001

https://doi.org/10.1371/journal.pone.0233881.t003

Fig 4. Partials from a multiple linear model for the Ilha das Pedras module. Model for the effects from the elevation

and sand contents in the soil on lizard assemblage composition. Assemblage composition was summarized by the first

axis of a Principal Coordinates Analysis based on abundance data of the upper Madeira River, state of Rondônia,

Brazil. The shades of blue show values of sand content in the soil.

https://doi.org/10.1371/journal.pone.0233881.g004
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Fig 5. Plots ordinated according to their position relative to a gradient of elevation (meters above the sea level) in

the east bank of the upper Madeira River, state of Rondônia, Brazil. The heights of the black rectangles depict the

relative species abundances.

https://doi.org/10.1371/journal.pone.0233881.g005

Fig 6. Partials from a multiple linear model from the East Jirau module. The effects of distance from the river bank,

sand, and clay contents in the soil on lizard assemblage composition. Assemblage composition was summarized by the

first axis of a Principal Coordinates Analysis based on abundance data from the East Jirau sampling module, located on

the east bank of the upper Madeira River, state of Rondônia, Brazil. The shades of blue show values of sand and clay

contents in the soil.

https://doi.org/10.1371/journal.pone.0233881.g006

PLOS ONE Effects of historical and environmental factors on lizard assemblages

PLOS ONE | https://doi.org/10.1371/journal.pone.0233881 June 2, 2020 11 / 19

https://doi.org/10.1371/journal.pone.0233881.g005
https://doi.org/10.1371/journal.pone.0233881.g006
https://doi.org/10.1371/journal.pone.0233881


multi-taxa ecological patterns. We relied on a single dataset to provide understanding about

assemblage structure based on interacting historical and ecological processes. Therefore, we

highlight the relevance of investigating multi-scale assemblage structuring for ecology and

conservation decision making.

In the upper Madeira River, assemblage divergence between river banks has been attributed

to historical processes regionally reducing species dispersal [12], and delimiting the Amazonian

endemism zones Inambari and Rondônia [20]. Approximately half of the species present in

the assemblage of diurnal frogs (13 species) of that region were restricted to one of the river

banks [12]. The smaller proportion of regionally isolated lizard species (29.63%) is reasonably

explained by the lower dispersal capacity of small and site-attached frogs compared with most

lizards. A taxonomic bias may be also contributing to this scenario, since there are consistent

and recent efforts to investigate the taxonomic status of frog species in the region [12], and such

efforts are unparalleled regarding lizards. Nonetheless, we investigated assemblages in which

about 30% of the sampled species were isolated by the river, and another 30% of the species

occurred at low relative frequency or abundance at one of the river banks. This was a sufficiently

adequate scenario to assume the river as a historical factor segregating assemblages between the

river banks. Even though the riverine-restricted geographic distribution of species such as Ken-
tropyx calcarata observed in this study is supported by basin-level data, we highlight that most

of regionally isolated species in our sample are widely distributed throughout Amazonia outside

our study area [13]. Such inconsistency may be explained by the strength of the river as a dis-

persal barrier varying along the river course, or even being nullified in response to meandering

shapes [30,67–69]. Additionally, the barriers may be seasonal, because bridges for stepping-

stone dispersal may be revealed during the dry season, which allows gene flow between river

banks [70]. Therefore, our results for assemblage structure at regional scale should not be

extrapolated to unsampled stretches of the Madeira River or other Amazonian rivers, because

lizards probably have found multiple dispersal routes through evolutionary time [27].

The isolation of species on one of the river banks may be related to the geomorphological

heterogeneity of the Madeira River across our study area. The Madeira river flows over an inci-

sive fluvial valley, with predominantly crystalline and a geologically ancient basement (ca. 16

Ma). The morphodynamical development was mainly influenced by the geomorphological

and climatic changes resulting from the Andean Orogeny in the Cenozoic [71], which have

produced a relatively stable course along recent geological times [72]. Such stability in the

shape of the river course has prevented meandering across most of the study area, which could

facilitate for species to cross the river [73]. Exceptionally, the modules located further upstream

(East and West Jirau) have rocky outcrops that are exposed in the middle of the river course

during the dry season, which can act as bridges for stepping-stone dispersal (field observation).

Although lizard species used alternative dispersal routes to widespread their distribution

throughout Amazonia, our study showed that they were regionally prevented from colonizing

or maintaining populations on both banks of the upper Madeira River. One could argue that

our results of a river-barrier effect are biased due to the low detection probability of lizards,

which resulted in false absence of species [74,75]. However, we think that a possible sampling

bias was mitigated by the large sampling effort associated to the combination of different visual

sampling methods employed in this study.

Besides affecting assemblage composition, the effect of rivers as barriers can also be

observed at the intraspecific level in different biogeographic domains, resulting in genetic and

morphological divergence among lizard populations due to restriction to gene flow [30,76,77].

Studies on the genetic and phenotypic differentiation of populations of a same species on

opposite banks of the Madeira River should be performed as they might help to understand

the initial steps of allopatric speciation in Amazonian lizards.
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At local scale, lizard assemblages were spatially structured by environmental filtering caus-

ing non-random assemblage composition. Environmental conditions selected species that

were unable to survive and maintain viable conditions in given sampling plots [78]. Despite

we sampled species that are generalist in relation to the environmental predictors measured

(e.g. Ameiva ameiva, Norops fuscoauratus), species for which distributions were restricted to

narrow regions of gradients (e.g. Cercosaura argulus, Norops ortonii, Uranoscodon supercilio-
sus) caused species turnover across sampling plots. Species turnover mediated by environmen-

tal filtering is a major factor structuring local assemblages in Amazonia [e.g. 41,36,39], and in

the upper Madeira River it has efficiently explained assemblage structure in frogs [12], snakes

[79], and bats [80]. However, we cannot generalize a single environmental dataset as a predic-

tor for assemblage composition in all plots. Environmental predictors for assemblage composi-

tion differed between the river banks or even along a same river bank. This finding suggests

that the scale at which lizard assemblages respond to environmental heterogeneity may be

more refined than the classification of the Madeira River banks as distinct endemism zones

[20,81].

Number of trees was a major factor causing species turnover in the west bank of the

Madeira River. This gradient ranged from 144 to 613 trees, which shows that the vegetation

structure is quite heterogeneous throughout our study area. Heterogeneity in vegetation struc-

ture affects occurrence and abundance of tropical squamates due to variation in the availability

of foraging, nesting, resting, and thermoregulating sites [58,60]. Additionally, tree cover may

directly affect food availability, protection against predators, light intensity, temperature,

humidity, and wind speed [59,60]. The evidence for assemblage structuring along a gradient of

number of trees is of concern from a conservation point of view, because our study area has

been intensely deforested by the agribusiness and large hydroelectric plants [82]. It is widely

expected that species dependent on high levels of tree cover (e.g. Norops tandai, Norops ortonii,
Dactyloa transversalis) will either be locally extinct or migrate to more suitable habitats.

We found species turnover along an elevational gradient, although this finding was most

evident on the east bank of the Madeira River. On the east bank the plots were installed on the

depression of the Ji-Paraná River, which generated elevation values below 30 m. Low elevation

is often related to outcropping of groundwater and high drainage density [83,71], which favors

the occurrence of habitat-specific species for high humidity. For instance, Arthrosaura reticu-
lata and Uranoscodon superciliosus typically occupy humid low areas [84,85], and in this study

those species were found only on the east bank of the Madeira River. Additionally, elevation

indirectly influences assemblage composition because it affects water availability and soil fertil-

ity [86,87], and therefore the overall structure of available habitats [88,89]. Extreme variation

in elevation may cause behavioral and morphological differentiation in lizards [90]. In this

study we showed that even subtle variation in elevation (24 to 128 m) may be sufficient for spe-

cies to be locally filtered. A similar finding was observed using frog assemblage data from the

Guiana Shield [37].

The gradient of distance from the river caused species turnover in the East Jirau module.

Although habitats may be classified in riparian and non-riparian zones [91], gradients of dis-

tance from water courses carry multiple continuous interacting variables of microclimate,

nutrient availability, vegetation cover, and edaphic structure. Habitats continuously changing

along gradients of distance from streams (< 12 m wide) have caused species turnover structur-

ing plant [36], frog [38], snake [41], and bird [39] assemblages. We have shown a similar

pattern using lizard abundance data, with the main difference being that the gradient we mea-

sured refers to the distance from the bank of one of the major tributaries of the Amazon River.

However, no significant effect of distance from the river on assemblage composition was

observed using data from the other modules. This finding suggests that assemblages diverging
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between riparian and non-riparian zones should not be generalized in relation to gigantic riv-

ers, or assemblage segregation should occur at distances that are greater than 5 km away from

the river bank.

Some of the results found may be associated to environmental variables that were not

explicitly measured in this study. For example, Hoplocercus spinosus (Hoplocercidae) occurred

on both banks of the upper Madeira River but occurrence was restricted to plots with rocky

outcrops. Such condition was only found in the westernmost sampling modules of the study

area (East and West Jirau), where the species finds optimal availability of thermoregulation

and refuge sites [91]. This finding reflects relationships between species and habitats that are

dependent of biological traits affecting survival [92,93] and dispersal capacity [94,95], such as

body size, diet [96], specificity level in habitat use [89], reproductive [49], and foraging mode

[97]. Therefore, although patterns of assemblage structure are usually described based on dis-

similarities among plots regarding subsets of cooccurring species, they may be determined by

ecological requirements of individual species.

We have shown that lizard assemblages in the upper Madeira River are structured by scale-

dependent hierarchical factors. Historical processes related to the Andes uplift [98] have iso-

lated regional assemblages between the river banks, and have also generated distinct habitat

patches, which in turn generate distinct local lizard assemblages. It is generally well established

that interacting historical and environmental factors explain hierarchical structures of assem-

blages [5]. However, empirical application is not common because it relies on efficient sam-

pling designs to capture multiple scales [1]. In the megadiverse Amazonian rainforests this has

been achieved by a few studies [12,22,31,73]. Considering the fine levels in which those studies

have understood processes affecting biodiversity, efficient methods for multi-scale sampling

should be prioritized by ecology and conservation biology.
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12. Dias-Terceiro RG, Kaefer IL, Fraga R, Araújo MC, Simões PI, Lima AP. A matter of scale: historical and

environmental factors structure anuran assemblages from the upper Madeira River, Amazonia. Biotro-

pica. 2015; 47: 259–266. https://doi.org/10.1111/btp.12197

PLOS ONE Effects of historical and environmental factors on lizard assemblages

PLOS ONE | https://doi.org/10.1371/journal.pone.0233881 June 2, 2020 15 / 19

https://ppbio.inpa.gov.br/sites/default/files/Biodiversidade_e_monitoramento_ambiental_integrado.pdf
https://ppbio.inpa.gov.br/sites/default/files/Biodiversidade_e_monitoramento_ambiental_integrado.pdf
https://doi.org/10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2
https://doi.org/10.1086/652373
https://doi.org/10.1086/652373
http://www.ncbi.nlm.nih.gov/pubmed/20565040
https://doi.org/10.1643/0045-8511(2003)003[0255:SOFAIA]2.0.CO;2
https://doi.org/10.1643/0045-8511(2003)003[0255:SOFAIA]2.0.CO;2
https://doi.org/10.1590/S1984-46702009000100014
https://doi.org/10.1590/S1984-46702009000100014
https://doi.org/10.1111/j.1365-2745.2005.01020.x
https://doi.org/10.1111/j.1365-2745.2005.01020.x
https://doi.org/10.1017/S026646740400207X
https://doi.org/10.1111/btp.12197
https://doi.org/10.1371/journal.pone.0233881


13. Ribeiro-Júnior MA. Catalogue of distribution of lizards (Reptilia: Squamata) from the Brazilian Amazo-

nia. I. Dactyloidae, Hoplocercidae, Iguanidae, Leiosauridae, Polychrotidae, Tropiduridae. Zootaxa.

2015; 3983: 001–110. https://doi.org/10.11646/zootaxa.3983.1.1 PMID: 26250019

14. Lobão PSP. Associações no uso do habitat por cinco espécies de lagartos amazônicos. M.Sc. Thesis,
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Thesis, Universidade Federal do Paraná. 2012.
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