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Abstract
Three processes can explain contemporary community assembly: natural selection, ecological drift and dispersal. However, 
quantifying their effects has been complicated by confusion between different processes and neglect of expected interactions 
among them. One possible solution is to simultaneously model the expected effects of each process within species, across 
communities and across species, thus providing more integrative tests of ecological theory. Here, we used generalized linear 
mixed models to assess the effects of selection, drift and dispersal on the occurrence probability of 135 soil oribatid mite 
species across 55 sites over an Amazonian rainforest landscape (64  km2). We tested for interactions between process-related 
factors and partitioned the explained variation among them. We found that occurrence probability (1) responded to soil P 
content and litter mass depending on body size and reproductive mode (sexual or parthenogenetic), respectively (selection); 
(2) increased with community size (drift); and (3) decreased with distance to the nearest source population, and more so in 
rare species (dispersal limitation). Processes did not interact significantly, and our best model explained 67% of the overall 
variation in species occurrence probability. However, most of the variation was attributable to dispersal limitation (55%). Our 
results challenge the seldom-tested theoretical prediction that ecological processes should interact. Rather, they suggest that 
dispersal limitation overrides the signatures of drift and selection at the landscape level, thus rendering soil microarthropod 
species ecologically equivalent and possibly contributing to the maintenance of metacommunity diversity.
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Introduction

Community assembly can be understood in terms of four 
higher-level processes: natural selection, ecological drift, 
dispersal, and speciation (Hanson et al. 2012; Vellend 2016). 

Over observable periods, speciation is generally negligible, 
and meta-analyses have suggested a predominant role for 
environmental selection over dispersal limitation (Cottenie 
2005; Hanson et al. 2012; Soininen 2016). However, the 
standard variance partitioning used in metacommunity anal-
yses assumes additive effects for environmental and spatial 
predictors despite the theory predicting ecological processes 
should interact (Hanson et al. 2012; Vellend 2016; Siqueira 
et al. 2020). Further, drift and dispersal have often been 
lumped as “stochastic” or “neutral” processes that contrast 
with “deterministic” niche processes (i.e. selection), which 
underestimates that drift and dispersal should have differ-
ent effects (Hanson et al. 2012; Vellend et al. 2014). More 
generally, stochasticity (random variation) is not the same 
as neutrality (similar mean fitness across species), and the 
same process can have stochastic and deterministic compo-
nents (e.g. selection driven by environmental stochasticity). 
Hence, there remain important knowledge gaps about the 
mode and strength with which ecological processes shape 
natural metacommunities.
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One way of approaching this issue is to use hierarchi-
cal models to estimate species-specific relationships while 
accounting for their dependence on species traits and com-
munity features so that the predicted independent and inter-
active effects of ecological processes can be more easily 
quantified (Ovaskainen and Soininen 2011; Sydenham et al. 
2019). In general, species are adapted to certain environmen-
tal conditions, and this is reflected in their traits. Accord-
ingly, the environmental response of species occurrence 
probability should depend on their traits, reflecting natu-
ral selection (Keddy 1992). However, species may also be 
ecologically equivalent, i.e. perform similarly along envi-
ronmental gradients on average, so that their local occur-
rence probability depends more on randomness in births and 
deaths than on fitness differences (i.e. ecological drift) (Hub-
bell 2001). If so, occurrence probability should decrease as 
community size (i.e. total number of individuals) decreases, 
due to more frequent random extinction (Hubbell 2001; Vel-
lend 2016). When communities are linked by dispersal, the 
immigration rate is expected to decrease with distance to 
the nearest source population, so that species occurrence 
probability should decline similarly (i.e. dispersal limitation) 
(MacArthur and Wilson 1967). Further, for a given dispersal 
rate, dispersal limitation should increase as species com-
monness (i.e. number of individuals in the metacommunity) 
decreases, as rarer species have fewer dispersers and, thus, 
lower chance of reaching a given site over a given period 
(Hubbell 2001). Likewise, dispersal limitation also could 
depend on species traits (Soininen 2016).

Processes themselves can interact variously depending on 
model details. Generally, though, stronger drift in smaller 
communities should weaken selection effects by introduc-
ing noise in species responses to trait × environment interac-
tions (Siqueira et al. 2020). Likewise, high dispersal rates 
closer to dispersal sources may weaken selection effects by 
increasing species occurrence in suboptimal habitats (“mass 
effect”; Shmida and Wilson 1985), or actually strengthen 
them by mixing species and facilitating species sorting (Ron 
et al. 2018). Lastly, dispersal and drift can also interact: local 
occurrence probability depends on the product between 
species commonness in the metacommunity and local com-
munity size, so that common species benefit more from 
increases in the latter (Hubbell 2001; Waller et al. 2018).

Smaller organisms are expected to be more affected by 
selection than by drift or dispersal limitation due to their 
higher abundance and passive dispersal (Kaspari et al. 
2010; Soininen 2016). By contrast, studies on terrestrial 
microarthropods such as mites and springtails (< 2 mm) 
have often found much variation in species composition 
that is unrelated to the environment (Borcard and Leg-
endre 1994; Caruso et al. 2012; Gao et al. 2014; Widenfalk 
et al. 2016; Magilton et al. 2019; Zinger et al. 2019). Yet, 
such studies have typically focused on very small spatial 

grains (soil cores < 100  cm2) and extents (< 1 km, often 
much less), where smaller community size may increase 
the relative importance of drift, even if absolute commu-
nity size is large (Fodelianakis et al. 2021). While there is 
some evidence for stronger effects of selection and disper-
sal limitation over larger spatial extents (Mumladze et al. 
2013; Caruso et al. 2019), few studies with reasonable 
sampling design have addressed this issue at the landscape 
level (1–10 km) (e.g. Ingimarsdóttir et al. 2012), and it is 
unclear the extent to which dispersal effectively connects 
site-level communities and modifies the effects of selec-
tion and drift. While there is strong spatial autocorrelation 
in soil fauna from tenths to a few hundred meters (Ettema 
and Wardle 2002; Minor 2011), passive dispersal through 
wind, water currents or transport by larger animals (Costa 
et al. 2013; Schuppenhauer et al. 2019) may connect com-
munities over much larger ranges.

Here, we investigated the relative importance of selec-
tion, drift, and dispersal in the site-level community 
assembly of oribatid mites, a numerically dominant group 
of soil microarthropods. We used data from a unique, large 
sampling effort over an Amazonian rainforest landscape 
(1100 soils cores across 55 sites over 64  km2). Two traits 
have been highlighted as mediators of oribatid environ-
mental responses: (1) body size, with larger species pos-
sibly being favoured by soils with larger interstices, or 
more resources given higher metabolic demand (Brückner 
et al. 2018); and (2) reproductive mode (sexual or par-
thenogenetic), as the prevalence of parthenogens varies 
widely across local oribatid communities, with partheno-
gens possibly better coping with disturbance through faster 
reproduction while suffering stronger resource limitation 
due to clonal competition (Maraun et al. 2019). Body size 
may also affect dispersal capacity, although the relation-
ship is seemingly complex and hard to predict (Soininen 
2016; Schuppenhauer et al. 2019).

To test for the predicted effects of ecological processes, 
we modelled species occurrence probability as a function 
of: (1) the interactions body size × environmental vari-
ables and reproductive mode × environmental variables, 
representing selection; (2) community size, represent-
ing ecological drift; and (3) the interactions common-
ness × distance-from-source and body size × distance-
from-source, representing dispersal. We also tested for 
the expected effects of interactions between selection and 
drift (trait × environment × community size), selection 
and dispersal (trait × environment × distance) and drift 
and dispersal (community size × commonness). Then, we 
partitioned the variation in species occurrence explained 
by significant predictors. We expected stronger effects of 
dispersal limitation and selection over the landscape, with 
weaker effects of drift and selection between nearby sites 
due to higher dispersal rates.
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Materials and methods

Study site

The data used in this study were obtained as part of the Bra-
zilian Program for Biodiversity Research (PPBio) in Reserva 
Ducke (Pequeno et al. 2021), a large reserve of primary 
tropical rainforest (10 × 10 km) in Manaus, northern Bra-
zil (2°57′ S, 59°56′ W) (Costa and Magnusson 2010). The 
reserve is managed by the National Institute for Amazonia 
Research (INPA). Local terrain is traversed by a dense drain-
age network, where bottomlands have almost pure sands and 
uplands have clayish soils (soil clay content > 70%). Bottom-
lands are dominated by ferns, herbs and arborescent palms, 
whereas in uplands, trees establish a closed canopy with 
some individuals reaching 40–45 m, and the undergrowth is 
dominated by stemless palms. Mean daily temperature and 
mean annual rainfall during 1992–2002 were 26.7 °C and 
2479 mm, respectively, with a relatively dry season (less 
than 100 mm) from July to September (Coordination for 
Research on Climate and Hydric Resources, INPA, unpub-
lished data).

Mite data

Mite sampling was carried out from March 18 to May 13, 
2002. Mites were collected from 55 sites distributed over 
a grid in the reserve, with at least 1 km between them 
(Fig. 1). On each site, one 250-m transect was established 
along a topographic contour lines, to minimize environ-
mental variation within it (Costa and Magnusson 2010). 
Then, one soil core (3.5 cm × 3.5 cm × 5 cm) was sampled 
each 12.5 m along the transect, with 20 cores per transect 
and 55 sites × 20 cores = 1100 cores overall. Within-site 
soil cores thus provided a representative sample of the 

local, site-level community (Ettema and Wardle 2002; 
Minor 2011), which was the sampling unit of the study. 
To reduce the large sample processing load, each four 
consecutive soil cores within transects were combined as 
a compound soil sample. Compound samples were kept 
in plastic containers and transported to the Laboratory 
of Systematics and Ecology of Terrestrial Arthropods at 
INPA’s campus in Manaus, where animals were extracted 
using a modified Berlese-Tullgren apparatus (Franklin and 
de Morais 2006). Samples were gradually heated from 28 
to 45 °C until they were completely dry, which took from 
six to seven days. Extracted animals were preserved in 
glass vials containing 4% formaldehyde solution.

All adult oribatid mites were sorted into morphospecies 
and identified whenever possible using taxonomic keys 
(Online Resource 1). Identification proceeded by clari-
fying specimens with lactic acid, followed by temporary 
slide-mounting and examination under a compound micro-
scope. Immatures were not considered but represented 
only 8% of extracted individuals. Voucher specimens were 
deposited in the Entomological Collection of INPA.

We estimated the mean body mass of each sampled 
species by measuring 1–15 individuals of each sampled 
species, depending on their abundance. For each individ-
ual, body length and width (µm) were measured under a 
microscope, and body mass (µg) was predicted using a 
well-established allometric equation (R2 = 0.98; Caruso 
and Migliorini 2009):

Then, the mean body mass was calculated for each 
species.

Species reproductive mode (sexual or parthenogenetic) 
was inferred using published records (Maraun et al. 2019). 
In oribatid mites, parthenogenesis is estimated to occur in 
nearly 10% of species (Norton and Palmer 1991). When 
present, it is obligatory and thelytokous, i.e. all individu-
als are diploid female clones produced from unfertilized 
eggs (Heethoff et al. 2009). When a species’ reproduc-
tive mode was unknown (i.e. morphospecies with a single 
individual), it was inferred from closely related species, 
if part of a taxonomic group that is not known to vary in 
reproductive mode. Otherwise, the species was assumed 
to be sexual.

Overall, 2046 adult individuals in 135 (morpho)species 
were found, of which 898 individuals in 22 species were 
parthenogenetic, representing only 16% of the species but 
44% of the individuals (Online Resource 1, Table S1, Fig. 
S1). There was no relationship between body mass and 
reproductive mode (Linear Mixed Model with taxonomic 
ranks as nested random factors, n = 135, t = 0.96, P = 0.34; 
Online Resource 1, Fig. S2).

(1)Mass = − 17.17 + 3.0log(length + width)

Fig. 1  Geographic disposition of sampling sites across an Amazonian 
rainforest landscape in Manaus, Northern Brazil
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Environmental data

Data were obtained on soil texture (clay content, in %), soil 
contents of water (%) and nutrients (C, N and P, in g  kg−1) 
and litter dry mass (g). Litter dry mass was measured during 
mite surveys by marking 50 × 50 cm squares along transects, 
one each 50 m, within which all litter was harvested. Litter 
samples were transported to the laboratory in plastic con-
tainers and dried to constant weight. Further, in each tran-
sect, six soil cores (one each 50 m) were collected to a depth 
of 5 cm. Soil cores were pooled in a plastic container and 
transported to INPA for granulometric analysis, and to the 
Brazilian Agricultural Research Corporation (EMBRAPA), 
also in Manaus, for nutrient analyses. Soil samples were 
oven-dried, cleaned of stones and roots, and passed through 
a 2 mm sieve. Soil granulometry was determined using the 
hydrometer method (clay: < 0.002 mm; silt: 0.002–0.05 mm; 
sand: 0.05–2 mm). As clay and sand contents were highly 
correlated (r = − 0.99) and silt content was negligible, we 
used clay to describe soil texture. Total organic carbon was 
measured by wet oxidation, using acid dichromate solution 
followed by titration with 0.5 N  FeSO4 and o-phenalphth-
roline. Total nitrogen was estimated using the wet oxida-
tion (Kjeldahl method), by converting organic N to ammo-
nium (NH4+) for measurement. Available phosphorus was 
estimated using the ammonium molybdate–ascorbic acid 
method, by reading the blue complex formed at 712 nm 
under a spectrophotometer. Soil water content was obtained 
by comparison between the wet and dry weights of soil sam-
ples. Soil and litter measurements were averaged by site.

Statistical analyses

We built a generalized linear mixed model that combines 
species-specific models in a common model for all species 
by assuming that species responses to a common predictor 
depend on species traits and features of local communities. 
By doing so, we can simultaneously test for relationships 
within species, across species, and across local communities. 
This approach also overcomes the difficulty in separately 
modelling rare species, by gaining information from the 
other species (Ovaskainen and Soininen 2011), and has been 
shown to reliability identify prevailing assembly processes 
in simulated metacommunities (Ovaskainen et al. 2019; 
Sydenham et al. 2019). Here, we extended this approach 
by including model terms representing predicted interac-
tions among all three ecological processes, and partitioning 
the variation explained by them (see below). Because of 
the large number of parameters of interest, we divided the 
analysis in two parts: we (1) built a global model testing for 
the separate effects of drift, selection, and dispersal, and 
simplified it by excluding parameters that were not statis-
tically supported; (2) created three alternative versions of 

the simplified model representing the interactions between 
drift and selection, selection and dispersal, and drift and 
dispersal, and determined the most supported model among 
these four.

We first concatenated species occurrences (presence or 
absence) into a single occurrence variable with 135 spe-
cies × 55 sites = 7425 observations. Then, this variable was 
modelled in relation to the predictors of interest, assum-
ing binomial errors and complementary log–log link func-
tion to account for asymmetric, sigmoid response curves 
(Zuur et al. 2009), and “species” and “site” as random fac-
tors to account for autocorrelation within species and sites, 
respectively. To test for selection, we included interactions 
between species traits (body mass and reproductive mode) 
and environmental variables. Because we had six environ-
mental variables, there were 12 possible trait × environment 
interactions. To reduce the number of parameters, we sum-
marized environmental variables using Principal Component 
Analysis (PCA), with soil P log-transformed to account for 
its skewed distribution. PCA revealed three major environ-
mental gradients: one representing soil texture and organic 
matter (C and N) (PC1); one representing soil P (PC2); and 
another representing litter mass (PC3) (Table 1). Thus, we 
used these three principal components in body mass × PC 
and reproductive mode × PC interactions (six interactions). 
To test for drift, we included community size (total number 
of individuals in a site) as a predictor. To test for dispersal 
limitation, we calculated species commonness (total number 
of individuals in the metacommunity) and the Euclidian dis-
tance between each site and the nearest site occupied by the 
species. Then, we included commonness × distance and body 
mass × distance interactions as predictors. Community size 
and species commonness were log-transformed to account 
for their highly skewed distributions. All numeric predictors 
were scaled to zero mean and unit variance, and parameters 
were estimated by maximum likelihood.

When a species occurred at a single site, either the near-
est occupied site was outside the sampled area (and its dis-
tance was unknown) or it was the single site itself (and the 

Table 1  Principal Component Analysis (PCA) of environmental vari-
ables used in this study

All variables are site averages (n = 55). rPC is the correlation between 
the variable and ordination scores. Numbers in brackets indicate the 
variance proportion explained by each axis

Variable Range rPC1 (52%) rPC2 (20%) rPC3 (16%)

Soil clay (%) 2–87 0.49 − 0.27 0.25
Soil water (%) 12–65 0.46 0.22 − 0.09
Soil C (g  kg−1) 0.73–7.30 0.48 0.28 − 0.15
Soil N (g  kg−1) 0–13 0.52 0.13 − 0.16
log Soil P (g  kg−1) 15–79 − 0.22 0.77 − 0.29
Litter dry mass (g) 131–482 0.02 0.42 0.89
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distance should be zero). We ran the global model includ-
ing and excluding such species and found similar results 
(Table 2; Online Resource 1, Table S2), so we report the 
analysis including all species. The global model was sim-
plified by excluding non-supported interactions (P > 0.05) 
and refitting the model to test for independent effects, which 
were similarly excluded if not supported.

Having the simplified model, we tested for an interac-
tion between drift and selection by adding community 
size × trait × PC interactions to the simplified model. Like-
wise, to test for an interaction between selection and dis-
persal, we added distance × trait × PC interactions. To test 
for an interaction between drift and dispersal, we included 
a community size × commonness interaction in the simpli-
fied model. These three models, along with the simplified 
model assuming independent effects, were compared using 
the Bayesian Information Criterion (BIC), and the model 
with the lowest BIC was judged the most supported.

We assessed the amount of variation explained by the 
final model using the marginal 

(

R
2
m

)

 and conditional coef-
ficients of determination 

(

R
2
c

)

 , which measure the variation 
explained by predictors vs. predictors plus random fac-
tors in GLMMs, respectively (Nakagawa and Schielzeth 
2013). Then, we decomposed the marginal R2 into fractions 

explained by separate predictor terms using hierarchical par-
titioning (Chevan and Sutherland 1991). If there were inter-
actions among drift, selection and dispersal, we computed 
the fraction explained by the interaction (i.e. sum of frac-
tions explained by model terms related to both processes); 
otherwise, we computed fractions for each process sepa-
rately. Predictor effects were visualized using conditional 
plots (Breheny and Burchett 2017).

Our models assumed no residual correlation among sites 
and among species. This is reasonable because spatial prox-
imity among sites was modelled directly, and because spe-
cies interactions that could drive microarthropod species 
correlations independent of their measured environmental 
responses occur at much finer spatial resolutions (Ettema 
and Wardle 2002), which should erase their statistical signal 
(Thuiller et al. 2015). We validated both assumptions by 
extracting Pearson residuals (on link scale) and (1) creating 
a spatial correlogram of such residuals using Moran’s I, and 
(2) applying PCA to species residuals to sequentially test 
PCs (from PC1 onwards) for significant information con-
tent using permutation tests, until the first non-significant 
PC was found (Dray 2008). If species residuals were gener-
ally correlated, their shared variation should allow reducing 
their dimensionality. As expected, there was no evidence for 
either spatial (Online Resource 1, Fig. S3) or species corre-
lation in residuals (P = 0.30 for PC1). All computations were 
performed in R 3.6.3 (Team RC 2020), with aid of packages 
“glmmTMB” (Brooks et al. 2017), “MuMIn” (Barton 2019), 
“ncf” (Bjornstad 2020), “ade4” (Bougeard and Dray 2018) 
and “visreg” (Breheny and Burchett 2017).

Results

The global model revealed that species occurrence probabil-
ity was related to predictors representing selection, drift and 
dispersal limitation (Table 2). Model simplification revealed 
that PC1 had no effect whatsoever (z = 0.550, P = 0.582), so 
this variable was excluded from the simplified model. Com-
parison among the simplified model and alternative models 
including pairwise interactions between selection, drift and 
dispersal revealed stronger support for the simplified model 
(Table 3; Online Resource 1, Table S3).

According to the best model, species occurrence prob-
ability depended on trait × environment interactions: P-rich 
soils favoured larger over smaller species (Fig. 2a), whereas 
sites with more litter selected against parthenogenetic spe-
cies (Fig. 2b). Second, occurrence probability increased 
with community size (Fig. 2c). Third, occurrence probabil-
ity decreased with distance to the nearest source, with rare 
species reaching relatively low occurrence probability far-
ther from the source faster (Fig. 2d). This model explained 
67% of the variation in species occurrence probability, all of 

Table 2  Generalized linear mixed model of oribatid mite occurrence 
probability

Models assumed binomial errors, complementary log–log link, and 
“site” and “species” as random intercepts (n = 55 sites × 135 spe-
cies = 7425 observations). All numerical predictors were scaled to 
zero mean and unit variance; reproductive mode was coded as 0 (par-
thenogenetic) or 1 (sexual). Bold numbers indicate statistically sig-
nificant effects (P < 0.05)

Process Predictor Coefficient z P

Intercept − 2.89 – –
Selection PC1 0.063 0.905 0.366

PC2 − 0.081 1.094 0.274
PC3 − 0.197 2.545 0.011
log Mass − 0.05 − 0.708 0.479
Mode − 0.023 − 0.238 0.812
log Mass × PC1 − 0.03 − 0.801 0.423
log Mass × PC2 0.126 − 3.246 0.001
log Mass × PC3 − 0.011 0.279 0.78
Mode × PC1 − 0.051 − 0.638 0.523
Mode × PC2 0.099 − 1.177 0.239
Mode × PC3 0.234 − 2.744 0.006

Drift log Community size 0.598 14.339  < 0.001
Dispersal Distance − 0.743 − 8.289  < 0.001

log Commonness 1.164 14.213  < 0.001
log Commonness × dis-

tance
0.362 3.824  < 0.001

log Mass × distance − 0.049 − 0.563 0.573
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Table 3  Comparison of 
generalized linear mixed models 
on oribatid mite occurrence 
probability using the Bayesian 
Information Criterion (BIC)

Models assumed binomial errors, complementary log–log link, and “site” and “species” as random inter-
cepts (n = 55 sites × 135 species = 7425 observations). The simplified model included only the significant 
interactions in Table 1 plus their lower-order terms; remaining models included additional terms represent-
ing pairwise interactions between ecological processes (highlighted in bold). Variables were coded as in 
Table 1. Model notation omits intercepts and lower-order interaction terms for clarity

Model Model notation BIC

Simplified log Mass × PC2 + Mode × PC3 +  Community size + 
Commonness × Distance

4097.427

Dispersal × drift log Mass × PC2 + Mode × PC3 + 
Commonness × Community size + 
Commonness × Distance

4102.883

Selection × drift log Mass × PC2 × Community size + Mode × PC3 × Com-
munity size + 

Commonness × Distance

4144.686

Selection × dispersal log Mass × PC2 × Distance + 
Mode × PC3 × Distance + 
Community size + 
Commonness × Distance

4147.470

Fig. 2  Effects of selection 
(a, b), drift (c) and dispersal 
limitation (d) on oribatid mite 
occurrence probability. Lines 
represent means predicted by 
the best generalized linear 
mixed model, which assumed 
binomial errors, complemen-
tary log–log link, and “site” 
and “species” as random 
intercepts (n = 55 sites × 135 
species = 7425 observations). 
Coloured bands represented 
95% confidence intervals. Upper 
and bottom tick marks represent 
presence and absence, respec-
tively. Conditional plots show 
the effect of each predictor or 
interaction while holding other 
predictors at their medians, and 
sexual species for reproductive 
mode. Species body mass and 
commonness were divided as 
above or below their medians to 
facilitate visualization
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which was accounted for by predictors only ( R2
m

 = R2
c
 ). Hier-

archical partitioning revealed that model terms representing 
dispersal limitation explained most of this variation, with 
drift- and particularly selection-related terms contributing 
much less (Fig. 3).

Discussion

Our analysis revealed clear patterns in the occurrence prob-
ability of oribatid mite species that were consistent with the 
expected effects of selection, drift and dispersal on com-
munity assembly. However, most of the variation in occur-
rence probability was attributable to dispersal limitation, 
suggesting this is the dominant process shaping community 
composition across sites over the landscape. Further, there 
was no evidence for the predicted interactions between the 
effects of selection, drift and dispersal, supporting the com-
mon assumption of additive effects.

The decline in occurrence probability with increasing 
distance to nearest source reached a “floor” only after a 
few kilometres (Fig. 2d), suggesting that communities are 
relatively well connected by dispersal up to this distance. 
This is consistent with the ease of passive dispersal in soil 
microarthropods (Costa et al. 2013; Schuppenhauer et al. 
2019) and with similar findings from a contrasting, glacial 
landscape (Ingimarsdóttir et al. 2012). However, the decay 
in occurrence probability with increasing distance to source 
was stronger in rarer species (Fig. 2d), as predicted by neu-
tral models: rarer species are less likely to reach farther sites 
over a given period due to fewer migrants (Hubbell 2001). 
As the distance to nearest source explained much of the vari-
ation in occurrence probability independently of environ-
mental predictors, species may often occur in suboptimal 
habitats (i.e. mass effect; Shmida and Wilson 1985).

Lower species occurrence probability in smaller commu-
nities is consistent with ecological drift: given that births 
and deaths are not completely predictable from traits (i.e. 
demographic stochasticity), and that communities are finite, 
species will be more likely to go extinct in communities 
with fewer individuals, thereby decreasing their occurrence 
probability (MacArthur and Wilson 1967; Hubbell 2001; 
Vellend 2016). For instance, this is the reason for the well-
known species-area relationship in Island Biogeography 
Theory. Although soil arthropods can reach high densities 
and our site-level communities were aggregates of 20 soil 
cores, their size ranged from a few to around 140 individu-
als only (Fig. 2c), which is within the range over which drift 
has been found to have significant effects in simulated com-
munities (Hubbell 2001; Vellend 2016). Yet, drift has been 
demonstrated even in bacterial communities of millions of 
cells per litre (Fodelianakis et al. 2021). Thus, the relevant 

question is not whether drift occurs, but how much it affects 
community structure compared to other processes, namely 
selection and dispersal.

Most metacommunity analyses of soil macroarthropods 
focus on rather small spatial grains (e.g. 10 cm) and extents 
(< 1 km), and often find that most variation in community 
structure is unrelated to environment or space (Caruso et al. 
2012; Gao et al. 2014; Magilton et al. 2019; Zinger et al. 
2019). While part of this unexplained variation is probably 
sampling error, it might also reflect the relatively stronger 
effect of drift in fine-grained communities. By contrast, our 
results point to a much weaker effect of drift relative to dis-
persal limitation, which is consistent with the larger spatial 
grain and extent analyzed here.

There were detectable trait × environment interactions 
underlying species occurrence probability, consistent with 
selection. Occurrence probability increased with soil P con-
tent for larger species but decreased for smaller species. P 
strongly limits detrital food webs in lowland tropical forests 
(Camenzind et al. 2018). Further, P total amount increases 
while P content decreases with body size in arthropods 
(Woods et al. 2004). On the one hand, this suggests that 
P limits larger species simply due to their higher whole-
body nutritional reqruiements. On the other hand, species 
may compete differently for P as function of their size, e.g. 
smaller species may better forage for P-rich foods (Woods 
et al. 2004) and thus perform better under low P (Fig. 2a). 
Likewise, occurrence probability changed little with litter 
mass in sexual species and decreased in parthenogenetic spe-
cies. Assuming that most soil oribatid mites are fungivores 
(Heethoff et al. 2009; Potapov et al. 2019), litter should 
mainly provide a habitat for mites. Hence, less litter may 
provide less shelter, e.g. against predators (Wilson 2005). 
Parthenogens are thought to reproduce faster by dispensing 
with males and mating, and may be favoured when mortal-
ity is high (Maraun et al. 2019), e.g. in more exposed soil.

Regardless of the precise mechanisms driving trait × envi-
ronment interactions, the low variation explained by them 
suggests that species were largely distributed as if they 
were ecologically equivalent, i.e. had similar performance 
under local environmental conditions (Shmida and Wilson 
1985). Ecological equivalence is the key assumption of neu-
tral models of community assembly, as compared to niche 
models (Hubbell 2001; Vellend 2016). Ecological equiva-
lence is probably an unrealistic assumption in general, given 
widespread evidence for niche partitioning in plants (John-
son et al. 2017) and animals, including soil fauna (Potapov 
et al. 2019). However, dispersal limitation can reduce co-
occurrence among species that differ in performance when 
together, thereby delaying competitive exclusion to levels 
compatible with ecological equivalence (Munoz and Hune-
man 2016). This might explain why trait × environment 
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interactions, although supported, only weakly explained 
occurrence probability.

Our results challenge theoretical predictions that ecologi-
cal processes should interact in community assembly (Han-
son et al. 2012; Vellend et al. 2014; Vellend 2016; Ron et al. 
2018). Indeed, the few experimental studies that explicitly 
tested for effects of community size (drift) and distance to 
source habitat (dispersal) on soil microarthropod community 
structure found evidence for both independent and interact-
ing effects (Hoyle 2004; Åström and Bengtsson 2011). Yet, 
most metacommunity analyses have not explicitly quanti-
fied drift and have assumed independent effects for selection 
and dispersal limitation (Cottenie 2005; Hanson et al. 2012; 
Soininen 2016). Our results support this assumption for the 
conditions we studied. Perhaps interactions are only relevant 
at wider environmental or geographic extents. For instance, 
species environmental responses of aquatic invertebrates 
were weaker in tropical than in boreal streams, with commu-
nity size being five times larger in the latter (Siqueira et al. 
2020). Likewise, drift may be relatively stronger in tropical 
soil animal communities given their lower density (Takeda 
and Abe 2001), which might account for the relatively weak 
selective effects detected here.

Several caveats should be considered. First, it is difficult 
to infer causality from observational data. Accordingly, we 
focused on non-overlapping predictions from higher-level 

ecological processes (MacArthur and Wilson 1967; Hub-
bell 2001; Vellend 2016; Waller et al. 2018) and applied 
a modelling framework that has been shown by simula-
tion to reliably infer such processes under known condi-
tions (Ovaskainen et al. 2019; Sydenham et al. 2019). Yet, 
experiments will be ultimately required to validate our 
interpretations. Second, important predictors can always 
go unmeasured, especially regarding environmental vari-
ables and traits. However, as predictors related to dispersal 
and drift accounted for most of the variation in species 
occurrence, adding predictors is unlikely to change this 
result. Third, we focused on species occurrence rather 
than abundance, but the latter is harder to predict. For 
instance, neutral theory predicts that both equilibrium 
species abundance and its variance should increase with 
community size, making average trends less discernible 
(Hubbell 2001). It is possible that factors other than the 
ones analyzed here affect local abundance once species 
have established. Lastly, rare species probably looked even 
rarer due to imperfect detection. This could bias the esti-
mated distance to the nearest site occupied by a species. 
Yet, it has been shown that rare species contribute little 
to observed multivariate patterns in species occurrence 
(Franklin et al. 2013), and simulations suggest that eco-
logical relationships can be reasonably recovered despite 
imperfect detection (Barker et al. 2018; Yamaura et al. 
2019). The fact that analyses excluding singletons pro-
vided similar results corroborates that overall patterns are 
robust to variability in rare species.

Our study suggests that dispersal limitation is the major 
driver of oribatid species occurrence probability over a 
landscape in central Amazonia, although dispersal could 
still connect local communities up to a few kilometres, 
possibly by passive dispersal. By contrast, drift- and espe-
cially selection-related predictors accounted for little vari-
ation in occurrence probability. Our results also challenge 
the expectation that higher-level ecological processes 
should interact, supporting instead the assumption of addi-
tive effects typical of variance partitioning methods. Over-
all, the high predictive power of distance to nearest source 
despite variation in species environmental responses sug-
gests that dispersal limitation renders species ecologically 
equivalent at the landscape level, possibly contributing to 
the maintenance of metacommunity diversity.
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