Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients

Rafael S. Oliveira1, Flavia R. C. Costa2, Emma van Baalen2,3, Arjen de Jonge2,3, Paulo R. Bittencourt1, Yanina Almanza4, Fernanda de V. Barros1, Edher C. Cordoba2, Marina V. Fagundes5, Sabrina Garcia2, Zilza T. M. Guimaraes6, Mariana Hertel7, Juliana Schietti2, Jefferson Rodrigues-Souza2 and Lourens Poorter2,3

1Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil; 2Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil; 3Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands; 4Instituto de Biociencias, Universidade Federal de Mato Grosso, Av. Fernando Correa, CEP 78060-900, Cuiabá, Brazil; 5Restoration Ecology Research Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, CEP 59072970, Natal, RN, Brazil; 6Programa de Pós-Graduação em Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia, CEP 69080-971, Manaus, Brazil; 7Laboratório de Fisiologia Vegetal, Universidade Estadual de Londrina, Londrina, CEP 86097850, PR, Brazil

Author for correspondence:
Rafael S. Oliveira
Tel: +55 19 35216177
Email: rafaelsoliv@gmail.com
Received: 18 May 2018
Accepted: 23 August 2018

doi: 10.1111/nph.15463

Key words: drought vulnerability, forest resilience, functional ecology, hydrological niches, P50, phosphorus, tropical forests, water table.

Introdução

Global warming and more variable rainfall regimes have led to increased frequency and intensity of droughts, and to potentially large shifts in species distribution and ecosystem functioning (Malhi et al., 2009; Phillips et al., 2009). Global vegetation models predict, for example, high vulnerability of Amazonian forests to drought (Huntingford et al., 2008), and sometimes even transition towards more open vegetation states (Cox et al., 2004), whereas empirical and experimental plot studies have shown that, despite site specific vulnerability, drought triggers large-scale mortality of certain group of trees and specific species (Phillips et al., 2009; Lewis et al., 2011; Hilker et al., 2014). However, the mechanisms underlying either forest resistance or vulnerability to predicted changes in rainfall are still not well understood.

Vulnerability to drought is determined by a suite of traits related to the water transport system (i.e. hydraulic system) of plants. Among these traits, the P50 (i.e. the water potential at which 50% loss of hydraulic conductivity occurs) is the most common index of xylem vulnerability to hydraulic failure and a key determinant of tree drought tolerance (Rowland et al., 2015; Anderegg et al., 2016). Despite having the most vulnerable xylem tissue, tropical rainforests species are hypothesized to have the lowest within-biome variation in P50 and thus low resistance to drought-induced hydraulic failure compared with other biomes (Choat et al., 2012). In this meta-analysis, P50 data have been reported for only 59 rainforest tree species mostly from sites with precipitation above 2400 mm. The Amazon, the largest and most biodiverse forest in the world, is still underrepresented in global plant hydraulic traits datasets (but see Rowland et al., 2015; Santiago et al., 2018).

Hydraulic traits might also be important for niche differentiation and species distribution across local moisture gradients (Engelbrecht et al., 2008). Hydrological niche segregation occurs in a wide range of vegetation types and has been observed along topographic gradients in central Amazonia (Schietti et al., 2014) but the underlying mechanisms are not clear (Silvertown et al., 2015). P50 may be a key trait to understand hydrological niche segregation, because it determines the maintenance of water supply to leaves under water stress and hence, plant survival. Xylem

Summary

- Species distribution is strongly driven by local and global gradients in water availability but the underlying mechanisms are not clear. Vulnerability to xylem embolism (P50) is a key trait that indicates how species cope with drought and might explain plant distribution patterns across environmental gradients. Here we address its role on species sorting along a hydro-topographical gradient in a central Amazonian rainforest and examine its variance at the community scale.
- We measured P50 for 28 tree species, soil properties and estimated the hydrological niche of each species using an indicator of distance to the water table (HAND).
- We found a large hydraulic diversity, covering as much as 44% of the global angiosperm variation in P50. We show that P50 contributes to species segregation across a hydro-topographic gradient in the Amazon, and thus to species coexistence; is the result of repeated evolutionary adaptation within closely related taxa; is associated with species tolerance to P-poor soils, suggesting the evolution of a stress-tolerance syndrome to nutrients and drought; and is higher for trees in the valleys than uplands.
- The large observed hydraulic diversity and its association with topography has important implications for modelling and predicting forest and species resilience to climate change.

© 2018 The Authors
New Phytologist © 2018 New Phytologist Trust
embolism vulnerability is also expected to be an important trait under selection across soils differing in water availability and water table depth, as soil water tension establishes the maximum xylem tension possible in an environment. This xylem tension is unavoidable even after stomatal closure and plants have to withstand by being resistant to embolism (Sperry & Love, 2015). Because of its strong predictive power of plant performance and distribution across environmental gradients, embolism resistance has recently been considered a mechanistic ‘super-trait’ (Broadribb, 2017; Larret et al., 2017).

In the Amazon basin, the seasonally inundated forests have recently been reported to be less resilient than upland forests and more susceptible to climate-driven transition to open vegetation states (Flores et al., 2017). Amazon floodplains occur around river basins, where forests can stay flooded for several months. Wetland forests are particularly susceptible to hydrological drought, i.e. abnormal decreases in the water table, and studies in the Amazon and in Borneo relate hydrological drought to increased fire occurrence and forest transition to alternative open vegetation states (Flores et al., 2017; Taufik et al., 2017). An overlooked type of wetland forest, the valley forests, occurs in Amazon micro-basins occupying c. 40–50% of the central Amazon area (Nobre et al., 2011). They occur in valley bottoms, are frequently waterlogged during rain events, and the water table is at or near surface, which may contribute to filtering of species composition towards species with waterlogging tolerance and high water demand, and potentially lower hydraulic safety, making valley forest trees likely to be more vulnerable to hydrological drought. From the valleys to the plateaus, the influence of the water table decreases progressively and plateaus are not affected by hydrological drought (here defined as below-normal water table level; see Van Loon, 2015), but by soil water deficits, commonly observed during meteorological droughts. This difference in abiotic drivers would suggest valley forests to strongly differ from plateau forests. In fact, species composition, forest structure and dominant functional traits are notably different between valley and plateau forests (Schietti et al., 2014; Cosme et al., 2017). Being close to the water table, it is expected that valley forest species evolved under higher water availability and have been selected for nonconservative traits and lower drought tolerance thresholds, making them more susceptible to hydrological drought than plateau species. In fact, recent evidence indicate four times higher drought mortality of western Amazon valley forest species compared with slope or plateau species (Zuleta et al., 2017), similar to the mortality patterns observed after the 1997–1998 El Niño drought in dipterocarp forests in Southeast Asia (Itô et al., 2012). The vulnerability of valley forests depends not only on the traits of plants, but also on its interaction with hydrological conditions and how climatological drought can modify these conditions. However, if plant traits in valleys are predominantly hydraulically nonsafe, valleys could become more vulnerable than plateaus in the event of strong hydrological droughts.

In this study we analyze the P50 (i.e. the water potential at which 50% loss of conductivity occurs), the most common index of embolism resistance (Anderegg et al., 2016), and species’ hydrological niche, measured by their preferred position along a gradient of height above nearest drainage (HAND), an indicator of distance to water table. We test the hypotheses that: in this hyperdiverse rainforest, interspecific variation in a key drought vulnerability trait (P50) represents a significant proportion of the global angiosperm species variation; xylem hydraulic resistance to embolism will vary according to the distance to the water table and valley forest trees have lower drought tolerance thresholds than plateau trees; and valley conditions favour the evolution of more embolism-vulnerable species while plateau conditions favour evolution of more embolism-resistant species and this divergence in drought adaptation has occurred repeatedly in distinct close phylogenetic lineages. Addressing these hypotheses and understanding the basis for local species segregation enable us to provide a strong basis for mechanistic models of plant hydraulics and projections of species distributions under climate change.

Our data greatly expand the knowledge of tropical rainforest trees’ embolism resistance, which mostly comprises hyperhumid tropical forests (> 2400 mm annual rainfall). As topographical gradients (Tuomisto et al., 2003) and associated hydraulic diversity (Fortunel et al., 2014; Cosme et al., 2017) may be typical for large parts of the Amazon, although largely ignored in current dynamic global vegetation models, our results are pivotal for predicting Amazon resilience to drought.

Materials and Methods

Study site

The study was carried out at Reserva Florestal Adolpho Ducke, a 10 000 ha tropical rainforest reserve, 26 km north of Manaus, Brazil (59°52′40″W, 03°08′00″S) (Ribeiro, 1976). Reserva Ducke is a long-term ecological research site with 72 permanent plots for which data on topography, soil properties and species abundance are available (Costa et al., 2015). Average temperature is 26°C with a minimum of 19 and maximum of 39°C. Mean annual precipitation is c. 2200 mm (range 1900–3300 mm) with a wet season from November to June (Satyamurty et al., 2010).

The topography consists of a plateau incised by streams, forming small floodplains. This heterogeneity in topography has created a continuous gradient of soil properties and water availability, from the upland clay-rich and drier plateaus to clay-sandy slopes and the very sandy and seasonally waterlogged valleys. These hydrological environments can be described by their vertical height above the nearest drainage (HAND), which is a good proxy for the vertical distance of any point of the terrain to the water table (Nobre et al., 2011). The water table is very close to the surface in valleys, and can be 35 m deep on plateaus (Tomasella et al., 2008). HAND of the plots is positively correlated to soil clay content (Pearson r = 0.88, P < 0.001, n = 72), and concentration of exchangeable bases (sum of the bases – calcium, magnesium, potassium, and sodium) and of nitrogen (r = 0.58, P < 0.001, n = 72), but not to soil phosphorus (P) concentration (r = 0.07, P = 0.58, n = 72) (soil data from Costa et al., 2005). HAND values for the permanent plot locations were the
same used in (Schietti et al., 2014), which were calculated using the HAND algorithm (Rennò et al., 2008) based on SRTM digital elevation model (90 m of spatial resolution) with a minimum contribution area of 30 pixels (≈ 0.41 km²). Soil P was extracted with the Mehlich1 solution and determined spectrophotometrically using ammonium molybdate and ascorbic acid (Donagema et al., 2011).

Species selection

To evaluate species associations to the topographic and edaphic gradient, we selected 28 eudicotyledonous tree species that sort out along the topographic gradient (Table 1). To quantify the topographic and soil niches of the species, we weighted the HAND or P concentration of the plot by the abundance of the species in the plot (a) (n = 72 plots) and divided by the number of individuals of the species in all plots (a) using the following equation, where i is the plot:

Species HAND or P = \frac{\sum_{i=1}^{n} (\text{plot HAND or P}_i \cdot a_i)}{a}

We tested if species were restricted to some portion of the HAND gradient than expected by chance using a statistic that is independent of the number of sites occupied (Kinnup & Magnusson, 2005). For each species, the test statistic was the observed SD over the mean value of the HAND gradient used by its individuals. Then we built a null model for each species, based on the variation in HAND expected to be found in occupied sites when the null hypothesis (no habitat specificity) is true, using a resampling procedure. This process was repeated 1000 times to obtain the distribution of random standard deviations for each species. The proportion of standard deviations in the 1000 random samples that were equal to, or less than, the observed standard deviation was used to test the null hypothesis of no habitat restriction for each species. Species with significant lower deviation from the average than expected by chance are restricted. Species with significant restriction were then classified as valley species (average HAND values < 17 m, n = 10 species), plateau/slope species, hereafter referred to as ‘plateau species’ (average HAND > 17 m, n = 15). Species not significantly restricted were classified as generalists. A previous study (Schietti et al., 2014) has shown that 17 m is the level of the water table that defines the upper limit of the riparian zone.

To evaluate whether habitat-associated drought adaptation has occurred repeatedly in different phylogenetic lineages, we selected some species pairs that belonged to the same genus or family, in which one taxon was a plateau species, and the other a valley species (Supporting information Table S1). Some additional, unpaired species were included to sample species across the whole

Table 1

Selected species (28), their preferred habitat (P, plateau; V, valley; G, generalist), mean height above nearest drainage (HAND, with 10 and 90 percentiles in parenthesis), mean P₅₀ (MPa) and mean plant-available phosphorus concentration (P; mg kg⁻¹) at Reserva Ducke, Manaus, Brazil.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Habitat association</th>
<th>Mean HAND position (m)</th>
<th>Mean P₅₀ (MPa)</th>
<th>Mean P (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annonaceae</td>
<td>Guatteria olivacea²³</td>
<td>G</td>
<td>20.4 (5.6–41.6)</td>
<td>–2.57</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>Guatteria megaphylla⁴</td>
<td>V</td>
<td>3.3 (1.5–5.1)</td>
<td>–2.21</td>
<td>3.80</td>
</tr>
<tr>
<td>Burseraceae</td>
<td>Protium gallossum¹⁹</td>
<td>P</td>
<td>26.2 (6.2–37.9)</td>
<td>–2.54</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>Protium nitidifolium²⁰</td>
<td>P</td>
<td>25.7 (8.4–39.8)</td>
<td>–2.91</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>Protium trifoliatum²⁴</td>
<td>P</td>
<td>23.2 (5.3–39.5)</td>
<td>–1.33</td>
<td>3.48</td>
</tr>
<tr>
<td></td>
<td>Protium hebetatum¹⁴</td>
<td>G</td>
<td>19.49 (5.3–38.6)</td>
<td>–3.10</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>Protium grandifolium³⁴</td>
<td>V</td>
<td>10.80 (1.4–15.1)</td>
<td>–1.25</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>Tetragastris panamensis²⁶</td>
<td>P</td>
<td>25.7 (10.8–41.6)</td>
<td>–1.83</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>Licania longistylo⁴</td>
<td>G</td>
<td>15.2 (1.6–38.5)</td>
<td>–3.11</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>Licania lata⁴</td>
<td>V</td>
<td>8.5 (1.7–21.1)</td>
<td>–1.71</td>
<td>3.16</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Eperua duckean¹</td>
<td>V</td>
<td>7.2 (1.6–14.4)</td>
<td>–0.88</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>Swartzia recurva²³</td>
<td>P</td>
<td>25.9 (5.8–43.6)</td>
<td>–3.66</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td>Swartzia tomentifera²⁴</td>
<td>P</td>
<td>24.9 (5.3–39.3)</td>
<td>–3.64</td>
<td>3.44</td>
</tr>
<tr>
<td></td>
<td>Swartzia ullei¹⁰</td>
<td>V</td>
<td>15.1 (1.7–34.7)</td>
<td>–2.20</td>
<td>3.69</td>
</tr>
<tr>
<td></td>
<td>Zygia racemosa²⁷</td>
<td>P</td>
<td>28.2 (8.5–41.6)</td>
<td>–4.10</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>Zygia ramiflora²⁸</td>
<td>P</td>
<td>29.8 (8.7–47.4)</td>
<td>–1.76</td>
<td>3.52</td>
</tr>
<tr>
<td>Lecythidaceae</td>
<td>Eschweileria pseudodecolorans¹⁵</td>
<td>P</td>
<td>29.7 (12.6–43.7)</td>
<td>–3.25</td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td>Eschweileria bracteata¹⁶</td>
<td>P</td>
<td>25.3 (8.0–41.4)</td>
<td>–2.43</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>Eschweileria coriacea¹⁷</td>
<td>G</td>
<td>17.1 (2.8–37.5)</td>
<td>–1.72</td>
<td>3.32</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Helianthusis spruce¹⁷</td>
<td>P</td>
<td>26.5 (8.4–41.6)</td>
<td>–4.04</td>
<td>3.07</td>
</tr>
<tr>
<td>Myristicaceae</td>
<td>Virola venosa²⁶</td>
<td>P</td>
<td>27.68 (8.7–41.4)</td>
<td>–0.84</td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td>Iryanthera juruensis⁵</td>
<td>V</td>
<td>14.3 (1.8–37.1)</td>
<td>–0.67</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>Iryanthera ullei⁶</td>
<td>V</td>
<td>16.2 (2.3–38.2)</td>
<td>–0.56</td>
<td>4.15</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Adiscanthus fusciflorus²</td>
<td>V</td>
<td>2.2 (1.4–4.7)</td>
<td>–1.08</td>
<td>3.56</td>
</tr>
<tr>
<td>Sapotaceae</td>
<td>Micropholis williamii³⁸</td>
<td>P</td>
<td>23.4 (6.2–42.8)</td>
<td>–1.78</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>Chrysophyllum sanguinolentum²</td>
<td>V</td>
<td>9.5 (1.6–22.4)</td>
<td>–2.47</td>
<td>3.44</td>
</tr>
<tr>
<td>Violaceae</td>
<td>Rinorea racemosa²²</td>
<td>P</td>
<td>26.2 (5.7–41.6)</td>
<td>–4.18</td>
<td>3.33</td>
</tr>
</tbody>
</table>

Numbers after species names indicate each species vulnerability curves as numbered in Supporting Information Fig. S1.
HAND gradient. Half of the selected species belong to the 50 most abundant species at Reserva Ducke, and 12 species belong to the 227 hyperdominant species in the Amazon (ter Steege et al., 2013).

Xylem resistance to hydraulic failure

We used P_{50} as an indicator of xylem resistance to hydraulic failure; P_{50} is the xylem water potential at which 50% of hydraulic conductance is lost. We determined P_{50} for branches of juvenile trees, with stem diameter between 1 and 5 cm, and stem height between 2 and 10 m. We focused on juvenile trees, because it is logistically more feasible to access and collect the branches, and because the regeneration stage presents a crucial bottleneck in the life cycle of a tree; species adaptations to drought may be much more marked in the juvenile stage, when trees have a small root system compared with the adult stage when trees can partly avoid drought by having deeper roots and access to soil water (Engelbrecht & Kursar, 2003; Poorter & Marksteijn, 2008; Brum et al., 2018).

For each species we collected one branch (longer than 1 m) from three to six individuals. Branches were collected early in the morning (when they were more hydrated). Hydraulic vulnerability curves were constructed using the pneumatic method (Pereira et al., 2016; Zhang et al., 2018). Branches were bench dried repeatedly to different water potentials, and had their air discharge and xylem water potential measured concurrently with a pressure chamber (PMS 1000; PMS Instruments Co., Albany, OR, USA). Before each xylem water potential measurement, branches were bagged for 1 h for leaf and xylem water potential to equilibrate. Percentage loss of conductance was estimated from percentage air discharge curves and P_{50} was calculated from a fitted sigmoidal curve relating percentage loss of conductance to xylem water potential. We fitted the curves at species level, combining the individuals per species. As we sampled only one branch per individual, this analysis was not possible at individual level.

Data analysis

For all statistical analysis, we used R v.3.3.0 with base packages (R Core Team, 2014). Global P_{50} data were obtained from (Choat et al., 2012). Welch T-Test (default of ‘t.test’ R base function) was used to determine if the global P_{50} dataset differed from our data collected at Ducke. To evaluate whether P_{50} was associated with species distribution across gradients in water availability and soil plant-available phosphorus concentration, we regressed species P_{50} with HAND and soil phosphorus concentration values, using simple and multiple linear regression. To evaluate whether species with different topographic niches (plateau, valley) also differed in P_{50} and whether this was because of repeated adaptation, we used a paired t-test on valley vs plateau species, by pairing species within genera or families or orders. Paired species are shown in Table S1. A subset including only family or genus level pairs is used to further evaluate the hypothesis. Pairing within clades allows for a phylogenetically independent contrast. Nevertheless, we also tested for the existence of a phylogenetic signal in the hydrological niche of species and in the P_{50} metric. We built a phylogenetic tree for our species using the megaphylogeny of Zanne et al. (2014) available in Phylomatic v.3 (Webb & Donoghue, 2005) and calculated the Blomberg k (Blomberg et al., 2003) and Pagel lambda (Pagel, 1999), with significance tested by 999 permutations. Blomberg k statistics compares the observed and expected variance to calculated independent contrasts. If relatives have similar trait values, then the variance of the independent contrasts will tend to be low. Pagel’s lambda determines how much is needed to change the length of the original phylogenetic tree branches to eliminate the phylogenetic signal.

Results

In this Amazonian forest, valley forests (HAND < 17 m) covers 46.1% of the area (Fig. 1). Xylem resistance to embolism formation (P_{50}) ranged from −0.56 to −4.2 MPa across species (Figs 2, S1). This local variation in P_{50} (3.7 MPa range) covers 44% of the global variation in P_{50} for angiosperms (−8.5 MPa, ranging from −0.1 to −8.6 MPa, Fig. 2). The mean P_{50} of the trees in this rainforest (−2.33 MPa) was more negative than the worldwide mean for tropical rainforest (−1.6 MPa), and similar to the worldwide mean of seasonal tropical forest (−2.4 MPa) (Fig. 2). Valley species had P_{50} values similar to tropical rainforest species (t = 0.53, df = 17, P = 0.61) and plateau species had a P_{50} of 1.17 MPa lower than tropical rainforest species (t = −3.62, df = 25.0, P = 0.001) and similar to tropical seasonal forest species (t = −1.1, df = 21.6, P = 0.28).

The hydrological niche of the species (mean HAND) explained 22% of P_{50} variation ($F_{1,26} = 7.4$, $r^2 = 0.22$, P = 0.01; Fig. 3a), indicating that drought-resistant species (with low P_{50}) tended to occur preferentially in high and well-drained uplands with little access to the water table.

P_{50} also had a positive correlation with soil P concentration ($F_{1,27} = 5.2$, $r^2 = 0.16$, P = 0.03; Fig. 3b), indicating that drought-tolerant species (with high P_{50}) tended to occur on P-richer soils. Together, HAND, soil phosphorus and their interaction explained 45% of the variation in P_{50} across species ($F_{3,24} = 6.5$, $r^2 = 0.45$, P = 0.002).

The P_{50} of valley species was 1.32 MPa higher than that of plateau species (t = 3.6; df = 21.63; P = 0.001). A paired t-test between phylogenetic pairs indicated that the P_{50} of the plateau species was 1.28 MPa more negative than that of congeneric/confamilial/conorder valley species (Table S1; paired T-test $t = 4.2$, df = 8; P = 0.0012; Fig. 4). When only congeneric and confamilial pairs are considered, the patterns remain the same with plateau species −1.37 MPa more embolism resistant than valley species (paired T-test $t = 3.2$, df = 5; P = 0.013).

There was no phylogenetic signal for either the hydrological niche of species ($K = 0.26$, $P = 0.43$; $\lambda < 0.001$, $P = 1$) or species P_{50} ($K = 0.54$, $P = 0.06$; $\lambda = 0.99$, $P = 0.19$), and we can conclude that these traits are not conserved along phylogeny for the group of species evaluated here, that is, the hydrological niche of species within genus and even family have changed along evolution and the same for their resistance to embolism.

www.newphytologist.com © 2018 The Authors
New Phytologist © 2018 New Phytologist Trust
Discussion

Our analysis revealed that xylem embolism resistance is highly variable at very small spatial scales within a hyperdiverse Amazonian forest, representing over 44% of the global variability for angiosperms. We show, for the first time, that: forest species in valleys are more drought vulnerable than plateau forest species, indicating that embolism resistance (P_{50}) contributes to species co-existence at very local scales within a single community and across a hydro-topographic gradient and not only at large scales (Choat et al., 2012); P_{50} is the result of repeated evolutionary adaptation within closely related species across multiple Amazonian rainforest taxa; there is a link between P_{50} and species tolerance and soil P availability, suggesting the evolution of a stress-tolerance syndrome to both nutrient and drought stress; and central Amazonian rainforest trees in the uplands have higher embolism resistance than previously observed for other rainforest trees (Choat et al., 2012; Santiago et al., 2018). The large observed hydraulic diversity and its association with topography have important implications for modelling (Christoffersen et al., 2016) and predicting forest and species resilience to climate change.

Fig. 1 Height above nearest drainage (HAND) of Ducke reserve. (a) Map of Ducke reserve highlighting valleys areas (HAND ≤ 17 m) in green and plateau areas (HAND > 17 m) in red. (b) Cumulative total area (%) of Ducke reserve according to HAND values (m). Green lines mark the 17 m threshold used for separating valley from plateau areas (Nobre et al., 2011). The inset in (b) shows the probability distribution function of HAND values in Ducke reserve.

Fig. 2 Distribution of P_{50} (MPa) values from Amazon forest in Ducke’s reserve in the valley (blue) and plateau (green), and global P_{50} data for tropical rainforest (dark blue), tropical seasonal forest (dark green), and all angiosperms (orange; data from Choat et al., 2012).
Species with plateau tree species in a central Amazon forest. Paired species regressions with equations. Phosphorus is plant-available concentration (mg kg\(^{-1}\)). Horizontal and vertical grey lines over data indicate 5E. Black lines are the best fit linear regressions with equations \(\Psi_{50} = -1.12 - 0.06\text{HAND}\). Phosphorus. Multiple regression of \(\Psi_{50}\) and HAND and phosphorus is \(\Psi_{50} = -5.15 - 0.05\text{HAND} + 1.17\text{Phosphorus} (r^2 = 0.32, P = 0.008)\) and \(\Psi_{50} = -7.2 - 0.8\text{HAND} - 2.42\text{Phosphorus} + 0.23\text{Hand} \times \text{Phosphorus} (r^2 = 0.45, P = 0.002)\) with the interaction of P and HAND.

Fig. 3 \(P_{50}\) (MPa) of Amazon tree species as a function of (a) species mean height above nearest drainage (HAND, m), or (b) species mean soil phosphorus plant-available concentration (mg kg\(^{-1}\)).

Higher xylem embolism vulnerability of valley tree species

\(P_{50}\) was related to the hydrological niche (mean HAND) of the species, indicating that hydraulic characteristics affect species distribution and partitioning of topographic gradients. Valley species occur close to the water table, which implies that water is readily available for these plants. Waterlogging occurs seasonally in valleys, and might represent a strong environmental filter for species that are not able to deal with hypoxic conditions. Valley species were shown to be less embolism resistant, which corroborates the contention that valley species evolved depending on water from the water table during drought periods. Plateau species, alternatively, are at least 17 m away from the water table, and have either invested in an embolism-resistant xylem or in deep roots to deal with seasonal soil water deficits (Brum \textit{et al.}, 2018). Clayey plateau soils hold more water at more negative water potentials, while sandy soils hold less water at less negative water potentials. However, during hydrological droughts, the situation reverses and the sandy soils dry out more quickly than clay soils and to more negative water potentials. However, valley species presenting lower embolism resistance than plateau species suggests that severe hydrological drought in central Amazon may not be frequent under current climatic conditions because species with low \(P_{50}\) would be excluded from valley habitat. This hypothesis could be tested by evaluating if valley and plateau species in other forests subjected to strong hydrological droughts also differ in embolism resistance.

Higher drought vulnerability of valley forest species possibly explains the higher tree mortality found in the valley habitat in response to an extreme drought in a Colombian Amazon forest (Zuleta \textit{et al.}, 2017). Our results thus confirm valley species as particularly vulnerable to hydrological drought, while plateau species are mostly susceptible to meteorological drought. Plateau species having lower \(P_{50}\) than valley species (which is a necessary trait to deal with drier soils) suggest they can withstand the unavoidable tension caused in the xylem by the drying soil during the dry season. We also note that the hydraulic safety margin values (difference between \(P_{50}\) and minimum xylem water potential) for tropical forests is much more related to \(P_{50}\) \((r^2 = 0.40; P = 0.001)\) than to minimum xylem water potential \((r^2 = 0.04; P = 0.002)\) (dataset used in Choat \textit{et al.}, 2012). Finally, species hydrological niche (the species mean distance to the water table) explained 22% of the variation in \(P_{50}\), and the same applied to other hydraulic traits (Cosme \textit{et al.}, 2017), suggesting that other factors, such as nutrient and waterlogging adaptations also influence species distribution along the topographic gradient, as has been demonstrated before (Fine \textit{et al.}, 2005). In fact, HAND, soil phosphorus and their interaction explained 45% of the variation in \(P_{50}\) across species. Therefore, a full understanding of niche partitioning along topographic gradients requires an integration of plant traits and all resources and stresses faced by plants, through empirical and modelling studies.

Drought tolerant species are more common in P-poor soils

Surprisingly, we found that plants with lower \(P_{50}\) occurred preferentially on P-poor soils. Phosphorus was not correlated to HAND, and therefore had an independent effect on \(P_{50}\), being the only soil nutrient correlated with xylem embolism resistance. Soil phosphorus is an important predictor of tropical tree species distribution (Condit \textit{et al.}, 2013), but to our knowledge this is the first study showing a correlation between tree hydraulics and natural gradients in soil phosphorus. \(P_{50}\) might be related to soil phosphorus because they are part of the same evolutionary strategy or because of trait correlations. Plants require nutrients and energy to invest in water-transporting structures and maintain metabolic processes (Bittencourt \textit{et al.}, 2016), but the nutrient and energy costs of the water transport system have been neglected in the hydraulic literature (Bucci \textit{et al.}, 2006). Tolerance to nutrient and drought stress may be part of the same evolutionary strategy, as they require similar, conservative adaptive traits that enhance the efficiency of nutrient and water use and the residence time of these resources in the plant and lead to slow growth rates (Reich, 2014; Eller \textit{et al.}, 2018). Finally, \(P_{50}\) may be
correlated to soil P if both correlate to a common variable. For example, a low P_{50} can be simply a by-product of adaptation to P-poor soils, in which tough and dense wood with high lignin concentration, thick cell walls and small lumen area not only enhances stem longevity and the residence time of phosphorus in the plant (Thomas et al., 2006), but also xylem embolism resistance. Additional studies are needed to evaluate if nutrient availability influence the chemical composition of plant vascular systems and thus xylem embolism resistance (Lima et al., 2018; Pereira et al., 2018). Alternatively, faster transpiration rates may be an important P-acquisition mechanism in phosphorus-poor soils (Cernusak et al., 2011; Huang et al., 2017) and a hydraulically resistant xylem would be required to sustain the low xylem water potentials developed in profligate water-using plants.

Embolism resistance is the result of repeated evolutionary adaptation

P_{50} may vary within an individual, between individuals and between populations (Sperry & Saliendra, 1994; Anderegg, 2015; Aranda et al., 2015; Fichot et al., 2015), and despite having a clear adaptive significance as a mechanism of drought tolerance in evergreen angiosperms, little is known about the role of phylogenetic history influencing the interspecific variation of this trait (Maherali et al., 2004). The large (1.37 MPa) difference in P_{50} we found between closely related species and the absence of a phylogenetic signal suggest this trait is under strong divergent selection. Since this is a field study, the results might partially reflect plasticity. However, the strong association of specialized species of the congeneric pairs to each environment suggests that the interspecific variation of P_{50} reflects adaptation. A large part of the biodiversity of Amazonian trees (estimated as c. 16 000 species, ter Steege et al., 2013) is found within c. 500 genera (Gentry, 1993), and our data suggest that recent drought adaptation may be one of the drivers of ecological speciation in the Amazon (Esquivel-Muelbert et al., 2016). Future studies should investigate if topography affects intraspecific variability in P_{50} and if generalist species exhibit higher phenotypic plasticity in P_{50} than specialist species.

Are central Amazonian rainforest trees more drought resistant than elsewhere in the wet tropics?

The xylem vulnerability to hydraulic failure (P_{50}) of the central Amazonian rainforest species was more negative than that of other tropical rainforest species in a global meta-analysis (Choat et al., 2012), and, in fact, very close to that of tropical seasonal forest. This suggests that species in central Amazon may be more drought resistant, possibly as a consequence of the nutrient-poor soils that select for slow-growing dense-wooded species, which invest in hydraulic safety (Reich et al., 2003). For a full-picture of the drought resistance of Amazonian forests, we need to understand the interplay between stomatal regulation, xylem minimum water potentials, and xylem hydraulic properties, which will define the hydraulic safety margins of species. However, drought resistance is strongly linked to a species’ hydrological environment, so studies that assess how Amazonian forests will respond to future drier and hotter climates need therefore to take topographical heterogeneity and hydraulic and rooting depth diversity into account (Brum et al., 2018). Floodplains of small rivers cover 1 million km², or 15% of the Amazon (Junk & Piedade, 1993), and 40–50% of central Amazon area (Nobre et al., 2011) that may comprise drought-sensitive valley forests if water levels drop so much that trees experience drought, whereas the species in uplands may be more resistant to drought and climate change.

Our results have shown how little knowledge we have about the variation in hydraulic properties of rainforests. Our sampling of 28 species of central Amazonian trees almost doubled the mean P_{50} values known for tropical rainforests. Most strikingly, a high range of variation in P_{50} was found within a few metres of vertical distance in the same forest, associated with different hydrological habitats. Drought tolerance based on a low P_{50} value has evolved several times within genera or families, thus indicating that hydraulic traits contribute to both diversification and species co-existence within tropical forests. The low P_{50} values documented in plateau species suggest a larger potential to resist drought than other tropical forests studied so far, and the large local variation in hydraulic diversity suggest that topographically linked hydraulic traits should be part of models to understand climate change.

Acknowledgements

This work was funded by a CAPES Science without Borders grant no. 078-2013 to FRCC and LP and CNPq PELD grant no. 403764/2012-2 to FRCC. The study also benefited from 15 yr of research conducted under the Brazilian Biodiversity Program (PPBio) and the Brazilian LTER (PELD), which established the vegetation plots used here. We acknowledge the invaluable help of Maria Aguida Lopes and Carolina Castilho in the field and laboratory and INPA’s department of reserves for logistical support. RO received a CNPq productivity scholarship and was supported by a NWO visiting grant. We also thank Lucy Rowland for revising the manuscript.

Author contributions

RSO, FRCC, LP designed research. RSO, FRCC, EvB, AdJ, PB, YA, FdVB, ECC, MVF, SG, ZTMG, MH, JS, JR-S, LP collected the hydraulics data. RSO, FRCC, EvB, AdJ, PRB, LP analysed the hydraulics data. FRCC performed the phylogenetic analyses. RSO and PRB wrote the first version of the manuscript with substantial input from FRCC and LP and all authors contributed to revisions.

ORCID

Flavia R. C. Costa [10] http://orcid.org/0000-0002-9600-4625
Marina V. Fagundes [10] http://orcid.org/0000-0002-9358-9488
References

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1 Embolism resistance curves of all species.

Table S1 Species used in the pairwise comparisons.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.