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1  |  INTRODUC TION

It is commonly expected that the closer species are phyloge-
netically, the more similar are their environmental requirements 
(Darwin, 1859; Inger & Greenberg, 1966). Such needs can, in many 
cases, make the individuals of these species compete for the limit-
ing resources (Duré & Kehr, 2004; Luiselli, 2006; Utida, 1953). The 
stronger the competition, the less likely these species will co-occur 

in the same environment, leading to the exclusion by competition of 
one or more species that are less efficient in using and obtaining re-
sources (Lotka, 1934; Zaret & Rand, 1971). However, if resources are 
not limiting, species with similar requirements may co-occur in the 
same area (Levine & HilleRisLambers, 2009; Palomares et al., 2016).

On a finer scale, it is common to presume that competition 
will make congeneric species unable to coexist in the same places 
(e.g., Duré & Kehr, 2004). However, due to evolutionary factors 
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Abstract
In this study, we test the hypothesis that, at a fine-scale, environmental variables 
influence differently sister species that live in sympatry and are phylogenetically 
closely related. We sampled two Amazonian anuran species, Phyzelaphryne miriamae 
and Phyzelaphryne sp., in 11 permanent sampling modules distributed across ~600 km 
in the Purus-Madeira Interfluve between 2013 and 2014. Using mixed generalized 
linear models, we found that the species have distinct environmental associations, 
which may facilitate their coexistence in sympatry. Phyzelaphryne miriamae was more 
frequent in environments with low precipitation and low water tables, suggesting 
this species is better adapted to live in drier places. In contrast, Phyzelaphryne sp. ap-
peared to be a generalist regarding to habitat and resource use. These patterns are in 
accordance with the hypothesis that environmental variables influence sister species 
differently on a fine scale. Phyzelaphryne miriamae is larger than Phyzelaphryne sp., 
which may make it more resistant to dehydration, allowing it to explore drier environ-
ments. In conclusion, our results are in concordance with the hypothesis that the evo-
lution of characteristics resulting from selection may have reduced competition for 
resources between closely related species, thus facilitating coexistence in sympatry.

Abstract in Portuguese is available with online material.
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that may shape the needs of each species in different ways, this 
pattern of competition may not be found in all groups, thus en-
abling the coexistence of closely related species (Corrêa Nogueira 
et  al.,  2019; Menin et  al.,  2005; Pianka,  1974). For example, at 
local scales, the influence of soil clay content on anuran abun-
dance differs between two closely related species of anurans with 
direct reproduction, being positive in the semi-arboreal Pristiman-
tis fenestratus and negative in the arboreal P. ockendeni (Menin 
et al., 2007). However, how environmental factors influence the 
distribution and abundance of most sympatric closely related spe-
cies of Amazonian frogs remains unknown, especially for those 
with terrestrial habits.

The heterogeneous landscape of the Purus-Madeira Interfluve 
(PMI) is ideal for evaluating the role of environmental factors on 
the abundance of sympatric Amazonian congeneric species. Its 
northern portion is covered by tropical lowland rainforest with 
emergent canopy over silty soils and has less seasonal tempera-
ture and a shorter dry season than the southern portion, which 
is covered mainly by more open rainforest with abundant palms 
over clayey soils, and has strongly seasonal temperatures and a 
prolonged dry season (Cintra et al., 2013; Emilio, 2007; IBGE, 1997; 
Martins et al., 2014).

The sister species Phyzelaphryne miriamae and Phyzelaphryne 
sp. have wide distributions along the Purus-Madeira Interfluve 
and inhabit leaf litter of unflooded forests in this region. To test 
whether environmental factors influence these species differ-
ently, we examined whether the abundance distributions of these 
sister species respond differently to minor variations in soil, veg-
etation, and precipitation variables (e.g., Jorge et  al.,  2016). We 
also investigated whether this response is independent of the 
presence of a sister species. Our results showed that only Phy-
zelaphryne miriamae tended to be associated with different levels 
of precipitation (i.e., divergences in habitat). This suggest that, at 
a finer scales, a species' response to environmental factors could 
enable congeneric species to co-occur in the same locations. 
While such differences would not avoid competition at locations, 
sites with higher precipitation and shallower water tables could 
provide a refuge for the smaller species and enable them to co-
occur in the region.

2  |  METHODS

2.1  |  Study species

Phyzelaphryne miriamae (Figure  1a) has a wide distribution in the 
Amazon (Fouquet et al., 2012; Simões et al., 2018), and is commonly 
found in the litter of primary forests and with different degrees of 
disturbance, including regrowth. The species reaches approximately 
20 mm in snout-urostyle length, and males are territorial and vocalize 
mainly between 18:00 and 20:00 on decaying logs or litter clusters. 
Phyzelaphryne sp. (Figure  1b) is an undescribed species measuring 
approximately 15 mm, and its distribution in the Amazon appears 
to be more restricted than that of P. miriamae (Fouquet et al., 2012). 
The species occurs along the entire Purus-Madeira Interfluve and 
adjacent areas, where it was observed vocalizing in the litter early in 
the morning (5:00–9:00) and the late afternoon (16:00–18:00). Re-
productive activity occurs in the rainy season. Females of both spe-
cies lay their direct-developing eggs in wet leaf litter; the embryos 
develop completely inside the eggs without a free-living aquatic 
stage. Details about their natural history are based on field observa-
tions by A. P. Lima and M. Ferrão, authors of the present study.

2.2  |  Study area and sample design

The Purus-Madeira Interfluve (PMI) is bounded to the north by the 
Amazon River, to the west by the Purus River, and to the east by 
the Madeira River, and covers approximately 15.4 million hectares 
(Fearnside et al., 2009, Figure 2). The water table is predominantly 
shallow (Schietti et al., 2016). Soils are mainly gleisols and plinthsols, 
characterized by poor drainage and predominantly consist of silt and 
clay (Cintra et al., 2013; Martins et al., 2014). In the northern portion 
of the PMI, tropical lowland rainforest with emergent canopy pre-
dominates, while in the southern portion there is predominance of 
open rainforest lowlands with palms (Emilio, 2007). Average annual 
rainfall varies from 2800 mm in the northern portion to 2100 mm in 
the south (Alvares et al., 2013; Fick & Hijmans, 2017). On a regional 
scale, the topography is flat and the elevation varies from 27 m 
above sea level in the north to 80 m in the south.

F I G U R E  1  Adult males of 
Phyzelaphryne miriamae (a) and 
Phyzelaphryne sp. (b), Purus-Madeira 
Interfluve, Brazil. The Phyzelaphryne 
miriamae's photograph is credited to 
Rafael de Fraga.
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30  |     MORENO ET AL.

Data were collected in 11 RAPELD permanent sampling modules 
(Magnusson et  al.,  2013) distributed along approximately 600 km 
in the MPI. Modules are located approximately every ~60 km along 
the BR-319, a federal highway that runs through the interfluve from 
north to south. They are positioned perpendicular to the highway 
and have two parallel 5-km tracks of separated by 1 km. A 250 m 
long plot is located every 1 km along each trail (Figure S1), totaling 5 
plots per track and 10 plots per module. Sampling of the focal spe-
cies was carried out in the rainy seasons (October–March) of 2013 
and 2014 through auditory and visual sampling during their after-
noon activity period (16–19 h). Plots were sampled once in each of 
two field campaigns.

Frogs were detected by visual and auditory surveys, but almost 
all detections of the focal species in this study were by auditory 
cues, which are much less affected by vegetation clutter than visual 
records. Each 250-m plot was divided in 10-m segments, and the 
presence or absence of the species was recorded in each segment, 
giving an abundance index varying from 0 to 25.

2.3  |  Environmental variables

To investigate the role of the environment on the distribution and 
abundance of Phyzelaphryne miriamae and Phyzelaphryne sp., we 
sampled four groups of environmental variables: (1) Soil physical 
parameters (clay and silt content), which were selected for retain-
ing more moisture than sandy soils (Juo & Franzluebbers,  2003), 
considering that both species lay eggs in the litter that is in con-
stant contact with the soil, and soil characteristics often influence 
the abundance of Amazonian anurans (e.g., Ferrão et al., 2018; Fer-
reira et  al.,  2018; Menin et  al.,  2007). (2) Forest structure (using 
basal area data as a proxy), selected because it is related to the entry 
of light, heat and wind inside the forest, which may influence the 
incidence of sunlight and air circulation in the surface layer of the 
litter, affecting the hydration capacity of frogs and their eggs; an 
example of how forest structure influences anuran abundance is 
given in Ferreira et al., 2018. (3) Depth of water table selected be-
cause, although they are animals sensitive to dehydration, terrestrial 

F I G U R E  2  Distributions and abundances of Phyzelaphryne miriamae and Phyzelaphryne sp. in 11 permanent sampling modules (M1–M11) 
in the Purus-Madeira Interfluve (More information about sample sites and design in BR-319 is available in https://ppbio.inpa.gov.br/en/Sites/​
BR319).
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frogs need ideal conditions for the development of their eggs, and a 
very shallow water table can result in saturation and waterlogging, 
impairing embryo development (Dayrell et  al.,  2021; Greenberg 
et al., 2017). (4) Average annual precipitation, which is also related to 
water availability. The first three variables were collected in situ, and 
precipitation data were obtained from the WorldClim database (Fick 
& Hijmans, 2017) using ~1 km2 resolution.

Soil samples were collected with an auger to a depth of 10 cm 
every 50 m along the central transect of each plot, giving six samples 
per plot. After collection, the samples were kept in sealed plastic 
bags for 2 to 5 days, dried at room temperature, and later mixed to 
form a composite sample for each plot (Cintra et al., 2013). Applying 
a standard total dispersion protocol (Donagema et al., 2011), the per-
centage of sand in the soil was estimated using a sieve with a mesh 
size of 0.053 mm, that of clay was determined by isolating 20 mm 
particles from other smaller particles, and proportion of silt was de-
termined by the difference from clay plus sand values.

The forest structure was represented by the total basal area of 
trees and palms (Schietti et al., 2016) sampled in three size classes: (1) 
in a strip (on the left side of the central line) of 250 × 1 m (~0.025 ha), 
counting all stems with diameter at breast height (DBH) ≥1 cm; (2) in 
a strip 250 × 20 m (~0.5 ha), counting all stems with DBH ≥10 cm; and 
(3) in a strip 250 × 40 m (~1 ha), counting all stems with DBH ≥30 cm 
(Magnusson et al., 2005).

Water table depth in each plot was based on the mean of seven 
measurements of distance to free water from the surface during the 
months of March, July, and November of 2011, March, August, Oc-
tober, and December of 2012 and March of 2013. The mean of the 
seven measurements was used to represent the depth of the water 
table in that plot. Positive water table depth indicates that the water 
level was above ground.

2.4  |  Data analyses

To investigate the variation in the indices of abundance of the two 
species along environmental gradients, we used generalized linear 
mixed models (GLMMs). In each model, the abundance of the species 
was modeled in relation to the abundance of its congeneric species 
(indicator of potential biotic interaction) and to environmental fac-
tors (clay, silt, precipitation, basal area, and water table depth) as fixed 
factors and module as a random factor to take into account the non-
independence of samples (Zuur et al., 2009). We excluded from the 
analysis the plots for which we did not have data on all environmen-
tal variables, and we assumed that species counts per plot followed a 
negative binomial distribution. The sample size used for this analysis 
consisted of 51 sample units, each of which represents a 250-m plot 
located at 1 km intervals along a 5-km trail extending perpendicularly 
from the highway. To avoid multicollinearity in our models, we checked 
the variance inflation factor (VIF) and the Pearson's correlation. There 
was no significant multicollinearity (Tables S1 and S2).

As the number of segments with a species was low in most plots, 
we used the sum of records in the two campaigns to represent the 

abundances of the species in each plot. This enabled us to use a 
negative binomial distribution in analyses, which would not have 
been possible with the mean. Individual counts for each sampling 
occasion are given in Table S3 of Data S1. Statistical analyses were 
undertaken in the R 4.0.5 statistical platform (R Core Team, 2021). 
To build the model, we used the “lme4” package (Bates et al., 2015). 
Maps were produced with QGis (QGIS Development Team, 2022).

3  |  RESULTS

The Phyzelaphryne species were associated with different environ-
mental conditions, in accordance with the hypothesis that environ-
mental variables influence sister species differently at a fine scale. 
The abundance of Phyzelaphryne miriamae was negatively associated 
with precipitation (Figure 3, b = −0.97, p = .0009), and there was evi-
dence of a positive relationship with deeper water tables (Figure S1, 
b = −0.56, p = .064), suggesting that this species tends to be found in 
places that do not flood in drier areas (the relationships with other 
environmental variables are shown in Figure S1). In contrast, Phyze-
laphryne sp. appeared to be a generalist regarding habitat; its abun-
dance was not related to any of the environmental characteristics 
used in our analyses (Table 1 and Figure S2).

4  |  DISCUSSION

Due to similarities in resource use, competition is expected to be 
greater between phylogenetically close species and that this process 

F I G U R E  3  Graphs showing the direct effects of precipitation 
on the abundance of Phyzelaphryne miriamae along the Purus-
Madeira Interfluve. The y-axis shows partial residuals to control for 
remaining predictors. Each point represents one sampling plot. The 
line represents model predictions.
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will lead to congeneric species generally not occurring in sympatry 
(Violle et al., 2011; Webb et al., 2002). However, some studies have 
questioned this prediction, showing that in some groups, closely 
related species occur in sympatry (Gambale et  al.,  2020; Moser 
et al., 2018; Zainudin et al., 2017). Although niche overlap increases 
interspecific competition, competitive exclusion depends on species 
differences in fitness-related traits (HilleRisLambers et  al.,  2012; 
Letten et  al.,  2017), and niche-related and fitness-related traits 
may not depend strongly on phylogenetic relatedness (Godoy 
et al., 2014).

Phyzelaphryne miriamae and Phyzelaphryne sp. are phylogenet-
ically close relatives (Fouquet et  al.,  2012) and often occur syn-
topically; on average, only Phyzelaphryne miriamae responded to 
environmental variables we tested, which indicates association with 
precipitation. Although our data and tests do not directly address 
this issue, the association of Phyzelaphryne miriamae with places 
with low precipitation and deep-water tables (i.e., dry conditions) 
means that it is less common in wetter places than Phyzelaphryne 
sp. Although we can only speculate, ecological character displace-
ment (Slatkin, 1980) may have contributed to the tolerance of Phy-
zelaphryne sp. to these conditions. Other sympatric anurans also 
show differences in use of environmental gradients on a fine scale. 
For example, stream water discharge in the forests positively influ-
ences the abundance of the terrestrial Atelopus manauensis but neg-
atively Allobates sumtuosus (Jorge et al., 2016). Soil silt content in the 
Purus-Madeira Interfluve positively influences the distribution and 
abundance of the Scinax ruberoculatus (Ferrão et al., 2018), but has 
a negative effect on the abundance of Allobates femoralis (Ferreira 
et al., 2018).

In this context, it is possible that natural selection may favor in-
dividuals of Phyzelaphryne sp. with traits that allowed them to ex-
ploit environments not used by Phyzelaphryne miriamae as has been 
suggested for other taxa (Komine et al., 2019; Nakano et al., 2020; 
Simberloff et al., 2000). Phyzelaphryne miriamae is larger than Phy-
zelaphryne sp., which may make it more resistant to dehydration, 
allowing it to exploit drier environments (Chown & Gaston,  1999; 

McKechnie & Wolf, 2010; Van Berkum et al., 1982). However, this 
species is less abundant in areas with high rainfall and in locations 
subject to waterlogging and flooding.

Other factors may be involved in the co-occurrence of the two 
species. For example, there is evidence of males of both species call-
ing during twilight, but those of Phyzelaphryne miriamae call more 
frequently between 18:00 and 20:00 hours and generally exposed 
on perches on the ground, whereas males of Phyzelaphryne sp. call 
hidden within the leaf litter, and more frequently in the morning 
(5:00–9:00) and mid-afternoon to early twilight (16:00–18:00). Pref-
erence for different times for vocalization is a fundamental factor 
to avoid unfavorable acoustic overlap between species of frogs 
(Krause, 1993; Santos Protázio et al., 2015), but the strong overlap 
between the two species and the lack of a negative relationship be-
tween the abundances of them after taking into account the envi-
ronmental variables do not support this hypothesis.

In conclusion, despite being closely related phylogenetically and 
having broadly overlapping distributions, Phyzelaphryne miriamae 
responded to environmental characteristics, which may explain the 
lack of evidence of a negative relationship with the abundance in-
dices of the Phyzelaphryne sp. Although the species differ in their 
degree of response to environmental variables, they are frequently 
found in the same plots. While competition theory predicts that one 
of two competing species will be eliminated in the long term, pop-
ulations are finite and environmental and demographic conditions 
change regularly, so that species may co-occur in some locations 
for a long time despite their coexistence being unstable (Schreiber 
et al., 2023), especially if wider tolerance for environmental condi-
tions provides a refuge for the weaker competitor, or they may seg-
regate spatially due to ecological drift and/or dispersal rather than 
competitive exclusion (Hubbell, 2001; Vellend, 2016).
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TA B L E  1  Summary of generalized mixed linear models examining the effects of environmental variables and the abundance indices of 
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