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A B S T R A C T

Owing to major technological advances, bioacoustics has become a burgeoning field in ecological research
worldwide. Autonomous passive acoustic recorders are becoming widely used to monitor aerial insectivorous
bats, and automatic classifiers have emerged to aid researchers in the daunting task of analysing the resulting
massive acoustic datasets. However, the scarcity of comprehensive reference call libraries still hampers their
wider application in highly diverse tropical assemblages. Capitalizing on a unique acoustic dataset of> 650,000
bat call sequences collected over a 3-year period in the Brazilian Amazon, the aims of this study were (a) to
assess how pre-identified recordings of free-flying and hand-released bats could be used to train an automatic
classification algorithm (random forest), and (b) to optimize acoustic analysis protocols by combining automatic
classification with visual post-validation, whereby we evaluated the proportion of sound files to be post-vali-
dated for different thresholds of classification accuracy. Classifiers were trained at species or sonotype (group of
species with similar calls) level. Random forest models confirmed the reliability of using calls of both free-flying
and hand-released bats to train custom-built automatic classifiers. To achieve a general classification accuracy of
~85%, random forest had to be trained with at least 500 pulses per species/sonotype. For seven out of 20
sonotypes, the most abundant in our dataset, we obtained high classification accuracy (> 90%). Adopting a
desired accuracy probability threshold of 95% for the random forest classifier, we found that the percentage of
sound files required for manual post-validation could be reduced by up to 75%, a significant saving in terms of
workload. Combining automatic classification with manual ID through fully customizable classifiers im-
plemented in open-source software as demonstrated here shows great potential to help overcome the ac-
knowledged risks and biases associated with the sole reliance on automatic classification.

1. Introduction

Bioacoustics is a rapidly expanding field and of increasing im-
portance for informing conservation projects. This is largely due to
recent technological advances and the rising number of long-term
monitoring programs which are being established for a number of taxa
(Dickinson et al., 2010; Kershenbaum et al., 2014), including birds
(Gregory et al., 2005), reptiles (Sewell et al., 2012), arthropods (Penone
et al., 2013) and bats (Barlow et al., 2015). Interest in bat monitoring
has increased over the last decades since bats have been acknowledged

to provide important ecosystem services such as pest control (Boyles
et al., 2013; Puig-Montserrat et al., 2015) and have been identified as
good bioindicators of ecosystem health (Cunto and Bernard, 2012;
Jones et al., 2009).

Autonomous ultrasound detectors have proven essential for opti-
mizing surveys of aerial insectivorous bats worldwide (Law et al., 2015;
Murray et al., 1999). In the Neotropics, in contrast to phyllostomid bats,
aerial insectivores are rarely captured in mist-nets (MacSwiney et al.,
2008) and therefore, although they represent a high proportion of
Neotropical bat diversity (Jung and Kalko, 2011), the ecology of many
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species remains elusive and their echolocation calls poorly described
(e.g. López-Baucells et al., 2014; López-Baucells et al., 2017a). In fact,
despite enormous recent advances in recording technology and equip-
ment, comprehensive regional bat reference call libraries are currently
lacking for much of the tropics (Madhukumar Menon et al., 2018;
Walters et al., 2013).

Reference call libraries containing echolocation calls from a wide
range of locations and habitats are crucial to reliably identify bat spe-
cies acoustically. Although many species have distinctive echolocation
calls, those of others can be very ambiguous due to producing very
similar calls with overlapping characteristics (Russo and Voigt, 2016).
Moreover, weather conditions (e.g. Lawrence and Simmons, 1982),
geographical location (e.g. López-Baucells et al., 2017b), sex (e.g.
Puechmaille et al., 2014), body condition (e.g. Puechmaille et al.,
2014), age (e.g. Jones and Kokurewicz, 1994), reproductive status (e.g.
Jones and Ransome, 1993) or habitat structure (e.g. Pedro and
Simonetti, 2014) are all factors that contribute to substantial variation
in call structure within species.

Different algorithms such as discriminant function analysis and
random forest have already been used to automatically classify bat
pulses (Armitage and Ober, 2010; MacSwiney et al., 2008; Russo and
Jones, 2002; Walters et al., 2012; Zamora-Gutiérrez et al., 2016).
However, substantial controversy still exists around the trade-off be-
tween the use of automatic classifiers versus manual species identifi-
cation (Kershenbaum et al., 2014; Russo and Voigt, 2016). While the
former allows for the rapid analysis of a large number of recordings
using an objective and repeatable protocol, manual identification pro-
vides more accurate, yet highly subjective and non-reproducible results,
apart from being considerably more time-consuming (Kershenbaum
et al., 2014). Unfortunately, even though considered a vital analysis
step when relying on automated classifiers, posterior visual cross-
checking by an expert is all too often neglected (Russo and Voigt,
2016). Moreover, no study so far has quantified the potential time
savings from using automatic classifiers as a function of the classifica-
tion accuracy threshold adopted. Automatic classifiers have been cri-
ticised because of the inability to distinguish among species with si-
milar calls, and because their algorithms are typically trained with calls
from hand-released bats (Russo and Voigt, 2016). It has been suggested
that the use of hand-release calls can compromise the reliability of
species identifications since these calls might be strongly affected by
handling-related stress of the animal (Szewczak, 2000).

Given that automatic classifiers are now widely available, there is a
substantial risk that beginners solely rely on automated species iden-
tification without proper manual post-validation, which can result in
incorrect identifications and thus wrong management decisions and
negative conservation outcomes (Russo and Voigt, 2016). Automatic
classifiers were first applied to bat species identification in temperate
areas as a direct consequence of the massive acoustic datasets that are
now typically accumulated using passive bat recorders (Russo and
Voigt, 2016). However, the scarcity of suitable reference call libraries
and the controversy around automatic vs. manual classification still
hamper their wider application, especially in mega-diverse tropical
regions.

The present study is the first to attempt to test the suitability of
combining automatic classifiers trained with pre-identified recordings
of free-flying bats obtained in the study area (which are much easier to
obtain than reference calls from hand-released bats) with posterior
manual validation (Fig. 1). This approach addresses the aforementioned
issues of geographic variability, only classifies calls to the taxonomic
level that the researcher can visually confirm with certainty and gives
the user full control and flexibility concerning implementation of the
algorithm. Capitalizing on a unique acoustic dataset collected over a 3-
year period in the Central Amazon, here we use random forest, a ma-
chine learning algorithm that has performed well in previous bat
acoustic studies (Bas et al., 2017; Zamora-Gutiérrez et al., 2016), to
automatically classify aerial insectivorous bats. We evaluated the

discriminative ability of the classifier by training it with a) previously
identified calls from free-flying bats and those of hand-released bats;
and b) datasets of different sizes of reference echolocation calls. To
effectively combine the advantages of an automatic classifier with those
of manual identification requires establishing a “correct classification
probability” threshold below which a recording will need to be visually
post-validated. Thus, to evaluate how acoustic studies could be opti-
mized in terms of time commitment for the analyses, we also calculated,
for different thresholds, the percentage of sound files from the full
dataset that would need to be visually post-validated.

2. Material and methods

2.1. Study site

The study was conducted at the Biological Dynamics of Forest
Fragments Project (BDFFP), a large-scale fragmentation experiment
located ~80 km north of Manaus (Brazil) in the Central Amazon
(2°20′S, 60°6′W), aimed at assessing the impacts of fragmentation on
tropical forest communities (Laurance et al., 2011). Beginning in 1979,
the BDFFP established 11 experimental forest fragments, which at the
time of isolation were separated from continuous forest by distances of
80–650m. Nowadays the fragments are surrounded by a matrix of
secondary forest at varying successional stages (Laurance et al., 2017).
The area is currently composed of a mosaic of unflooded lowland forest
(80–160m a.s.l.), pastures and secondary regrowth forest. Primary
forest reaches 30–37m in mean canopy height, with isolated trees up to
55m tall (Laurance et al., 2011). Annual rainfall varies between 1900
and 3500mm per year, with a rainy season between November and
June and a dry season from July to November (Ferreira et al., 2017),
while mean annual temperature usually oscillates between 26 and 30 °C
(de Oliveira and Mori, 1999).

2.2. Mist-netting and hand-release recordings

Intensive bat sampling was carried out in the context of a larger
project assessing fragmentation effects on bats in the BDFFP landscape
over a period of four years (2011–2014), using both ground- and ca-
nopy-level mist-netting. Sampling covered various types of rainforest
habitats including continuous primary forest, forest fragments and
secondary regrowth (Farneda et al., 2015; Rocha et al., 2017a; Rocha
et al., 2017b). Sporadic sampling was also done over temporary lakes,
small ponds and streams, as well as campsites, roads, and pastures
(Torrent et al., 2018). Mist-netting was usually conducted from 18:00 to
00:00, except for some lakes where high capture rates sometimes re-
quired closing the nets earlier. Captured bats were identified using
different keys (Gardner, 2007; Lim and Engstrom, 2001).

Echolocation call recordings of captured aerial insectivorous bats
were made with a Pettersson D1000 bat detector (Pettersson Elektronik,
Sweden), using 384 kHz sampling frequency in full spectrum (16-bit
resolution) and no triggers or filters. Release calls were obtained after
hand release of bats in either clearings or open areas within the forest
(N=722 individuals). The detector was placed 5–10m from the point
of release (depending on the species) and once the individual was in
flight, the microphone was pointed towards it to record as many search
pulses as possible. For analysis, all pulses recorded immediately after
release were discarded, as were overloaded calls, those too faint (for
which it was impossible to distinguish the shape from the background
noise), social or stress calls, calls emitted in passive hunting mode and
feeding buzzes.

2.3. Acoustic monitoring dataset

A total of 50 sites across the BDFFP landscape were acoustically
surveyed 2012–2014, including the same sites used for mist-netting as
described in Rocha et al. (2017a, 2017b). These comprised different-
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sized forest fragments (N=8), continuous forest (N=9), forest edges
(N=11), secondary forest (N= 11) and forest clearings (N=11). At
each recording point, an automatic SM2Bat detector with an omnidir-
ectional ultrasonic SMX-US microphone (Wildlife Acoustics, Inc., USA)
was placed ca. 1.5m above the ground. Acoustic surveys covered both
dry and wet seasons and were conducted twice per season. Detectors
were set to automatically record bats from 18:00 to 06:00 in real time
with a full spectrum resolution of 16 bit, a high-pass filter set at fs/32
(12 kHz), an adaptive trigger level relative to noise floor of 18 SNR, and
for periods of five consecutive nights per site. All recordings were split
into five-second long sequences. Within such a five-second sound file, a
bat pass was defined as a sequence with a minimum of two recognizable
echolocation pulses per species (Appel et al., 2017; Millon et al., 2015;
Torrent et al., 2018). This unit was used as a measure of activity levels.
A total of 1,088,940 sound files were acquired during the study period
in which ~650,000 bat passes were identified.

2.4. Echolocation call analysis

Kaleidoscope v.4.0.4 software (Wildlife Acoustics Inc., USA) was
used to visualize and manually classify all bat passes from the acoustic
monitoring dataset. Call sequences were manually identified to species/
sonotype level as in previous studies (Silva and Bernard, 2017; Torrent
et al., 2018). For the purpose of this study, a sonotype was defined as a
category that grouped species with similar calls when it was not pos-
sible to clearly assign a call to a particular species (Table S1). Call
identification was based on a series of acoustic features and standard
measurements - call shape (CS), frequency of maximum energy (FME),
start (SF), end (EF), maximum (MaxF) and minimum (MinF) frequency
and duration (Dur) - and followed the echolocation key in López-
Baucells et al. (2016). Moreover, recordings were also compared with a
local reference call library compiled for the same study area over the
course of the whole 3-year sampling period. Call sequences or pulses
that were too faint for reliable identification (< 10 dB difference in
power between background noise and FME of the echolocation pulses)
were discarded from the analysis.

In addition to this manual identification, the same recordings were
also subjected to an automatic identification process whereby pulse
measurements were automatically extracted (~4,788,000 pulses) using
SCAN'R (Snapshot Characterization and Analysis Routine) v1.7.4.
(Binary Acoustic Technology, USA). Settings were adjusted as specified
in Table S2 to minimize the confusion between noise and bat calls. The
following measurements were extracted for all pulses: Duration (Dur,

ms), Maximum frequency (Fmax, kHz), Minimum frequency (Fmin,
kHz), total bandwidth (BW, ms), Frequency at strongest sound pressure
level (Fdom, kHz; equivalent to FME or Frequency of maximum energy),
percentage in duration of Fdom (Ldom, %), High end of characteristic
frequency (HiFc, kHz; equivalent of the knee frequency), Low end of
characteristic frequency (LowFc, kHz), global slope of the call (Slope,
kHz/ms), curvature (Curv) (SCAN'R, 2009). After extraction, a Principal
Component Analysis (PCA) was performed, separately for each bat fa-
mily, in order to visualize how different species/sonotypes clustered
based on the similarity of their acoustic parameters.

2.5. Supervised machine learning

Supervised classification based on a machine learning algorithm
(random forest, RF) was conducted using the R package “caret”
(Classification and Regression Training) (Kuhn, 2008). Random forest
has performed well in several bat studies and is currently the preferred
machine learning algorithm for the classification of bat echolocation
calls (e.g. Bas et al., 2017; Zamora-Gutiérrez et al., 2016). Random
forest models are built by comparing and averaging decision tree
classifiers that are designed by bootstrapping random samples of the
training dataset (Breiman, 2001). Among its advantages, random forest
is not affected by heteroscedasticity, is not strongly affected by outliers
or low-informative variables, and is relatively easy to use computa-
tionally (Olden et al., 2008), which makes it the method of choice for
large acoustic datasets. In our case we selected three separate 10-fold
cross-validations to tune the training model, with a final value of mtry
of 2 (chosen for their highest accuracy) (Breiman, 2001).

2.5.1. Data preparation
All pulse measurements were centred and scaled (Kuhn, 2008;

Mukherjee and Manna, 2006) to make them comparable. The global
dataset (~4,178,000 pulses) was split into different training and testing
subsets. Training datasets were composed of 50, 100, 500, 1000 and
2000 reference pulses per species/sonotype, which were randomly se-
lected from all recordings (except for Rhynchonycteris naso and Fur-
ipterus horrens, for which we only had data from 12 and 1000 pulses
respectively).

2.5.2. Data classification
Using the 1000-pulse training dataset, we evaluated classification

accuracy and predictive power of the RF algorithm. Evaluation of
performance of the training algorithm on the testing datasets was based

Fig. 1. Diagram illustrating the classification process from automatic classification to posterior visual validation. Squares represent the datasets and selections of
recordings; arrows and red text represent the analytical processes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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on the performance metrics accuracy and kappa. Kappa measures inter-
rater agreement for qualitative items (usually considered to be more
robust than other measures as it also takes into account the agreement
occurring by chance) (Viera and Garrett, 2005). The same metrics were
then additionally assessed for the different-sized training datasets,
ranging from 50 to 2000 pulses/sonotype. Variable (feature) im-
portance scores were also obtained using the R package caret (Kuhn,
2008). The contribution of each variable is measured as follows: For
each tree, the prediction accuracy is recorded removing each predictor
variable. The average of the differences between all accuracies is nor-
malized by the standard error.

Classification success for each species/sonotype was evaluated using
1) a RF model trained with the 2000-pulse dataset based on calls of
free-flying bats and 2) a RF model trained with the complete reference
call library based on hand-release calls compiled during the whole 3-
year study period. The latter unfortunately included< 2000 pulses for
many species (Table S3) due to the inherent difficulty to capture en-
ough individuals from which to obtain release calls. Both training da-
tasets were classified using the same species/sonotype labels in order to
make both classifications comparable. Among the whole set of metrics
commonly used to evaluate classifiers, we selected sensitivity and posi-
tive predictive value (PPV) as the most conservative for evaluating the
performance of the acoustic classification task because they highlight
the true positives in the classification process (Jennings et al., 2008)
(Fig. S1). While sensitivity is the proportion of calls correctly identified
as one species/sonotype out of the total number of calls, positive pre-
dictive value is the proportion of calls correctly identified as one spe-
cies/sonotype out of the total number of calls identified as such. Other
metrics such as specificity or negative predictive value highlight the
certainty of true negatives, which is quite unreliable in multicategory
classifications (Fig. S1).

The estimation of the percentage of recordings that would need to
be manually checked depending on several classification accuracy
thresholds was also based on the 2000-pulse training dataset.
Classification accuracy thresholds considered in the analyses ranged
from 60 to 95%, in 5% increments.

3. Results

3.1. Acoustic discrimination at family level

A total of 27 aerial insectivorous bat species from six different fa-
milies were captured and recorded during the study period, re-
presenting 20 different species/sonotypes (Table S1). PCAs based on
acoustic features showed that, for mormoopids, automatic parameter
extraction often resulted in measurement values coming from different
harmonics (Fig. 2). Pteronotus alitonus and P. rubiginosus clearly sepa-
rated as distinct clusters and, although less evident, P. personatus and P.
gymnonotus were also quite distinctly separated. Similarly, species with
modulated calls such as vespertilionid or furipterid bats were split in
rather well-defined bands. In contrast, except for Saccopteryx bilineata
and S. leptura, emballonurid and molossid bats showed less defined
limits between groups.

3.2. Minimum training dataset size and variable importance

We found that, in order to achieve a minimum general accuracy of
~85%, a training dataset of> 500 pulses per species/sonotype was
required (Fig. 3A). Classifications undertaken with training datasets
based on only 50 pulses showed large variation in accuracy, reaching
values below 75%. Classification performance was consistent between
accuracy and kappa metrics. “High end of characteristic frequency”
(equivalent to the frequency of the knee) was the most important
variable in the RF model, followed by “Maximum frequency” and
“Dominant frequency” (equivalent to the frequency of maximum en-
ergy). However, except for “Length of the dominant frequency”,

“Duration”, “Bandwidth” and “Curvature”, all the variables showed
quite similar importance values (Fig. 3B).

3.3. Classifier performance at species/sonotype level

Algorithm performance varied substantially among species/sono-
types (Table S4). Seven had values above 90% for both sensitivity and
PPV (P. alitonus, P. rubiginosus, Vespertilionidae 1, Myotis nigricans,
Centronycteris maximiliani, Myotis riparius and S. bilineata), indicating
not only that most of the recordings were correctly assigned, but also
that few other recordings were confused with these species (Table 1,
Table S4). On the other hand, for other species such as Furipterus hor-
rens, Emballonuridae 1, P. gymnonotus, Molossidae 3, Promops spp. and
P. personatus there were considerable differences between metrics. For
these, we found a low number of false negatives but a large number of
false positives (low PPV). Molossidae 1 and 2 were the sonotypes with
poorest levels of correct identifications, and R. naso (for which we had a
very limited number of recordings) was the only species for which the
classifier completely failed. Comparing the RF models trained with calls
from free-flying vs. hand-released bats, the former nearly always out-
performed the latter (Table 1). Pteronotus alitonus and P. rubiginosus
obtained a similar proportion of correct identifications in both HR and
FF algorithms, and Molossidae 3 was the only sonotype for which
higher sensitivity scores were obtained using calls from hand-released
bats, although it also had lower PPV.

3.4. Combining automatic classification with manual post-validation

The total number of files to be visually confirmed after automatic
classification ranged from ~20%, when the desired accuracy threshold
was set to 60%, to ~30% when it was set to 95% (Fig. 4). Following the
same pattern found for species/sonotype-specific predictive perfor-
mance (Table 1), for some categories the number of files to be post-
validated did not differ substantially for the different accuracy thresh-
olds mentioned previously, while for others, this percentage varied up
to 30%. Only in few cases was there marked variation depending on the
chosen accuracy threshold (from 40 to 90% for Emballonuridae 1 and
P. personatus).

4. Discussion

Our analyses suggest an inexpensive and relatively user-friendly
approach (Fig. 1) to automatically classify large amounts of bat echo-
location data, followed by visual post-validation of a reduced propor-
tion of the original acoustic dataset. This approach overcomes the ac-
knowledged risks and biases associated with the exclusive reliance on
current automatic classifiers (Russo and Voigt, 2016). Using recordings
obtained under real field conditions from a 3-year-long study in the
Central Amazon, we confirmed the reliability of using locally-recorded
echolocation calls from free-flying bats to train a custom-built classifier
that automatically identifies the calls of a large subset of the species/
sonotypes in the local assemblage with high accuracy (> 90%) and
leaves the rest to be manually classified. This automatic pre-classifica-
tion reduces the total number of recordings to be visually inspected,
therefore optimizing the classification process. This equates to con-
siderable time savings, especially in the case of projects that accumulate
massive acoustic data. However, due to the customizable nature of this
approach, the advantages of using recordings from free-flying bats
hinge on manually pre-identifying a decent amount of calls from free-
flying bats using release calls as references, literature and echolocation
keys. This obviously entails the risk of including misidentified calls as a
source for training the algorithm, a problem we overcame by restricting
the classification of the recordings to easily distinguishable species/
sonotypes, therefore avoiding misidentifications.

Being non-intrusive, automated recording systems and soundscape
studies have recently become very popular, and have considerably
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improved our knowledge about the natural history of elusive bat spe-
cies, anthropogenic impacts and wildlife conservation in habitats where
sampling by traditional methods such as mist-netting would be in-
efficient or unfeasible (Kubista and Bruckner, 2017). However, in de-
veloping countries where funding is particularly limited, the wide-
spread use of bioacoustics is still severely hampered by its elevated
costs and cost-effective alternatives need to be found quickly. This has
inspired a new trend towards developing user-friendly detectors and
automatic classifiers which are fully customizable at reduced cost (Hill
et al., 2018; Whytock et al., 2017). Reliance on self-built classification
algorithms could greatly contribute to studies in regions for which no
automatic classifier is available as part of commercially available
software packages.

4.1. Minimum training dataset size and variable importance

We identified the minimum number of pulses that should be used in
the training dataset in order to achieve general accuracy levels between
75 and 95%. Our results show that training the algorithm with 500
pulses per species/sonotype results in average classifier perfor-
mance> 85%. However, this reference value should be interpreted
carefully as it depends on whether the species that are most frequently
detected in a region are also those whose echolocation call character-
istics are more clearly distinct and thus the species more easily

identifiable or not. In our case, the most common species (P. rubiginosus,
Myotis nigricans and M. riparius), all easy to identify, might be positively
biasing general accuracy, thus masking lower accuracies for the re-
maining categories (Biscardi et al., 2004).

The variables that contribute most to separating species may not be
the same in all assemblages. For example, Monadjem et al. (2017)
found that call duration represented one of the most relevant para-
meters to distinguish between species, while in our study, we obtained
higher importance weights for several other variables. This probably
reflects the diversity of pulse shapes and structures found in Neotropical
aerial insectivorous bats. By including different variables in the algo-
rithm, one can probably achieve better classification performance in
such highly diverse areas (Walters et al., 2013).

4.2. Classifier performance at species/sonotype level

Random forest performed very well with our dataset, confirming its
great potential for analysing bat acoustic datasets. Among the available
machine learning algorithms, random forest has already been success-
fully used in automatic species classification for bats (Armitage and
Ober, 2010; Zamora-Gutiérrez et al., 2016) and other taxa such as birds
(Briggs et al., 2009) and dolphins (Barkley et al., 2011). We obtained
similar mean accuracies to those found in previous studies, although
results varied among species and families (e.g. Britzke et al., 2011;

Fig. 2. Principal component analyses (PCA) based on measurements of a series of acoustic parameters (see Methods) that were automatically extracted with SCAN'R,
and manually classified to species/sonotype level following López-Baucells et al. (2016).
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MacSwiney et al., 2008; Pio et al., 2010; Zamora-Gutiérrez et al., 2016).
For Neotropical bats, large variability in predictive power is found for
Vespertilionidae and Molossidae, while Emballonuridae and Mormoo-
pidae are usually more accurately identified (Zamora-Gutiérrez et al.,
2016). Previous studies have evaluated the performance of automatic
algorithms for classifying bat calls at species, genus, family or guild
level (Vassilios et al., 2017; Zamora-Gutiérrez et al., 2016). However, it
is now widely accepted in the scientific community that automatic
classification must be used cautiously (Monadjem et al., 2017; Russo
and Jones, 2002; Russo and Voigt, 2016). In this study, we aimed to
optimize the classifiers not at species level but using sonotypes. Al-
though classifying all calls to species level would be ideal, using so-
notypes may be sufficient in most cases, obviously depending on a
project's specific aims (Armitage and Ober, 2010; Redgwell et al.,
2009).

For seven out of 20 species/sonotypes we obtained very high values
(> 90%) for both sensitivity and PPV, proving that our random forest
algorithm could be used with great confidence to detect and auto-
matically classify them in our recordings. Very few false positives and
false negatives were found, indicating that our classifier neither gets
them wrong, nor ignores them when they are present (see Table 1).
These species are also the most predominant in our dataset, which turns
our classifier into a great tool due to its potential to greatly reduce the
number of files to be manually analysed (Andreassen et al., 2014). One
of the main reasons to explain the classification failure of some cate-
gories is the limited capacity of SCAN'R to detect and characterize
pulses of different lengths (our SCAN'R pulse detection settings were

more suitable for long pulses). This will certainly improve soon with
new technological advances, or alternatively, could be better im-
plemented through R sound packages. Previous studies have exclusively
used accuracy as a means of evaluating algorithm performance and
predictive capacity (i.e. Wordley et al., 2014; Zamora-Gutiérrez et al.,
2016). However, other more conservative metrics such as positive
predictive value and sensitivity are often neglected. We encourage de-
velopers of algorithms and researchers to better scrutinize classifier
performance by focusing on these more reliable metrics.

4.3. Classifier trained with calls from free-flying versus hand-released bats

We compared the performance of the random forest classifier
trained with calls from free-flying versus hand-released bats, using only
data collected during the 3-year-period of the project. Classifier per-
formance was substantially better using recordings from free-flying
bats, probably due to the low number of recordings from hand-released
bats for most of the species. In this regard it is important to mention
that the effort required to compile complete reference call libraries of
good quality using hand-released bats and which cover different en-
vironmental situations is titanic (O'Farrell et al., 1999). In fact, this has
probably discouraged many researchers from developing their own
classifiers so far.

Globally, echolocation call libraries are incomplete, especially in
understudied regions such as most of the tropics (Aguilar, 2017). Due to
species elusiveness, whispering behaviour or rarity, call libraries are
usually only built with calls from a few hand-released individuals

Fig. 3. A) Classifier performance, evaluated as general accuracy and kappa, for a random forest model built with different-sized training datasets (50 to 2000 pulses/
sonotype). The x-axis has been scaled to allow better visualization. Dots are medians, boxes 25% and 75% quartiles and whiskers denote the range. B) Importance of
each variable in the random forest model trained with 2000 reference pulses per species/sonotype.
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(Gager et al., 2016; Monadjem et al., 2017; Zamora-Gutiérrez et al.,
2016). Although some studies have not found marked differences in
automatic classifiers trained with data from distant regions (e.g.
Zamora-Gutiérrez et al., 2016), other authors highlight the importance
of taking these differences into consideration (Barclay et al., 1999;
López-Baucells et al., 2017b; O'Farrell et al., 2000; Thomas et al.,

1987). Although we urge and support the compilation of comprehen-
sive reference call libraries, our study suggests that training automatic
classifiers with manually identified free-flying bats is a very valid op-
tion if it is cautiously used in conjunction with conservative classifi-
cation criteria. As stressed by Jakobsen et al. (2013), it is of vital im-
portance to record calls from naturally behaving bats in the wild and

Table 1
Performance of the random forest classifier for each species/sonotype based on calls from either free-flying (FF) or hand-released (HR) bats. Classification perfor-
mance is ranked according to sensitivity and positive predictive value (see Methods for an explanation of the rationale underpinning this selection) as> 90% (dark
green), 80–90% (olive green), and< 80% (light green).

Fig. 4. Percentage of files requiring visual post-va-
lidation as a function of the desired accuracy
threshold for identification acceptance. Shaded area:
Percentage of the whole dataset. Coloured lines:
Percentage for each family; Species acronyms are as
given in Table 1. Analysis was based on a random
forest model, trained with 2000 pulses per species/
sonotype (with the exception of Rhynchonycteris naso
and Furipterus horrens, for which we had fewer re-
cordings, see Methods).
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use these recordings to improve classifier performances.

4.4. Combining automatic classifiers with manual post-validation

No classifier has proved to provide 100% accuracy so far (Russo and
Voig,t 2016). Therefore, some authors have recommended to manually
validate all sound files (Kubista and Bruckner, 2017), which inevitably
annihilates or at least greatly reduces the advantages of having auto-
matic algorithms. In other cases, posterior cross-validation is com-
pletely neglected, which greatly affects the reliability of the study.
According to our findings, even when aiming for an accuracy threshold
of 95%, the remaining amount of data to be visually validated could be
reduced by up to 75%. This represents a substantial saving in terms of
workload.

Different acoustic analysis software with automatic classifiers has
been released on the market in the last decades: batIdent (ecoObs,
GmbH, Nürnberg, Germany), Kaleidoscope (Wildlife Acoustics, USA),
Sonochiro (Sonochiro, France), Sonobat (Sonobat, USA), SCAN'R
(Binary Acoustic Technology, USA) and more recently Tadarida (Bas
et al., 2017), multiplying the options available to researchers to use
technological advances to aid acoustic species identification. The best
option for analysing the massive amounts of acoustic data generated by
the latest recording devices without compromising the reliability of
results, inevitably, lies in finding the right balance between automatic
classification and manual cross-validation. This is especially true for
threatened or rare species for which false positives will have greater
conservation impact (Clement et al., 2014).

4.5. Recommendations for effectively combining automatic and manual
classification

Our approach, while highly versatile, requires that researchers
must: A) have good knowledge about the bat fauna of the region
(avoiding novice errors that result in misidentifications or passive ac-
ceptance of the results from any classifier and acknowledging regional
and habitat variation), B) work together with experts on local call li-
braries and manual identifications, C) be skilled in programming in R or
similar software packages, thus being able to adjust machine learning
algorithms to particular situations, D) take into consideration both
sensitivity and positive predictive values rather than global accuracies,
E) define their own sonotypes conservatively (preventing classification
to taxonomic levels that are not even visually distinguishable). We also
recommend to base selection criteria on the PPV as the most con-
servative metric of performance (Armitage and Ober, 2010) since false
negatives are always better than false positives.

5. Conclusions

Further research should focus on isolating and analysing individual
call sequences instead of pulses, and analyse the whole sonogram rather
than the pulses one by one (Damoulas et al., 2010; Kershenbaum et al.,
2014; Ren et al., 2009). Our study shows how open-source statistical
tools and software can be used to develop algorithms attaining similar
levels of accuracy as commercial classifiers. However, their potential
for wider application should be further explored with echolocation
datasets from other regions. We also demonstrated that training algo-
rithms with recordings from free-flying bats is possible and advisable if
designed to classify recordings at sonotype level. This approach is not
conceived to replace the use of calls from hand-released bats, but to aid
in data management and classification with massive datasets. Com-
bined with the availability of new low-cost automatic detectors and
powerful supervised machine-learning algorithms, our analysis ap-
proach opens new opportunities for long-term monitoring programs to
be undertaken by researchers in megadiverse regions where echoloca-
tion libraries are still scarce. In fact, in these regions, extended acoustic
bat monitoring is urgently needed, and fortunately, the technical and

analytical tools are now at hand to do so.
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