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A B S T R A C T

Impacts on tropical rivers affect biodiversity and ecosystem services negatively impacting many economic ac-
tivities, such as small-scale fisheries. Ecosystem-based fisheries management (EBFM) has been applied to
maintain ecosystem flows and services for fisheries, to support social and economic sustainability. The suitable
employment of the EBFM approach requires the understanding of the ecosystem by quantifying the trophic
interactions and simulating environmental and fishery alterations. In this paper, to evaluate the early changes
resulting from damming for hydroelectric power generation on the Madeira River food web, we compared two
Ecopath models: before (pre) and after (post) the dam construction in November 2011. We analyzed the changes
using several ecosystem attributes: fish biomass, catches, exchange of matter/energy, transfer efficiency, and,
especially, the potential direct and indirect relationships among species. We also carried out simulations of the
increase in the catches of several stocks in the models. Our analysis allowed us to identify several differences
between before (2010–2011) and post (2012–2013) periods: an increasing of the ecosystem’s respiration and
consumption, a reducing of net production, transfer efficiency among Trophic Levels (TL), and total biomass of
fish species by half. There was also an exchange of key species that were previously mostly non-fish compart-
ments and became top predator fish, including B. rousseauxii, which was considered a key species in both per-
iods. Fish species with an intermediate TL had their biomass reduced via top-down control, especially because of
the increased biomass of non-migratory top predators (Hoplias malabaricus and Plagioscion squamosissimus).
Noticeably, damming clearly reversed possible impact linkage among species, since one-third of indirect and
almost one-half of direct (trophic) relations changed of signal, leading to unexpected turns in the system. Also,
simulation revealed that increasing in catches strongly impact on fish biomass in the post-dam model more than
in the pre-dam model. The ecosystem context of these results and the fact that they are pioneers in assess
Amazonian damming can help the local managers and government to understand the impoundment effects and
simulate changes in catches to foresee future impacts of reservoirs on Amazon.

1. Introduction

Impacts on tropical rivers affect both biodiversity and ecosystem
services driving new trends for ecological indicators and ecosystem
attributes (Philippsen et al., 2018; Tuda and Wolff, 2018). Major en-
vironmental impacts in rivers come from the invasion by alien species,
habitat loss, hydrological shifts, and habitat fragmentation, which are
on the bulk of the threats plaguing the freshwater biodiversity (Pelicice
et al., 2017; FAO 2016; Pelicice et al. 2015). Cumulative effects of these
environmental impacts within a watershed may disrupt important
economic activities such as fishing and pose a risk to key ecological
processes played by fish in tropical rivers, posing negative effects on the

ecosystem functioning and on income, food security and livelihood for
millions of people in tropical regions (Arantes et al., 2019; Tallis et al.,
2015; Villarroya et al., 2014; Brismar, 2004).

In the Brazilian Amazonian region, a small-scale fishery is a low-cost
family activity (FAO, 2014), which provides income, job, and food se-
curity for thousands of people (FAO, 2016; Isaac et al., 2015). More
than 175,000 workers are directly and indirectly employed by the
fishing activity (Ruffino, 2014). Disregarding fish consumption, they
capture approximately 140,000 tons of fish per year (Berkes et al.,
2006; MPA, 2011).

Life history of Amazonian fish species is strongly associated with the
hydrological cycle, which is the main driver of the ecosystem,
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influencing community structure, trophic organization, growth, and
migration patterns (Delong and Thoms, 2016; Halls and Welcomme,
2004; Jiménez-Segura et al., 2010; Junk et al., 1989; Lima et al., 2017;
Silva et al., 2013). The hydrological cycle also connects freshwater
ecosystems allowing the dispersal and colonization of fish species
through the river channel to the floodplain lakes (Hurd et al., 2016;
Torrente-vilara et al., 2011). These environments are subject to local
and regional factors that change the morphological configuration of the
river channel.

The main factor currently threatening Amazonian freshwater en-
vironments is the establishment of hydroelectric dams, which strongly
modify water biogeochemistry (Kondolf et al., 2014) and the patterns of
river discharge and fluviometry (Fearniside, 2014; Junk & Mello, 1990;
Winemiller et al., 2016), also affecting the ecological and biological
dynamic in the environment. Ecological impacts of river impoundment
in Amazon includes the loss of fish diversity (Castello and Macedo,
2016), interruption of migratory routes essential for the life history of
the species (Barthem et al., 2017; Winemiller et al., 2016), and change
the pulse of seasonal flooding (Agostinho et al., 2008; Isaac et al.,
2016). The implications of such impacts are the change in fish abun-
dance, composition and trophic configuration of fish communities. In
the course of the impoundment, abundance of some species may in-
crease, but to other species, the population may greatly shrink or even
become extinct (Agostinho et al., 1999). All these aspects act in an
integrated way, which requires a global analysis, capable of under-
standing the functioning of the system as a whole (Lassalle et al., 2014;
Vasslides and Jensen, 2017).

For many years, impacts assessment and the focus on sustainability
of fish stocks was performed strictly evaluating one single species,

usually the most affected or valuated, ignoring its trophic relationships
or indirect influences, such as those related to the climate or the en-
vironment (Angelini and Moloney, 2007). Likewise, fisheries manage-
ment for long has focused on a single target species disregarding ha-
bitat, predators, and prey of the target species and other ecosystem
components and interactions. In the early 2000s, this vision gradually
was replaced by the Ecosystem-based fishery management (EBFM),
which considers the broad ecosystem aiming to minimize environ-
mental impact, reach sustainability and consistently manage fisheries
(Pikitch et al., 2004; Link, 2010).

Such approach maintain flows and services, reaching an ecosystem
assessment, besides to promote the sustainability of target species, as
well as social and economic sustainability (Long et al., 2015; Marshall
et al., 2018; Patrick and Link, 2015; Trochta et al., 2018). The EBFM
approach seems to be even more needed in freshwater environments,
given that terrestrial and floodplain systems directly influence the dy-
namics of aquatic populations, and ultimately, the fish stocks (Arantes
et al., 2018; Carvalho Freitas et al., 2018; Collie et al., 2016).

In this sense, the suitable employment of EBFM approach, requires
the understanding on ecosystem by quantifying the trophic interactions
(Libralato et al., 2008), and simulating environmental and fishery al-
terations (Alexander et al., 2015; Coll et al., 2016; Heymans et al.,
2014; Plagányi et al., 2012), to reach a broad evaluation of the eco-
system features (Coll et al., 2015; Pauly et al., 2000). An important tool
to support EBFM is the Ecopath with Ecosim software (EwE), which has
been widely used for quantitative assessments of the structure and
functioning of aquatic ecosystems (Plagányi, 2007) but also to analyze
and forecast impacts of fishing, climate change, and other anthropic
changes (Christensen and Pauly, 1993; Heymans et al., 2016; Sánchez

Fig. 1. Madeira River Basin (study area) with the borders of Rondônia State (Brazil)
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and Olaso, 2004). EwE has been applied to more than 400 ecosystems
and in all kinds of environments around the world (Coll et al., 2015;
Colleter et al., 2015).

In the Amazon, EwE was been previously applied basically to si-
mulate the impact of fishing on target species (e.g. Angelini et al., 2006;
Camargo and Ghilardi, 2009; Córdoba, 2014; Petrere Jr. and Angelini,
2009). In the present paper, to evaluate the early effects of the dam-
ming for hydroelectric power generation on the Madeira River food
web, we compared two Ecopath models: before (pre) and after (post)
the dam construction in November 2011. We analyzed the changes
using several ecosystem attributes: fish biomass, catches, exchange of
matter/energy, ecological efficiency, and, especially, the potential di-
rect and indirect relationships among species. We also carried out si-
mulations of the increase in the catches of several stocks in the models.
The dam focused here, is one of the first to be built of 243 hydroelectric
dams proposed for the entire Amazon region in the next two decades
(Lees et al., 2016).

2. Materials and methods

2.1. Study area

The Madeira River (Fig. 1) is one of the most important white water
tributaries of the Amazon River. It flows by 1.4 million km2 through
Brazil, Bolivia, and Peru contributing to the high rate of water flow and
sediment (Latrubesse et al., 2005; Siqueira Jr. et al., 2015). Along
Madeira watershed there are roughly 18 rapids which are important
geographical barriers controlling fish species distribution and migration
in the main stretch of the Madeira River (Goulding et al., 2003; Siqueira
Jr. et al., 2015; Torrente-vilara et al., 2011). The two dams focused here
to evaluation through modeling are Santo Antônio (formed in No-
vember 2011; Fig. 1), close to Porto Velho (Rondônia State capital) and
Jirau, that was constructed upstream from Santo Antônio reservoir in
2012 (Hauser et al., 2019). Such impoundments inundated two sig-
nificant waterfalls (Teotônio and Caldeirão do Inferno).

The Madeira River basin has the highest richness of fish species in
the world, encompassing 1008 fish species (Ohara et al., 2015). Fishing
landings from Madeira River represent approximately 4% of the total
Amazonian fish landings (Barthem and Goulding, 2007). The most
important fishery stretch of Madeira River in Brazilian portion is at
Porto Velho (Rondônia State), where approximately 60 species were
recorded (Doria et al., 2012). Most of the catches (566.5 ± 193.6 tons
per year) are landed at Porto Velho fish market (named Cai N'água),
which is under the Fishermen's Colony Z-1 administration (Doria and
Lima, 2015).

2.2. Methodological procedure

To assess the effect of Madeira River impoundment upon the food
web, on the species interaction and on the fishery, we performed a
modeling and simulation through Ecopath software (EwE). Specifically,
two Ecopath models were elaborated. The first referred to the period
before the dam formation (pre-dam model) and used data from 2010 to
2011. The second referred to the period soon after the dam construction
(post-dam model) and uses dataset referring to 2012 and 2013.

Thus, through the analysis of (i) local dataset sampled into two
periods (such as fish diet composition and biomass) and (ii)
Supplementary information from literature for some groups, we per-
formed pre- and post-dam Ecopath models to inspect changes resulting
from the impoundment over ecosystems attributes and indexes, and on
direct and indirect species interactions. After, we simulate the effect of
increasing catches on the fish biomass (stocks). Total area used was the
same for both models (1171.27 km2) and estimated with satellite
images Landsat in 2012. We calculated the areas during the flood and
the dry seasons, and used the average area obtained between these two
periods.

2.2.1. Modeling approach
The modeling approach used a biomass balance model (EwE; www.

ecopath.org) to quantify energy flows among functional groups and to
estimate relevant ecosystem attributes. Basically, EwE model considers
that Production of a group i = Mortality by predation over i + other
mortalities of i + export of i taking into account trophic interactions
between the groups based on fractions of the diet item of each group
through a diet composition matrix (DC). Liner equation describing mass
balance along trophic interactions is:

∑× × − × × − =B PB EE j (B QB DC ) EX 0i i i i j j ji i (1)

where: Bi is biomass of prey i, PBi represents the Production/Biomass
rate or natural mortality (M) of i and EEi, is the Ecotrophic Efficiency of
i, representing the fraction of the production of i transferred to higher
Trophic Levels (TLs) or exported. Consumption/Biomass rate (QBj) is
the consumption of predator j and DCji, represents the fraction of i in
the diet of j. The EXi is the export of i (fishing mortality or migration to
other ecosystems). In both baseline models, the biomasses are expressed
in tons × km−2, while the flows are calculated in
ton × km−2 × year−1.

2.2.2. Input data and functional groups
Functional groups to Madeira River model were chosen according

to: a) importance in fishing landings in 2010 or sampled biomass along
the period; b) food item in the diet of the most important caught spe-
cies; c) ‘non-fish’ organisms present in the diet and with biomass data
available; and d) charismatic species (turtles, dolphins, alligators).
Other fish species were grouped in functional groups according to their
trophic categories (Supplementary Material 1 (SM1), Table SM 1.1).
Aiming to better understand biomass variation and the dynamics of the
groups, both models were standardized by same compartments. If the
group was not filling some aforementioned criteria in one period but
meet criteria in other, the group was added to both periods under
modelling.

2.2.2.1. Fish groups. Data included fish species biometrics (length and
weight), stomach contents, locality, and gear. All the collected
biological material was fixed in formalin (10%), packed in plastic
bags, and properly identified in the Laboratory of Ichthyology and
Fisheries of the Federal University of Rondônia. Experimental fishing
was done using gillnet, trawl net and throw net in 13 sampling points
150 km upstream and 75 km downstream from dam position (Fig. 1).
This procedure was repeated monthly between July 2010 and March
2011 (pre damming period) and between July 2012 and March 2013
(after damming period).

Biomass values for 23 functional groups of fishes were estimated
using weight supplied by throw net to each species caught divided by
the total estimated area (number of throws × throw net area). These
biomass values were adjusted to balance the final models and Ecopath
estimated the value biomass for other 15 fish species in pre-model and
24 species in post-model. Other data gears were used just to confirm the
species presence.

The Production/Biomass (PB) rate is similar to the natural mortality
(M) (Allen, 1971), and for fish compartments were estimated using the
empirical equation of Pauly (1980; see SM1). Likewise, Consumption/
Biomass (QB) rate, i.e. the food amount required by the organism in
relation to its own weight, was calculated through empirical regression
from Palomares and Pauly (1998; see SM1). Fish biometric data were
used to estimate the parameters required by PB and QB equations (K,
L∞, and W∞), using the FISAT program (Gaynilo Jr. et al., 2005) for
the follow species: Pinirampus pirinampu, Mylossoma duriventre, Prochi-
lodus nigricans, Brycon amazonicus, Brachyplatystoma rousseauxii, Bra-
chyplatystoma filamentosum, Semaprochilodus insignis, Pseudoplatystoma
punctifer, Cichla pleiozona, and Schizodon fasciatus. For other fish spe-
cies, these parameters were based on estimates from similar floodplains
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ecosystems (for details, see Table SM 1.2).
The Diet Composition matrix (DC) was built using data from our

analysis for gut content (for the number of stomachs analyzed by spe-
cies, see Table SM 1.3). The frequency of food items was estimated for
the pre- and post-dam period. To five fish-compartments (Hoplosternum
littorale, Astronotus crassipinnis, Arapaima gigas, Brycon melanopterus,
and Hypophthalmus sp.) we used literature information (Angelini et al.,
2010, 2006; Angelini and Agostinho, 2005; Petrere Jr. and Angelini,
2009; Watson et al., 2013) and FishBase platform (Froese and Pauly,
2019).

2.2.2.2. Non-fish groups. Biomass values in both periods for most non-
fish groups (Phytoplankton, Zooplankton, Macrophytes, Aquatic
Invertebrates, Dolphins, Turtles, Aquatic Birds, Alligators and Otters)
were based on local reports provided by Santo Antônio Energy
Company (Ecology Brasil, 2011; INPA, 2011; PROBIOTA, 2011; SETE,
2014). For example, phytoplankton was estimated using the mean of
biovolume per taxonomic group (Ecology Brasil, 2011, 2012). Using
conversion rates from Angelini et al. (2018) biomass values was
estimated in 1.68 g*m−2 for the pre-dam period value and
1.89 g*m−2 for the post-dam phase. For estimate Dolphins biomass,
the two local species (Inia geoffrensis and Sotalia fluviatilis) were
grouped. Local census recorded 250 and 213 individuals in pre- and
post-dam periods (INPA, 2011; SETE, 2014), totaling 46.250 tons and
39.405 tons for the periods respectively (mean individual
weight = 0.185 ton). This census was done in a stretch with 226 km
(width = 1.2 km), resulting in an area of 271.2 km2. Initial input
biomass was 0.17 in the pre-dam period and 0.15 in the post-dam stage.

Biomass for Flooded Forest, Periphyton and Terrestrial
Invertebrates were obtained from the literature. Terrestrial
Invertebrates biomass was either estimated by the model (pre model) or
achieved in the literature (post model). Biomass for Macrophytes,
Aquatic Invertebrates, Zooplankton, Dolphins, Turtles, Aquatic Birds,
and Otters are original data from local sampling. Supplementary
Material 2 shows the parameterization details for all non-fish groups.

2.2.2.3. Fisheries data. We used three types of fisheries data in the
models: i) fishing landings in the main port of Porto Velho city, sampled
by the Laboratory of Ichthyology and Fisheries at the Federal University
of Rondônia; (ii) commercial data from riverine families; and (iii)
familiar fish consumption recorded in fishing communities. Commercial
and consumption data were sampled by monitoring of 60 families living
upstream and downstream stretches of the Madeira River between 2010
and 2013. Thus, it was also possible to obtain a catch estimate per
species for 2010–2011 and 2012–2013 periods, and standardize the
values by model area. The short time series on catches did not allow
calibration in Ecosim module.

2.2.3. Balance and confidence model
The pre-balance approach (PREBAL), based on the eco-physiological

principles of the ecosystem components (Link, 2010), was used to
evaluate the consistency of the input values in both models. Accord-
ingly, PB and QB rates and Biomass data were expected to decline at
higher trophic levels, while Production/Consumption (P/Q) rate would
maintain similar values.

2.2.4. Ecosystem indicators and indexes
Three ecosystem indicators calculated by EwE and six indexes were

used to evaluate the dam’s impact on the Madeira River ecosystem.
Indicators were mainly (1) Total System Throughput (TST), which re-
fers to the total fluxes in the system; (2) Total Primary Production
(TPP)/Total Respiration (TR) rate, which describes the systems devel-
opment indicates maturity if has value closer ~1; (3) Total Biomass/
TST rate, whose high values would indicate that the flows support more
biomass and the system would be more mature or developed.

The main indexes applied to evaluate the impoundment impact

were (4) Connectance Index (CI), which is the ratio between observed
and possible links, and shows the degree of connection into the trophic
web; (5) the System Omnivory Index (OI), which is a measure of how
food interactions are distributed between trophic levels; (6) Finn's cy-
cling index, which measures the fraction (in %) of flows recycled within
the system (>10% shows high recycling, and thus, high system resi-
lience); (7) Ascendency (A), which measures the growth and develop-
ment of the ecosystem; and (8) Overhead (O), which is also a measure
of resilience since it represents the strength of energy available into the
system to be accessed in response to unexpected perturbations
(Ulanowicz, 1986). Lastly, we used (9) Transfer Efficiency (TE), to
measure the flow of assimilation efficiency from a trophic level on the
previous level (%).

2.2.5. Mixed trophic impact (MTI)
The outputs of MTI were used to unveil the impact of one species on

others, regardless direct (consumer-prey) or indirect. Indirect ones refer
to trophic cascade among components without food connection, given
that any predator consumption affects other prey’s and predators,
changing overall biomass available (Gloeckner and Luczkovich, 2008).
Specifically, the interaction among components (positive and negative
signals) for MTI matrixes in pre- and post-dam models was compared to
evaluate the effect of damming on the Madeira River food web.

The MTI approach was firstly developed to analyze direct and in-
direct interactions in the US economy (Leontief, 1951). Later,
Ulanowicz and Puccia (1990) developed a routine to EwE calculate
direct and indirect trophic impacts from one compartment over all
others and quantify the changes in all components (impacted) following
an increase of 20% of biomass values at each one (impacting group).
Positive values occur when the 20% impact increases the biomass for
the impacted group, while negative values happen if the 20% impact in
the biomass of one group decreases the biomass for impacted group
(Gamito and Erzini, 2005; Khan and Panikkar, 2009; Mavuti et al.,
1996).

The MTI is calculated through an n × n matrix, where n is the
number of components in the model:

= −MTI DC FCji ji ij (2)

where: DCji is the diet composition expressing how much i contribute to
the diet of j, and FCij is the proportion of the predation on j that is due to
i. The terms j and i represent the interaction between the impacting
group j and impacted group i.

Using the MTI values, Libralato et al. (2006) developed the key-
stoneness species index (KSi), which assigns high values to functional
groups with low biomass but high effect on the trophic network. Later,
changes in KSi (by Valls et al., 2015) enhanced the relevance of species
of high trophic levels. The distribution of biomass between the trophic
levels was also analyzed and compared between pre- and post-dam
periods using the EcoTroph routine (Gascuel and Pauly, 2009). To each
trophic level, the flows in the trophic chains by sources (detritus or
primary producers), flow of respiration and flow of detritus production
were synthetized by Lindeman spine.

2.2.6. Simulation analysis (Ecosim approach)
Following Ecopath model balancing, the Ecosim routine was used to

simulate the temporal dynamic of system variables, such as biomass,
predation, and production (Walters et al., 1997) and the impacts of
increased fishing catch. Ecosim approach expresses the dynamic of the
ecosystem over time (Christensen et al., 2005), and it is defined by a
series of differential equations:

∑ ∑= − + − + + ×
dB
dt

gi Q Q I (MO F e ) Bi
j ji j ji i i i i i (3)

where: dBi/dt represents the change in the biomass of functional group i
(Bi) over time dt; gi is the net growth efficiency (production/con-
sumption ratio); Qij is the consumption of group i by group j; Ii is the
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immigration of functional group i; M0i is the non-predation rate of
natural mortality; Fi is the fishing mortality; ei is the emigration of
functional group i.

In order to test the biomass dynamic over increasing fishing impact,
it was simulated from baseline model an increase on landing in both
models by 10%, 12.5%, 15%, 17.5% and 20%. These increasing values
seem realistically reasonable since fish consumption and human po-
pulation are increasing in the region. Relative biomass dynamics was
analyzed after simulating increasing catches for catfish species
(Brachyplatystoma rousseauxii, Brachyplatystoma filamentosum,
Brachyplatystoma platynemum, Brachyplatystoma vaillantii,
Pseudoplatystoma punctifer, Pinirampus pirinampu, and Zungaru zungaru)
and other relevant species in the landings (Mylossoma duriventre,
Prochilodus nigricans, Potamorhina latior, Triportheus auritus,
Semaprochilodus insignis, Arapaima gigas, and Cichla pleiozona).

3. Results

Groups with Trophic Level (TL) values between 2 and 2.9 held most
biomass in pre-dam period (96%) and the post-dam period (86%).
However, the basic input for pre- and post-dam models (including those
estimated by the EwE), showed remarkable biomass increasing in basal
compartments after impoundment (Table 1). The greater biomass va-
lues in the post-dam period were observed to nine Fish groups and to
compartments Other insectivorous, Phytoplankton and Zooplankton
(Table 1). On the other hand, biomass declined to most fish compart-
ments, and variations in diet composition lead to overall change in
community TL from 2.64 to 2.80 (see details in Tables SM 3.1 and 3.2).

Overall fish biomass has dropped by nearly half in the post-dam
model. Mainly biomass and catches of large catfish (especially from
Brachyplatystoma genus) were affected, dwindling by around 50%. As a
whole, total catch declined by 42% (Table 2). Likewise, large propor-
tion (−88%) of total fish caught per fisher’ family dwindled in the post-
dam model, while fish consumption has had a slightly decrease (−8%),
likely leaded by the reduction in catches landed at Porto Velho City
(−50%).

Catches of the most caught species in the pre-dam model decreased
by 63%, 52%, and 70%, respectively (i.e. M. duriventre, P. nigricans, and
Brycon amazonicus). Catches however increased from the pre- to the
post-dam model to the species S. insignis (+40%), Pterygoplichthys spp.
(+50%), and Colossoma macropomum (+125%).

After models mass-balancing, the PREBAL procedure showed that B,
PB, and QB values were negatively related to the trophic levels un-
derlining both models consistency (see SM 4). Attributes of ecosystem
maturity (Table 3) showed the increasing in Total Consumption and
Respiration followed by decreasing values of Total Primary Production/
Total Respiration rate (8.75 to 2.28) and of Transfer Efficiency (7.8% to
4.8%). Also, Madeira River was proved to be a resilient system in both
periods especially due to the high cycling values (Table 3).

3.1. Mixed trophic impacts (MTI)

In both periods, changes in detritus and lower TL groups produced
greater impact upon the other components (Figs. 2 and 3). Broadly, in
pre-dam period Other Carnivorous group produced larger positive im-
pact over the system together with Calophysus macropteus and Phrac-
tocephalus hemioliopterus (Fig. 2). In the post-dam period, the species P.
hemioliopterus and Other Carnivorous group kept to produce positive
impact on the largest number of groups, along with, Omnivorous, and
Piscivorous categories (Fig. 3). Though, the strongest positive impacts
were produced by Flooded Forest. Aquatic birds produced the strongest
negative impact in the pre-period, while in the post-dam period the
greatest negative impact was caused by B. rousseauxii (values in SM 5).

Each impact matrix contains 3422 positive or negative interactions.
Most interactions (3019) were indirect and trophic interactions (i.e.
direct) happened in 403 cases. In the post-dam model, 1233 direct or

indirect interactions in the food web matrix interchanged from positive
to negative or vice versa (Table 4 and Fig. 4). Negative indirect re-
lationships did not change (approximately 60%). Whole direct positive
interactions in the pre-dam model (50%) turned into 31% in the post-
model. Also 34% positive indirect relations were inverted after dam-
ming (Table 4 and Fig. 4).

The key species index ranking (Table 5) indicated which B. rous-
seauxii was the second key component of the system in the pre-dam
model, turn out to be the first in the post model. Likewise, some fishes’
groups (A. gigas, “Other Piscivorous,” and C. pleiozona) became key
components in the post-dam model, replacing Aquatic Birds, Cladocera
and B. vailantii, which were important key species in the pre-dam
model.

The Detritivory:Herbivory relationship in post-dam model is twice
the value in pre-dam model (Lindeman spine, Fig. 5), underlining the
increase of the detritus chain triggered by damming (as previously
showed in Fig. 2 and 3).

3.2. Ecotroph

Total biomass was distributed over 4.5 TLs in both periods, pre- and
post-dam (Fig. 6). In the pre-dam period, the trophic network presented
higher biomass at intermediate TLs, while in the post-dam phase, be-
sides having reduced biomass, the highest concentration was at lower
TLs, except for organisms at TL > 3.3, which presented higher bio-
mass.

3.3. Simulations of the catch increasing

The increase in the fish catch in both models reduced the relative
biomass values for catfish. Values sharply decreased in the post-dam
period mainly for B. filametosum, B. rousseauxii, and Z. zungaru (Fig. 7).
Also, the increase in fisheries reduced the biomasses for P. latior and T.
auritus in the pre-dam period and for S. insignis and A. gigas in the post-
dam period (see details for other species in SM 6).

4. Discussion

4.1. Model overview

This study presents the early effects of impoundment in Madeira
River, the major branch of Amazon River through Ecopath modeling
and simulation of changes in the ecosystem, in species biomass, and
trophic trends observed among compartments before and after dam-
ming. Many studies have used the same modeling approach used here
to analyze impact of impoundment on other ecosystems such in an
estuary ecosystem (e.g. Han et al., 2017) and to evaluate reservoir
ecosystems around the world with regards to fishing impacts
(Bornatowski et al., 2017; Philippsen et al., 2018; Tuda and Wolff,
2018; Wang et al., 2019), temporal dynamics (Gamito and Erzini, 2005;
Guo et al., 2018), invasive species impact (Bezerra et al., 2017; Khan
and Panikkar, 2009; Tesfaye and Wolff, 2018), and maturity develop-
ment (Gubiani et al., 2011). To our knowledge, this is the first time
Ecopath is used to assess the same ecosystem before and after damming.
Focusing on the same ecosystem may contextualize changes and steer
reservoirs planning and management, especially in the Amazon region,
which will receive more than a hundred of them in the next decade
(Winemiller et al., 2016).

The pre- and post-dam Ecopath models were developed with ana-
lyses of stomach contents of the fish sampled before and after the
damming, highlighting small but important TL changes among con-
sumers (see below). Likewise, biomass, one of the most difficult esti-
mates to obtain and the main and most sensitive input parameter in
Ecopath, was obtained from data sampled in the region and to the
specific study periods, providing reliability to results achieved. All
other input parameters supplied by fieldwork were sampled as part of a
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from a single research project that standardized the samples of all
groups, allowing reliable comparisons between periods and avoiding
problems on scales and aggregation of compartments (Abarca-Arenas
and Ulanowicz, 2002; Angelini and Agostinho, 2005; Winemiller,
2007). As a result, the basic data set of the models has consistency and
locally-oriented reflecting the ongoing environmental changes in the
process of impoundment. This was also reflected and confirmed for
both models in the PREBAL procedure, which showed the eco-physio-
logical coherence in Ecopath models estimated here (Link, 2010; SM 4).

Damming considered here increased the ecosystem’s respiration and
consumption, reducing net production, transfer efficiency among

Trophic Levels, and reducing total biomass of fish species by half. There
was also an exchange of key species that were previously mostly non-
fish compartments and became top predator fish, including B. rous-
seauxii, which was considered a key species in both periods. Fish species
with an intermediate TL had their biomass reduced via top-down con-
trol, especially because of the increased biomass of non-migratory top
predators (Hoplias malabaricus and Plagioscion squamosissimus).
Noticeably, damming clearly reversed possible impact linkage among
species, since one-third of indirect and almost one-half of direct
(trophic) relations changed of signal, leading to unexpected turns in the
system. Also, simulation revealed that increasing in catches strongly

Table 1
Input parameters values for the groups in the Madeira River models: pre and post dam implementation. B, biomass; PB, production/biomass; QB, consumption/
biomass; TL: Trophic Level; EE: Ecotrophic Efficiency. Bold values were calculated by Ecopath.

TL B (t km−2) PB (year−1) QB (year−1) EE

No. Group name Pre Post Pre Post Pre Post

1 Phytoplankton 1.00 1.00 1.680 1.893 205.00 0.00 0.25
2 Flooded forest 1.00 1.00 9800 9800 0.10 0.10 0.05
3 Macrophytes 1.00 1.00 178.02 71.75 4.00 0.00 0.20
4 Periphyton 1.00 1.00 2.300 2.000 8.80 0.42 0.57
5 Terrestrial invertebrates 2.00 2.00 1.129 2.400 25.00 180.00 0.61 0.12
6 Aquatic invertebrates 2.00 2.00 0.350 2.400 25.00 180.00 0.80 0.12
7 Cladocera 2.00 2.11 0.008 0.465 54.70 230.00 0.70 0.26
8 Copepoda 2.00 2.11 0.009 0.250 54.70 230.00 0.63 0.48
9 Rotifer 2.00 2.11 0.008 0.230 54.70 200.00 0.73 0.54
10 Protozoa 2.00 2.11 0.006 0.200 54.70 190.00 0.73 0.65
11 Alligator 3.40 3.68 0.002 0.005 0.25 1.50 0.00 0.00
12 Dolphins 3.48 3.67 0.171 0.145 0.08 0.80 0.00 0.00
13 Turtles 2.03 2.27 3.640 3.046 0.17 1.00 0.29 0.35
14 Aquatic birds 3.35 3.54 0.028 0.028 0.30 2.00 0.00 0.00
15 Otters (Lontra longicaudis) 3.31 3.47 0.0004 0.0004 1.50 5.00 0.00 0.00
16 Otters (Pteronura brasiliensis) 3.54 3.59 0.001 0.0008 1.50 5.00 0.00 0.00
17 Pinirampus pirinampu 3.01 3.14 0.053 0.003 0.65 5.69 0.80 0.80
18 Mylossoma duriventre 2.00 2.43 0.988 0.043 4.00 16.73 0.02 0.18
19 Prochilodus nigricans 2.03 2.04 0.500 0.104 2.31 13.09 0.14 0.12
20 Brycon amazonicus 2.00 2.71 0.060 0.081 1.06 8.85 0.90 0.20
21 Brachyplatystoma rousseauxii 3.17 3.60 0.024 0.007 1.16 4.56 0.80 0.80
22 Brachyplatystoma filamentosum 3.45 3.38 0.015 0.008 1.11 2.92 0.80 0.80
23 Semaprochilodus insignis 2.00 2.00 0.068 0.043 1.29 10.00 0.33 0.80
24 Pseudoplatystoma punctifer 3.18 2.95 0.024 0.026 0.50 4.00 0.80 0.80
25 Cichla pleiozona 2.67 3.58 0.090 0.053 0.47 3.00 0.39 0.43
26 Schizodon fasciatus 2.03 2.00 0.200 0.016 1.64 14.00 0.08 0.80
27 Brachyplatystoma platynemum 3.35 3.71 0.010 0.002 1.20 7.46 0.80 0.80
28 Potamorhina latior 2.06 2.06 0.024 0.061 1.55 10.36 0.80 0.15
29 Zungaro zungaro 3.31 3.67 0.014 0.003 1.02 4.42 0.80 0.80
30 Hoplosternum littorale 3.00 2.42 0.018 0.006 1.02 7.00 0.80 0.80
31 Astronotus crassipinnis 2.31 2.32 0.013 0.004 0.74 5.00 0.80 0.80
32 Phractocephalus hemioliopterus 3.37 2.86 0.023 0.012 0.60 2.00 0.80 0.80
33 Pterygoplichthys spp. 2.00 2.00 0.003 0.004 1.00 10.00 0.80 0.80
34 Triportheus auritus 2.68 2.39 0.380 0.730 1.40 13.35 0.09 0.08
35 Colossoma macropomum 2.00 2.25 0.010 0.023 1.40 8.30 0.27 0.27
36 Arapaima gigas 2.20 2.94 0.016 0.003 1.50 3.90 0.26 0.26
37 Calophysus macropterus 2.59 3.25 0.280 0.003 2.63 9.41 0.06 0.25
38 Brachyplatystoma vaillantii 3.04 3.43 0.010 0.001 1.02 7.75 0.80 0.80
39 Hypophthalmus marginatus 3.00 3.06 0.002 0.023 0.55 2.00 0.80 0.17
40 Pygocentrus nattereri 2.89 2.79 0.005 0.005 2.00 7.05 0.27 0.27
41 Brycon melanopterus 2.50 2.52 0.230 0.002 1.06 8.85 0.05 0.80
42 Piaractus brachypomus 2.40 2.37 0.012 0.052 1.40 8.30 0.27 0.02
43 Hoplias malabaricus 3.41 3.48 0.054 0.145 0.97 6.05 0.28 0.15
44 Plagioscion squamosissimus 3.88 3.67 0.005 0.085 1.02 7.99 0.80 0.10
45 Triportheus sp. 2.43 2.89 0.450 0.032 1.76 13.98 0.17 0.80
46 Hypophthalmus sp. 2.50 2.56 0.012 0.000 1.75 8.87 0.80 0.80
47 Pimelodus sp. 2.48 3.05 0.040 0.039 0.90 5.00 0.36 0.80
48 Other carnivorous 2.88 2.67 1.500 1.305 1.50 6.20 0.60 0.80
49 Other detritivorous 2.04 2.20 1.000 0.505 1.00 8.00 0.27 0.80
50 Other insectivorous 2.92 2.99 0.090 0.142 1.50 8.50 0.17 0.80
51 Other omnivorous 2.63 2.77 1.450 0.515 1.90 8.30 0.58 0.80
52 Other piscivorous 2.66 3.44 1.000 0.048 0.99 8.00 0.53 0.80
53 Other planktivorous 2.10 2.66 0.195 0.401 0.55 5.50 0.06 0.80
54 Other herbivorous 2.00 2.24 0.080 0.001 1.45 7.44 0.04 0.80
55 Animal detritus 1.00 1.00 0.01 0.00
56 Detritus 1.00 1.00 0.10 0.49
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impact on fish biomass in the post-dam model more than in the pre-dam
model.

Environmental impacts from dam construction are expected to
change Amazon freshwater ecosystems, resulting in physical, chemical,
and biological alterations on many habitats down and upstream (Poff
et al., 1997). Here, the changes unveiled in the attributes, indexes and
trophic linkages indicated that the system under impoundment must be
understood as another ecosystem. Despite new condition (post-dam)
originated from pre-dam condition, features and interactions may
change at least by half until other dams are placed upstream or
downstream.

4.2. Trophic Level, food web control, and biomass change

Most fish biomass was concentrated in species with TL < 2.9 in
pre-dam model, but in the post-dam model 89% of fish biomass were
grouped in species with TL < 3.67. Species of highest TL and con-
tribution of biomass in the post-dam model were traíra (H. malabaricus),
pescada (P. squamosissimus), and curimatã (P. nigricans). Historically,
these species had established in other dammed river systems in Brazil
mainly during the formation of reservoirs (Cecilio et al., 1997), due to
their generalist food habit (Kong et al., 2016).

Biomass of 24 fish compartments decreased over the periods, re-
ducing the total biomass of fish by 50%. Reduction in total biomass
after damming contrasted with the increase in biomass of invertebrate
components, which triggered a change in the diet and consequently an
increase in TL for some opportunistic species, such as M. duriventre

Table 2
Familiar fishing for commerce and own consumption (t km-2 year-1); Landings in the main port of Porto Velho City, for the periods’ pre (2010–2011) and post
(2012–2013) dam implementation on the Madeira River (Brazil).

Group name Familiar commerce Familiar consumption Landings Total

Pre Post Pre Post Pre Post Pre Post

Turtles 0.182 0.1820 0.182 0.1820
Pinirampus pirinampu 0.002 0.0001 0.002 0.0003 0.024 0.001 0.028 0.001
Mylossoma duriventre 0.007 0.001 0.004 0.001 0.057 0.023 0.068 0.025
Prochilodus nigricans 0.007 0.001 0.003 0.001 0.042 0.024 0.053 0.025
Brycon amazonicus 0.013 0.001 0.001 0.0003 0.043 0.016 0.057 0.017
Brachyplatystoma rousseauxii 0.007 0.001 0.0002 0.00004 0.015 0.006 0.022 0.007
Brachyplatystoma filamentosum 0.004 0.001 0.0001 0.00003 0.009 0.006 0.013 0.007
Semaprochilodus insignis 0.003 0.0003 0.0003 0.00004 0.020 0.032 0.023 0.032
Pseudoplatystoma punctifer 0.002 0.0002 0.001 0.0001 0.006 0.008 0.009 0.009
Cichla pleiozona 0.007 0.0002 0.001 0.0001 0.009 0.011 0.017 0.011
Schizodon fasciatus 0.002 0.0001 0.001 0.0001 0.005 0.003 0.007 0.003
Brachyplatystoma platynemum 0.001 0.0004 0.0001 0.0001 0.009 0.001 0.010 0.002
Potamorhina latior 0.001 0.0002 0.0002 0.0001 0.017 0.007 0.018 0.007
Zungaro zungaro 0.002 0.0003 0.0001 0.00002 0.009 0.003 0.011 0.003
Hoplosternum littorale 0.001 0.000005 0.0003 0.00002 0.013 0.004 0.014 0.004
Astronotus crassipinnis 0.001 0.00004 0.0001 0.00001 0.004 0.002 0.005 0.002
Phractocephalus hemioliopterus 0.003 0.001 0.0001 0.0002 0.007 0.005 0.010 0.006
Pterygoplichthys spp. 0.002 0.003 0.002 0.003
Triportheus auritus 0.0003 0.00003 0.0001 0.00001 0.013 0.004 0.013 0.004
Colossoma macropomum 0.0004 0.0001 0.0002 0.0001 0.003 0.009 0.004 0.009
Arapaima gigas 0.002 0.0002 0.0001 0.0001 0.005 0.001 0.006 0.002
Calophysus macropterus 0.000004 0.000002 0.00002 0.00001 0.012 0.002 0.012 0.002
Brachyplatystoma vaillantii 0.001 0.0001 0.0004 0.0002 0.007 0.0002 0.008 0.001
Hypophthalmus marginatus 0.0002 0.00001 0.00003 0.000004 0.001 0.001 0.001 0.001
Pygocentrus nattereri 0.0001 0.0001 0.000003 0.003 0.003 0.003 0.003
Brycon melanopterus 0.0002 0.000004 0.00003 0.00001 0.001 0.001 0.002 0.001
Piaractus brachypomus 0.001 0.0001 0.0004 0.0001 0.003 0.002 0.005 0.002
Hoplias malabaricus 0.001 0.001 0.0003 0.0002 0.003 0.002 0.005 0.002
Plagioscion squamosissimus 0.0004 0.00002 0.0001 0.00001 0.003 0.002 0.004 0.002
Hypophthalmus sp. 0.0004 0.001 0.0014
Other carnivorous 0.0014 0.0003 0.001 0.0002 0.006 0.001 0.008 0.002
Other detritivorous 0.0080 0.00003 0.001 0.00001 0.015 0.001 0.024 0.001
Other omnivorous 0.0034 0.001 0.002 0.0001 0.01 0.002 0.01 0.002
Other piscivorous 0.0058 0.0003 0.001 0.0001 0.01 0.005 0.02 0.005
Other planktivorous 0.0004 0.0004
Other herbivorous 0.0001 0.0003 0.0001 0.0003 0.0001 0.001
Total caught 0.089 0.011 0.203 0.187 0.387 0.192 0.676 0.386

Table 3
Attributes of the ecosystem maturity for the Ecopath models calculated for pre
and post dam implementation on the Madeira River (Brazil). Changes: bold
values increased and italic values decreased.

Parameter Values

Pre Post Change

Sum of all consumption (t km−2 year−1) 362.71 1153.21 3.18
Sum of all exports (t km−2 year−1) 0.67 0.38 0.57
Sum of all respiratory flows (t km−2 year−1) 235.02 733.22 3.12
Sum of all flows into detritus (t km−2 year−1) 3951.05 3143.65 0.80
Total system throughput (t km−2 year−1) 4549.46 5030.46 1.11
Sum of all production (t km−2 year−1) 2111.87 1862.04 0.88
Gross efficiency (catch/net p.p.) 0.00 0.0002 1.00
Total net primary production (t km−2 year−1) 2056.72 1672.70 0.81
Total primary production/total respiration 8.75 2.28 0.26
Net system production (t km−2 year−1) 1821.70 939.48 0.52
Total primary production/Total biomass 0.21 0.17 0.81
Total biomass/Total throughput (year−1) 2.20 1.97 0.90
Total biomass (excluding detritus) (t km−2) 9996.31 9889.35 0.99
Total biomass of fish (t km−2) 8.93 4.51 0.51
Total catch (t km−2 year−1) 0.67 0.38 0.57
Connectance Index 0.11 0.11 1.00
System Omnivory Index 0.17 0.19 1.12
Finn Cycling Index (%) 39.83 32.73 0.82
Overhead (%) 59.16 69.07 1.17
Ascendency (%) 40.84 30.93 0.76
Mean trophic level catch 2.35 2.43 1.03
Transfer Efficiency (%) 7.80 4.83 0.62
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(Melo et al., 2019) and C. macropomum. However, the growth of pis-
civorous and opportunistic species that better adapt to changes in tro-
pical impounded areas (Agostinho et al., 1999; Gubiani et al., 2010;
Luz-Agostinho et al., 2006; Pereira et al., 2016) resulted in larger bio-
masses for groups with TL > 3.0 in the post-model. Accordingly, after
damming the trophic pyramid has a larger base (more invertebrates)
and is longer (have larger predator biomass), but has lower biomass of
fish with intermediate TLs (total biomass of the fish).

Thus, the increase of invertebrates biomass after damming was not
enough to increase their consumers’ biomass that seems to be top-down
controlled by opportunistic piscivorous species, such as H. malabaricus
and P. squamosissimus. These opportunistic species still benefit from the
reduction in large piscivorous and migratory catfish. The pattern of
reduction in general biomass of fish due to an increase in the number of
piscivorous species, confirms what was previously observed to

reservoirs in the Brazilian semi-arid region (Paiva et al., 1992).
The reduction of biomass and capture is one of the most negative

impacts of hydroelectric reservoirs building, markedly to long-distance
migrants species, which have migratory routes disrupted by damming
(Fearnside, 2016). In Amazonian rivers a large number of fish species
are migratory, swimming hundreds of kilometers, especially for re-
production (Barthem and Goulding, 1997). In Madeira River, damming
effects upon migratory species are essentially harmful for many riverine
communities that rely on these fish species (Doria et al., 2012; Santos
et al., 2018). As for communities in our area of study, migratory species
play important roles for food security of numerous populations
(Castello et al., 2015; Doria et al., 2018) since they are valuable source
of income and subsistence (Doria and Lima, 2015; Ferreira et al., 2014;
Winemiller et al., 2016), directly affecting the fishing yield and income
(Acreman et al., 2014). As observed here, the reduction in capture per

Fig. 2. Matrix Trophic Impact (MTI) of the Madeira River model for the period pre dam implementation (2010-2011).
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unit of effort (CPUE) of migratory species also happened in other
Amazonian impounded areas, where migrators practically disappeared
(Santos and Oliveira Jr., 1999).

Piscivorous species and top predators, such as large catfish, are
important in stabilizing food webs (Lima, 1998) because they influence
interspecific interactions (Novak and Wootton, 2008; Pereira et al.,
2016). The simulations carried out here reflected such relevance, since
in the post-dam model (which had lower biomass of migratory pre-
dators) the decrease in almost all groups was more pronounced than in
the pre-model, showing the importance of predators to the stability of
the system, and that models are mimicking what has been observed in
other regions.

The high proportion of recycled flows in the system can be a sign of
stress in the environment, but also reinforces the idea that these en-
vironments are resilient and can recover rapidly (Christensen et al.,

Fig. 3. Matrix Trophic Impact (MTI) of the Madeira River model for the period post dam implementation (2012-2013).

Table 4
The number and relative frequency of signals (positive and negative) of direct
(feeding) and indirect relations between both Matrices of Impact Trophic, pre
and post dam implementation in Madeira River (Brazil).

Post dam Direct relationships
(Trophic)

Indirect
relationships

Total

Keep positive 192 633 825
Keep negative 23 1341 1364

Total 215 (53.3%) 1974 (65.4%) 2189
Changes to negative 74 559 633
Changes to positive 114 486 600

Total 188 (46.7%) 1045 (34.6%) 1233
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2005; Finn, 1976; Odum, 1969). Moreover, the role of detritus is
greater in the post-model, which has greater detritivory when com-
pared to the pre-model. The index of omnivory also increased in the
post-dam period, probably related to the species food plasticity and
changes in food resource availability (Agostinho et al., 2008; Junk
et al., 1989). The increases in respiration and consumption flows led to
the reduction of fish biomass (see above), but without affecting the
invertebrates that appear to be the group most favored by the dam.

4.3. MTI and key species (groups)

The direct and indirect trophic interactions among groups were
largely modified after damming, since almost 46% of direct impacts and

34% of indirect ones interchanged between positive and negative. The
fact that positive direct relationships increased by 50% to 70% shows
that the larger base of the trophic pyramid (greater invertebrate bio-
mass) can likely increase the food web growth by modifying one of its
elements, such as Cladoceras and Copepods, which had higher positive
impacts in the post-model. It seems that despite higher influence of top-
down control because of larger number (and biomass) of top predators
reducing the total fish biomass in the post-model ((TL > 3; see above),
this new ecosystem (reservoir) will have a chance to increase its bio-
mass, especially considering the feeding plasticity of the fish species
(Melo et al., 2019).

Besides, MTI showed that the key species controlling linkages and
biomass in the food web were all replaced from pre- to post-dam model,

Fig. 4. Comparison between the Matrices of Trophic Impact in the pre and post dam periods of the Madeira River (Brazil). Group names can be viewed in Table 1.
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in exception to B. rousseauxii, which was the second key species in the
pre-dam model and became the headmost key species in the post-dam
model. Given the aforementioned importance of catfishes as source of
food security for numerous populations, their high market value
(Acreman et al., 2014; Ferreira et al., 2014; Castello et al., 2015;
Winemiller et al., 2016; Santos et al., 2018) and the wage decline of

capture per unit of effort (CPUE) of catfishes in impounded areas of
Amazon (Barthem and Goulding, 1997; Fearnside, 2016) the unveiling
of B. rousseauxii as leading key species is worrisome and shed light not
only on the ecological impact of Madeira River damming, but on its
potential economic and social damage.

Mixed Trophic Index had already been used to compare an eco-
system over a 50 years (Kong et al., 2016), but this approach did not
show relevant changes. Similarly, results found by Colvin et al. (2015)
in a study of a eutrophic lake aiming to understand the role of just two
species was not revealing. Ortiz et al. (2015) compared two similar
ecosystems, also using MTI, but their comparison also remained in-
dividual for some components’ behaviors. In this present study, we

Table 5
Ranking of the main key species (compartments) of the trophic models of the
Madeira River (Brazil) in the periods’ pre (2010–2011) and post (2012–2013)
dam implementation. The top five values of each ranking are highlighted in
bold.

Species/Compartments Pre Post

Aquatics bird 1° 34°
Brachyplatystoma rousseauxii 2° 1°
Cladocera 3° 5°
Brachyplatystoma vaillantii 4° 46°
Zungaro zungaro 5° 45°
Otters 6° 15°
Dolphins 7° 6°
Copepoda 8° 22°
Pinirampus pirinampu 9° 28°
Calophysus macropterus 10° 43°
Cichla pleiozona 27° 4°
Arapaima gigas 46° 2°
Other piscivorous 19° 3°
Triportheus spp. 24° 7°
Plagioscion squamosissimus 44° 8°
Semaprochilodus insignis 36° 9°
Other carnivorous 22° 10°

Fig. 5. Lindeman Spine for Madeira River (Brazil) in the periods pre (a) and post (b) dam implementation.

Fig. 6. Total (log) biomass of the trophic levels in pre and post dam models for
Madeira River (Brazil).
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improved this approach, indicating the signal changes and quantifying,
in an overall way, the magnitude of changes caused by dams.

The use of MTI as applied here to understand the changes in trophic
interaction within the ecosystem under damming is trailblazing. It first
provided compelling evidence of shifting in half of all possible inter-
actions among species. Second, it also indicates the compartments that
drive the most of the changes in compartments at the whole system.
Moreover, in the context applied here, MTI also allowed to find out if
key species also changed under the system impoundment. Lastly, but
importantly, biomass estimates used here assure reliance on the MTI
responses, since biomass is the most sensitive parameter to the mod-
eling robustness.

5. Conclusions

The EwE models developed in the Madeira River displayed the
changes caused by damming in a large aquatic tropical Amazonian
ecosystem. Results will be useful to inform and avert the effects of fu-
ture reservoir projects in the Amazon. Yet the approach used here
provided an overall understanding of the new ecosystem formed by the
application of the EBFM approach, which is still little explored in
freshwater ecosystems. One evident example is the need for catfish
species monitoring since the post-model showed that their catches de-
clined and the species were replaced by others better adapted to the
new environment.

As future recommendations, is important to bear in mind that these
fisheries have to be monitored since the environment formed in the
post-dam phase appears to be less resilient when compared to the pre-
dam. However, it is worth mentioning that the prediction of impacts on
fish and fisheries is still complex, as shown by the inversion of the
trophic relationships after dam construction. In this way, the ecosystem
context of these results, and the fact that they are pioneers in assess
Amazonian damming can help the local managers and government to
understand the impoundment effects and simulate changes in catches to

foresee future impacts of reservoirs on Amazon.
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