Effects of fire, food availability and vegetation on the distribution of the rodent *Bolomys lasiurus* in an Amazonian savanna

Viviane Maria Guedes Layme, Albertina Pimentel Lima¹ and William Ernest Magnusson

Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia, CP 478, 69011-970 Manaus-AM, Brazil

(Accepted 12 April 2002)

Abstract: We investigated the relative influences of vegetation cover, invertebrate biomass as an index of food availability and the short-term effects of fires on the spatial variation in densities of the rodent *Bolomys lasiurus* in an Amazonian savanna. Densities were evaluated in 31 plots of 4 ha distributed over an area of approximately 10×10 km. The cover of the tall grass (*Trachypogon plumosus*), short grass (*Paspalum carinatum*), shrubs and the extent of fire did not explain the variance in densities of *Bolomys lasiurus*. Food availability alone explained about 53% of the variance in *B. lasiurus* densities, and there was no significant relationship between insect abundance and vegetation structure. Fires had little short-term impact on the density of *Bolomys lasiurus* in the area we studied. As the species appears to respond principally to food availability, habitat suitability models based on easily recorded vegetation-structure variables, or the frequency of disturbance by fire, may not be effective in predicting the distribution of the species within savannas.

Key Words: Amazon, grassland, habitat, population, rat

INTRODUCTION

The structure of vegetation is an important component in models of habitat selection by vertebrates (Apollonio *et al.* 1998, Catling & Coops 1999, Jung *et al.* 1999, Roseberry & Sudkamp 1998). At large scales, most vertebrates are restricted to, or more common in, a limited range of habitats (Bos *et al.* 2002, Fitzgibbon 1997). However, at smaller scales, within gross habitat categories, more complex models are needed to distinguish the effects of habitat structure from factors that are more difficult to measure, such as food availability (Beutel *et al.* 1999, Pausas *et al.* 1997).

Burning can affect the short-term population dynamics of vertebrates directly through mortality due to the fire (Cook 1959, Dieni & Anderson 1999, Southgate & Masters 1996, Sutherland & Dickman 1999, Whelan 1995). Or indirectly, due to changes in the structure of the vegetation initiated by the fire (Newsome *et al.* 1975, Zedler *et al.* 1983). Burning can also improve the habitat for some species through effects on the vegetation, resulting in a post-fire succession (Pianka 1996).

In this study, we investigated the effects of the structure of the vegetation, and burning on populations of the rodent *Bolomys lasiurus* Lund 1959 in an area of Amazonian savanna. *Bolomys lasiurus* is the only rodent species captured frequently in the savannas of the area and its biology is relatively well known (Francisco *et al.* 1995, Henriques & Alho 1991, Magnusson *et al.* 1995). The diet of *B. lasiurus* includes fruits and invertebrates (Francisco *et al.* 1995, Magnusson & Sanaiotti 1987). The highest rates of growth and reproduction coincide with the periods of higher invertebrate availability (Francisco *et al.* 1995, Magnusson *et al.* 1995).

Previous studies of *B. lasiurus* in the region investigated habitat selection on a small scale (approximately 0.1 km²; Francisco *et al.* 1995, Magnusson *et al.* 1995). The aim of this study was to determine the relative importance of vegetation cover and food availability on the spatial distribution of *B. lasiurus* on a landscape scale ($\sim 10 \times 10$ km), and to assess the short-term effects of fire on the population density of *B. lasiurus*.

METHODS

Study area

The study was carried out from September 2000 to April 2001 in a region of Amazonian savanna near Alter do...
Chão, Santarém, Pará State, Brazil (2°31′S, 55°00′W). The mean temperature in the area is 27.7 °C and varies little throughout the year. The mean annual rainfall of 1420 mm is concentrated in the wet season, which usually occurs from December to May (Azevedo-Ramos et al. 1999). The savannas have a high cover of shrubs, such as Eugenia cf. biflora (L.) DC., Galactia jussiaeana Kunth, and grasses, such as Trachypogon plumosus Flugge and Paspalum carinatum Humb. & Bonpl. ex. Flugge (Magnusson et al. 2001).

Data collection

Data were collected in 31 plots of 3.75 ha, distributed as uniformly as possible throughout the 10 × 10 km of savannas in the area (Figure 1). In each plot, data were collected along four parallel 250-m-long transects spaced 50 m apart.

The relative density of B. lasiurus was recorded once per plot (n = 31) during the dry season (September to November), before the fires of 2000, and once in the wet season (March to May 2001), after the fires of 2000. In each capture session, 50 Sherman (23 × 8.0 × 9.0 cm) live traps spaced 20 m from each other were placed along the transects in each plot. Traps were baited with brazil nuts and a mixture of oatmeal and peanut butter. Traps were opened for 2 consecutive days in each plot, and were checked each day between 07h00 and 10h00. Previous studies have shown that this trapping period was sufficient to capture most of the animals before they became ‘trap happy’ (Francisco et al. 1995, Magnusson et al. 1995). The rats were marked by toe clipping with scissors. The method has little effect on other rodent species (Korn 1987, Wood & Slade 1990) and Bolomys lasiurus did not appear unduly stressed by this procedure as many individuals marked were recaptured the following day and none showed signs of infection (Francisco et al. 1995, Layme 2002, Magnusson et al. 1995). Since the sampled area and capture protocol were the same in all plots, we used the number of individuals captured as an index of relative abundance (Slade & Blair 2000). Records of recaptures within each capture period were not used in abundance estimates.

To compare B. lasiurus density with food availability, we measured the abundance of invertebrates in the plots. Invertebrates were captured with 35-cm diameter, 18-cm deep, pitfall traps containing about 150 ml of water mixed with detergent (5%) to break surface tension. Pitfalls were placed at 50-m intervals, giving 24 traps per plot. Traps were left in place for 24 h during the wet-season capture session. Invertebrates captured were separated by order and weighed to 0.0001 g. Food availability for rats was assessed by measuring the biomass (wet weight) of the main orders consumed by B. lasiurus (Coleoptera, Hemiptera, Aranae; Francisco et al. 1995). Although termites are frequently eaten by B. lasiurus (Francisco et al. 1995), they were not included in the index of food availability because they rarely fell into pitfall traps.

We measured vegetation cover for several strata that may have provided protection against predators for B. lasiurus. We estimated the per cent cover for plant life forms (trees, shrubs and grasses) using the point quadrat method (Bullock 1996). Points were spaced at 2-m intervals along the transect, giving 500 points per plot. At each point we recorded cover by noting the first type of plant in contact with a 2-mm diameter rod held vertically. Plant life forms > 2 m in height were considered part of the tree layer, while plants < 2 m height were classified as shrubs or grasses. We subdivided the grass layer into short grass and tall grass based on dominance of Trachypogon plumosus (tall grass) or Paspalum carinatum (short grass). More details on vegetation measurement are given in Magnusson et al. (1999). Vegetation variables were measured in the wet season of 1998, 3 y before the commencement of the study. Although fire may cause seasonal changes in vegetation structure, vegetative cover in neotropical savannas measured during the wet season is relatively stable and related to soil characteristics (Goodland & Pollard 1973), unless the area is protected from fire and the historical fire regime changed (Coutinho 1990, Miranda et al. 2002). Data are not available for other strata, but even 5 y after the initial measurement there was still a correlation of 0.86 between the cover of short grass measured in 1998 and 2002 (P. Pedrosa, pers. comm.).

We used the extent of burns as measures of the fire intensity in each plot. To determine the extent of burns that had occurred in the dry season of the previous year.
(2000), we noted the presence or absence of burned vegetation at 2-m intervals along survey lines in each plot between March and May 2001.

We used Systat 8.0 for all statistical analyses (SPSS Inc.). The relative influence of the environmental factors on B. lasiurus distributions were tested with multiple regression models. Variables were tested for multicollinearity before inclusion in models. The proportion of ground without cover was not included in analyses because that variable was strongly correlated with the proportion of area covered by shrubs and short grass (Paspalum).

RESULTS

There was a significant reduction in the number of Bolomys lasiurus (paired t-test: t_{30} = 4.2, P < 0.001) captured between the dry (before fire; N = 251, SE = 1.0) and wet (after fire N = 125, SE = 0.6) seasons. However, fires which affected 75% of the plots in 2000 were probably not responsible for this change in abundance, because there was little relationship between extent of burn and reduction in population density between the two sampling periods (r^2 = 0.13, F_{2,28} = 2.1, P = 0.15).

Multiple regression was used to relate the cover of tall grass Trachypogon plumosus (TG), short grass Paspalum carinatum (SG), shrubs (SH), the extent of burn in 2000 (B2000), and invertebrate biomass (IB) to the number of Bolomys lasiurus captured in the wet season (BL). These variables explained about 61% of spatial variation in density of B. lasiurus during the wet season (BL = −5.4 + 0.022TG + 0.022SG + 0.03SH − 0.0001B2000 + 8.2IB, r^2 = 0.63, F_{5,25} = 8.3, P < 0.001). Only invertebrate biomass contributed significantly to the model (P < 0.001). The covers of short grass (P = 0.13) and shrubs (P = 0.31), and the areas burned in 2000 (P = 0.99) showed no tendency to vary with B. lasiurus density. There was a tendency for tall-grass cover to covary with B. lasiurus density (P = 0.06). However, a model using only tall-grass cover explained only about 8% of B. lasiurus density in the wet season (r^2 = 0.08, F_{1,29} = 2.48, P = 0.13). There was no relationship between vegetation cover (tall grass, short grass and shrubs) and invertebrate biomass (IB = 0.42 + 0.001TG − 0.0004SG − 0.0005SH, r^2 = 0.05, F_{3,27} = 0.5, P = 0.71). A model using only invertebrate biomass explained about 53% of spatial variation in B. lasiurus density (r^2 = 0.53, F_{1,29} = 32.4, P < 0.001). More B. lasiurus were captured in areas with high invertebrate biomass (Figure 2).

DISCUSSION

Fires may have direct short-term effects on densities of animals and/or long-term indirect effects through habitat modification (Whelan 1995). However, the extent of fire in 2000 did not affect the rate of change in density or spatial variation in density of Bolomys lasiurus. This suggests that fire has little direct effect on densities of this species. In addition, we found no dead animals immediately after burns, and several recaptures occurred in the next sampling season providing further evidence for minimal fire impact on B. lasiurus.

A negligible short-term effect of fire on B. lasiurus populations has also been observed in areas of cerrado in Central Brazil (Vieira & Marinho-Filho 1998). Due to the high frequency of fire in the area it is possible that this species uses behavioural mechanisms to survive fires, such as use of underground shelters. Fire, at a local scale, did not influence reproduction or growth of B. lasiurus in another study in our area (Francisco et al. 1995). The density of B. lasiurus declined significantly between the late dry season of 2000 and the wet season of 2001. Either seasonal effects or a long-term population decline could result in this reduction, but only a longer study could distinguish between these hypotheses.

On a large scale, B. lasiurus densities are not associated with short-grass Paspalum carinatum or shrubs (this study), although there was a slight tendency to capture more individuals in areas with higher cover of tall-grass Trachypogon plumosus. However, at scales of tens of metres, in an area with little tall grass, B. lasiurus was associated with areas that had a combination of short-grass Paspalum carinatum and shrubs (Magnusson et al. 1995). Scale dependence in apparent habitat selection has also been reported for the small marsupial Ningaui yvonneae (Bos et al. 2002).

There was a strong effect of food availability on B. lasiurus abundance, despite the fact that we only...
evaluated availability of invertebrates for this omnivorous rodent. Many species of rodent have higher densities in sites with more food (Bergallo & Magnusson 1999, Fitzgibbon 1997) and a correlation between the magnitude of population growth and production of seeds has been shown for Mus musculus (Choquenot & Ruscoe 2000). Experimental manipulations of food availability often increase rodent densities (Desy & Batzli 1989, Taitt & Krebs 1983, Yunger 2002).

Invertebrate biomass alone explained 53% of the variation in the density of B. lasiurus between plots, indicating that food availability is a more important determinant of density for this species than gross habitat structure. This is important for conservation planning, because structural measures are often used as surrogate variables in habitat suitability indices (Beutel et al. 1999, Block et al. 1994, Roseberry & Sudkamp 1998). This may be a reasonable approach for evaluating suitability of areas with gross structural differences. For example, B. lasiurus is not known to maintain viable populations within forests. However, variations in density of this species within savannas were poorly predicted solely by structural characteristics. There was little relationship between vegetation cover (tall grass, short grass and shrubs) and food availability. It appears that direct measures of food resources, a measure of habitat quality (Beutel et al. 1999), are necessary to understand the distribution of this omnivorous rodent and that structural habitat variables are poor surrogates.

ACKNOWLEDGEMENTS

We thank Ana Albernaz and the residents of Alter do Chão who made the logistics of this study feasible. For help in the field, we are grateful to Willames Souza da Costa and Laudelino Sardinha de Vasconcelos. Financial support was provided by Programa Piloto para a Proteção das Florestas Tropicais do Brasil – PPG-7 – Subprograma de Ciências e Tecnologia – CCE/FINEP/INPA (nº64.00.0021.00) and a CNPq postgraduate scholarship to V. M. G. Layme.

LITERATURE CITED

Effect of fire, food and vegetation on Bolomys

