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Abstract

Occurrence patterns are partly shaped by the affinity of species with habitat

conditions. For winged organisms, flight-related attributes are vital for eco-

logical performance. However, due to the different reproductive roles of

each sex, we expect divergence in flight energy budget, and consequently

different selection responses between sexes. We used tropical frugivorous

butterflies as models to investigate coevolution between flight morphology,

sex dimorphism and vertical stratification. We studied 94 species of Amazo-

nian fruit-feeding butterflies sampled in seven sites across 3341 ha. We used

wing–thorax ratio as a proxy for flight capacity and hierarchical Bayesian

modelling to estimate stratum preference. We detected a strong phylogenetic

signal in wing–thorax ratio in both sexes. Stouter fast-flying species pre-

ferred the canopy, whereas more slender slow-flying species preferred the

understorey. However, this relationship was stronger in females than in

males, suggesting that female phenotype associates more intimately with

habitat conditions. Within species, males were stouter than females and sex-

ual dimorphism was sharper in understorey species. Because trait–habitat
relationships were independent from phylogeny, the matching between

flight morphology and stratum preference is more likely to reflect adaptive

radiation than shared ancestry. This study sheds light on the impact of flight

and sexual dimorphism on the evolution and ecological adaptation of flying

organisms.

Introduction

Species traits and occurrence patterns result from a

series of ecological and evolutionary processes (Ack-

erly, 2003; Thomas et al., 2016). Among them, adap-

tive radiation and niche conservatism are

acknowledged as the opposite ends of a spectrum

(Ackerly, 2009). Whilst adaptive radiation suggests that

successful diversification is due to changes in species

attributes in response to ecological opportunities pro-

moted by available niche space (e.g. colonization of

new, vacant areas), niche conservatism describes the

tendency of closely related species to retain similar

characteristics, thus minimizing evolutionary change

(Harvey & Pagel, 1991; Ackerly, 2003, 2009). In part,

niche conservatism reflects phylogenetic signal, that is

the weight of phylogenetic relatedness on trait evolu-

tion. Although phylogenetic signal alone does not

directly denote niche conservatism, it is a necessary

evidence for its existence (Losos, 2008). For that rea-

son, the estimation of the phylogenetic constraint in

traits and in trait–habitat relationships helps under-

stand the mechanisms of underlying evolutionary

selection (Ackerly, 2009) and their impact on current

ecological patterns.

Besides biotic interactions and stochastic processes,

species are locally assembled by environmental pres-

sures that select for traits fit to habitat conditions (Rick-

lefs, 2004; Cavender-Bares et al., 2009). Thus, species

tend to occur in habitats compatible with their func-

tional traits (e.g. Arnan et al., 2013; Grac�a et al., 2015).

For flying organisms, flight-related traits should be

important in determining fitness, as the ability to take

flight improved foraging, mate search and avoidance of

unfavourable conditions (Norberg, 1990; Grimaldi &
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Engel, 2005). For instance, bats, birds and butterflies

that forage near flat and smooth surfaces (forest floor,

water surface) have modified body aerodynamics to

glide in ground effect and enhance flight performance

at lower costs (Rayner, 1991; Cespedes et al., 2014; Kim

et al., 2014). In particular, the transition from under-

storey to canopy habitats generates gradients of sun-

light availability, temperature, humidity and habitat

complexity (Richards, 1996; Ricklefs, 2004), and species

are expected to be better adapted to a particular stra-

tum depending on the performance of their attributes.

This results in the common pattern of stratification of

species richness, composition and traits from lower to

higher strata in tropical forests (Basset et al., 2001,

2015; Walther, 2002; Giovanni et al., 2015; Marques

et al., 2015). Given the essential role of flight for

winged organisms, we may expect vertical stratification

to reflect adaptation of flight-related traits. For Morpho

butterflies, for example, wing shape changed at the

evolutionary switch from understorey to canopy, sug-

gesting that stratum preference is intimately related to

flight behaviour, energy budget and mate location strat-

egy (DeVries et al., 2010). However, thoracic measure-

ments may provide further insights on this matter, as

thorax kinematics also plays a central role in flight

behaviour (Dudley, 2000). Further, the difference in

wing shape has only been observed in males (DeVries

et al., 2010), which suggests that sexual dimorphism

may modulate such stratification patterns.

Males and females from the same species often differ

in traits related to morphology, physiology and beha-

viour, and such disparities are thought to arise from the

asynchrony of resource allocation (Lammers et al.,

2001; Isaac, 2005), especially regarding reproduction

(Badyaev, 2002). Commonly, males will search and

compete for females, whereas females will choose from

competing males and generate the offspring (Petrie

et al., 1991; Miller, 2014). Such general background

leads to disproportional investments in traits between

sexes, with females investing relatively more in the

reproductive apparatus and the brood in most cases

(Thornhill & Alcock, 1983; Miller, 2014). There is a

reported negative correlation between muscle and ovar-

ian mass in flying dimorphic organisms, so that flight-

less females tend to invest more in ovary mass relative

to muscle mass when compared to macropterous forms

(Roff, 1986; Mole & Zera, 1993; Zera & Denno, 1997).

Therefore, if flight and reproduction indeed compete

over the resource share (e.g. Rankin & Burchsted,

1992; Wheeler, 1995), then sexual dimorphism per se

should reflect this trade-off (Jervis et al., 2005).

For this study, we elected tropical fruit-feeding but-

terflies as models to analyse the linkages between flight

morphology, stratum preference and sex dimorphism.

Frugivorous butterflies are useful because they display

vertical stratification in tropical forests, which is rela-

tively easy to assess using canopy and understorey bait

traps (DeVries, 1988; DeVries & Walla, 2001; Fermon

et al., 2005). Although many studies have offered

hypotheses about the causes and implications of this

vertical pattern (e.g. Beccaloni, 1997; Schulze et al.,

2001), the evolutionary relationship between stratum

preference and butterfly functional traits (e.g. DeVries

et al., 2010) and the mechanisms behind the canopy/

understorey species segregation have received less

attention (Fordyce & DeVries, 2016). Additionally, sev-

eral morphological traits of butterflies are known to

reflect flight performance, for example relative thorax

mass, forewing area, wing loading and wing centroid

position (Chai, 1990; Chai & Srygley, 1990; Dudley,

2000; Berwaerts et al., 2002; DeVries et al., 2010; Ces-

pedes et al., 2014). In particular, the allometry ratio

between wing length and thorax volume (wing–thorax
ratio) expresses flight power and speed (Chai, 1990;

Hall & Willmott, 2000). While lower ratios indicate spe-

cies with high-speed flights and relatively high wing

beat frequencies, species with higher values are slow

flying and beat their wings at lower frequencies (Hall &

Willmott, 2000). Finally, both male and female fruit-

feeding species are able to fly, so that we can test for

the effect of sexual dimorphism on relative investment

in flight.

In this context, we formulated the four following

questions: (i) What is the magnitude of the phyloge-

netic signal in the evolution of flight morphology

(wing–thorax ratio)? (ii) Has adaptive radiation been

stronger than phylogenetic relatedness in driving the

matching between flight morphology and vertical strati-

fication? If so, we expected this association to hold

independently of phylogenetic signal in wing–thorax
ratio and in vertical stratification (see Fordyce & DeV-

ries, 2016). (iii) Is there sex dimorphism in flight mor-

phology and in vertical stratification? (iv) Is sex

dimorphism in flight morphology related to vertical

stratification? These questions were addressed using an

original, large data set on morphological and ecological

traits of frugivorous nymphalids obtained with stan-

dardized sampling at seven locations across the Amazon

basin.

Materials and methods

Material origin

The species used in our study are all native to the Ama-

zon rainforest. In total, we covered a 3341-ha area across

seven localities in the Brazilian States of Roraima, Ama-

zonas and Acre (Fig. S1). Roraima State: (1) Viru�a
National Park (1°27049. 28″N, 61°1030.59″W) encom-

passes a mosaic landscape of white sand forests on sandy

soils and open ombrophilous forests on clayey soils

(Damasco et al., 2013). Amazonas State: the forest frag-

ments in (2) Dimona (2°20010.11″S, 60°06046.80″W), (3)

Porto Alegre stations (2°21016.07″S, 59°57026.47″W) and
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(4) Colosso stations (2°24017.83″S, 59°52017.43″W); (5)

the continuous dense ombrophilous forest on clayey soils

at KM-41 reserve (2°26056.87″S, 59°46011.26″W) and (6)

the lowland dense ombrophilous forest on hydromorphic

soils adjacent to the BR-319 road (IBGE, 1997) (3°41031″
S, 60°19052″W). Acre State: (7) Chandless State Park

(9°2301″S, 69°55037″W) comprises an open ombrophi-

lous forest on clayey soils with scattered patches of bam-

boo- and palm-dominated vegetation (PPBio, 2017).

Sampling was conducted using understory (height:

1.5 m–2.2 m) and canopy (height: ≥ 15 m) traps baited

with a rotting mixture of plantains and sugarcane juice.

Each area was visited one time between May 2015 and

October 2016. We followed studies on vertical stratifi-

cation of butterfly and other insects to choose the

appropriate height for canopy traps (e.g. DeVries et al.,

1997; Grimbacher & Stork, 2007), while contemplating

the particular forest structure in each sampling site.

Our sampling units were 250-m-long transects, at least

1 km apart, and were composed of three canopy and

three understorey traps (subsamples) at least 50 m

apart (one sampling unit = six traps) within each tran-

sect. The seven study sites accounted for 50 sampling

units (transects) and 300 subsamples (traps). Trap

activity ran for five consecutive days with 24-hour

intervals for visiting to remove individuals captured

and replace the bait. Butterflies were retrieved for sub-

sequent identification and measurements and are

housed at the Invertebrate Collection of the National

Institute for Amazonian Research (INPA), Manaus City,

Brazil.

Morphological traits and stratum preference

We measured 1092 individuals when fresh, that is prior

to dehydration for mounting and within the first twelve

hours of sampling. Also, the estimation of all morpho-

logical traits and habitat preference was performed for

each sex separately. We obtained three morphological

measurements: forewing length, thorax length and tho-

rax width. Using a millimetre ruler, we estimated

forewing length as the linear distance between the base

of the discal cell and the interception of vein R5 with

the wing margin (Cespedes et al., 2014) on the ventral

surface. To calculate thoracic volume, we firstly mea-

sured thorax length, as the distance between the vertex

and the thoracic–abdominal junction in lateral view,

and thorax width at its maximum distance in ventral

view. Following Hill et al. (2001), thorax volume was

given by:

tv ¼ tl � tw2

where tl was thorax length and tw was thorax width.

Further, we calculated wing–thorax ratio by dividing

the squared forewing length by the thoracic volume to

estimate body allometry. Lower values indicate stouter

bodies and faster flights, whereas higher values indicate

slenderer bodies and slower flights (Hall & Willmott,

2000).

To estimate the preference of adult butterflies for a

particular stratum, we ran a hierarchical Bayesian

model with 5000 Markov chain Monte Carlo permuta-

tions and a 1000 generations burn-in, using butterfly

occurrence in either canopy or understorey as input

(Fordyce & DeVries, 2016). Values close to 1 indicate

high canopy fidelity, whereas those close to 0 indicate

preference for the understorey. The analysis was con-

ducted in R (R Development Core Team, 2017) using

package bayespref 1.0 (Fordyce et al., 2011) (data are

available on https://doi.org/10.5061/dryad.db827).

Phylogenetic signal in wing–thorax ratio

The phylogenetic relationships among sampled species

(Fig. 1) were reconstructed based on the nymphalid gen-

eric topology proposed by Wahlberg et al. (2009), with

further resolution whenever available, for example

Ortiz-Acevedo & Willmott (2013) and Penz et al. (2013).

Genera without a formal proposal for species relatedness

(e.g. Eunica) were treated as polytomies. Because branch

length data were not available (nor could be estimated)

for all studied lineages, they were standardized to 1 in all

cases (Garc�ıa-Barros, 2015). We extracted the mean

value of wing–thorax ratio for each species and tested for

phylogenetic signal in both sexes using k (Pagel, 1999).

The analyses were performed in the statistical environ-

ment R (R Development Core Team, 2017).

Correlation between flight morphology and stratum
preference

Before performing the analyses, wing–thorax ratio val-

ues were log10 transformed. We assessed the association

between WTR and stratum preference using Phyloge-

netic Generalized Least Squares models (PGLS; Grafen,

1989) in order to account for any phylogenetic autocor-

relation in the residuals of this relationship. Our analy-

sis assumed the Ornstein–Uhlenbeck model of trait

evolution (Martins & Hansen, 1997), which posits that

continuous characters tend to evolve around a certain

value rather than randomly and, thus, is more realistic

than the popular Brownian motion model (Paradis,

2012). PGLS analyses were conducted separately for

males and females. We also analysed whether absolute

thorax volume (regardless of wing size) and wing

aspect ratio correlated with stratum preference in paral-

lel PGLS analyses (see Supplementary Information for

details).

Sexual dimorphism in morphology and stratum
preference

We investigated whether males and females from the

same species differed regarding wing–thorax ratio and
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stratum preference. We firstly selected the 40 species

for which we had sampled both sexes, calculated the

wing–thorax ratio of each individual butterfly and then

extracted the mean value per species per sex. For each

species, we then calculated the difference between male

and female mean values. This difference thus repre-

sented sexual dimorphism in wing–thorax allometry.

For the same 40 species, we accessed sexual dimor-

phism in stratum preference by estimating the

difference in the mean canopy fidelity of males and

females. Finally, we used the average value of canopy

fidelity between males and females to score the species

overall stratum preference.

To determine whether sexual dimorphism was

greater than expected by chance (i.e. mean difference

between sexes = 0) in both wing–thorax ratio and stra-

tum preference, we performed PGLS analysis. We fur-

ther tested whether sexual dimorphism correlated with

Fig. 1 Phylogenetic tree reconstructed considering all 94 studied species. All branch lengths are standardized to 1.
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stratum preference by running PGLS and assuming the

Ornstein–Uhlenbeck model of trait evolution, as before.

Because we were interested in quantifying dimorphism

per se (and not whether males were stouter or slenderer

than females), we used absolute differences in wing–
thorax ratio.

Results

Overall, we studied 94 species of Amazonian fruit-feed-

ing butterflies, from which we had 73 males and 61

females (Table S1). For males, wing–thorax ratio ranged

from 1.31 in Prepona narcissus to 21.76 in Chloreuptychia

agatha, whereas for females, it ranged from 2.63 in His-

toris odius to 24.40 in Chloreuptychia herseis.

We detected a strong evidence for phylogenetic signal

in the wing–thorax ratio of both males (k = 0.99,

P < 0.001) and females (k = 0.99, P < 0.001); thus,

wing–thorax ratio covariance among species is stronger

than expected under no phylogenetic autocorrelation.

Our PGLS models retrieved negative relationships

between butterfly wing–thorax ratio and canopy fidelity

(Fig. 2). For both males (t2, 71 = –2.740, R² = 0.20,

P = 0.007) and females (t2, 59 = �2.138, R² = 0.35,

P = 0.036), stouter species tended to associate with the

canopy and became more slender towards the under-

storey, although this relationship was stronger in females

(as judged from R²). Most species indeed showed a pref-

erence for either canopy (canopy fidelity > 0.8) or

understorey (< 0.2), whereas a minority showed transi-

tional values, not exhibiting a clear preference (Fig. 2).

The parallel PGLS tests revealed that neither absolute

thorax volume (Fig. S2, males: t2, 71 = 1.374, P = 0.17;

females: t2, 59 = 1.592, P = 0.11) nor wing aspect ratio

(Fig. S3, males: t2, 71 = 1.635, P = 0.10; females: t2,

59 = 1.282, P = 0.20) correlated with canopy fidelity.

Regarding between-sex differences, we found that

females were significantly more slender than males of

the same species (Fig. 3, t1, 39 = 6.820, l = 1.33,

P < 0.001), but did not differ from conspecific males in

stratum preference (Fig. 3, t1, 39 = �0.414, l = �0.01,

P = 0.681). Additionally, sexual dimorphism in wing–
thorax ratio decreased as canopy fidelity increased

(Fig. 4, t2, 38 = �3.054, R² = 0.21, P = 0.004), thus indi-

cating that in canopy species, males and females had

more similar flight morphology than in those associated

with the understorey.

Discussion

This study represents an endeavour to address the evo-

lutionary processes underlying the disruption of species

diversity and composition between understorey and

canopy layers in tropical forests, while attempting to

elucidate whether and how sexual dimorphism inter-

feres in habitat preference. We tackled flight morphol-

ogy as a key factor for ecological performance and

evolutionary success of a diverse group of butterflies

(fruit-feeding guild).

Our results suggest that flight mechanisms have been

evolving under the strong constraint of species related-

ness. Thorax and wing kinematics are determinants of
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Fig. 2 PGLS models for the relationship between canopy fidelity (0 = understorey only; 1 = canopy only) and wing–thorax ratio (log-

transformed). Each dot represents a species (males, n = 73; females, n = 61).
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flight characteristics of butterflies (Dudley, 2000; DeV-

ries et al., 2010; Cespedes et al., 2014). Therefore, an

evolutionary constraint on these morphological features

should affect directly occurrence patterns, as butterflies

rely largely on flight when adults. Similar to other

winged organisms, flight represents a milestone in the

evolution of butterflies for enhancing their aptitudes in

mating, foraging and survival (Srygley, 1994, 2004; Gri-

maldi & Engel, 2005). Accordingly, slightest phenotypic

changes in flight-related attributes may produce delete-

rious outcomes, and evolutionary pressures may be in

play to maintain wing–thorax ratio evolving close to

specific values in each clade. This results in closely

related species being more similar to each other than

expected from random sampling the phylogenetic tree

(Blomberg & Garland, 2002). The robust phylogenetic

signal in wing–thorax ratio of both sexes may also be

the initial evidence that flight morphology is undergo-

ing niche conservatism (Wiens & Graham, 2005; Losos,

2008). By estimating the rates of trait evolution, one

could gain insights into whether flight-related attributes

have been kept from diverging among closely related

species and how this could have impacted the evolution

of flying organisms.

Although several ecological studies have observed

and quantified the vertical stratification in tropical for-

ests (DeVries, 1988; Walther, 2002; Kr€omer et al., 2007;

Basset et al., 2015), the evolutionary causes of this pat-

tern are much less known (e.g. Fordyce & DeVries,

2016). For butterflies in particular, some hypotheses for

the understorey/canopy segregation involve the differ-

ence in sunlight levels (DeVries, 1988) and host plant

vertical distribution (Beccaloni, 1997). Here, we found

that the association between flight morphology and

stratum preference holds independently from phyloge-

netic relatedness among species, and independently

from the phylogenetic signal in vertical stratification

(Fordyce & DeVries, 2016) and in wing–thorax ratio.

We hypothesize that stouter species (powerful and

high-speed flying) benefit from the higher temperature

of canopies to sustain flight power and speed. Consider-

ing that habitat complexity and aerial-hawking preda-

tion pressure increases towards upper forest layers

Fig. 3 Sexual dimorphism regarding wing–thorax ratio and stratum preference. The dashed line represents the mean difference expected

under the null hypothesis. The filled red dots represent the observed mean difference. Each empty dot represents a species (n = 40).
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species (n = 40).
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(Schulze et al., 2001; Ricklefs, 2004), high-speed flying

butterflies may use higher canopy temperature to boost

their flight muscles, thus facilitating navigation and

escape from predation. In contrast, the flight morphol-

ogy of slenderer species fits better the understorey con-

ditions, where they are seemingly more successful. Due

to the average low amount of light reaching the under-

storey in tropical forests (< 15% on average, Mont-

gomery & Chazdon, 2001), the supply of environmental

heat needed by ectotherms to activate their metabolism

is more limited at lower forest strata, and costly high-

speed flights could be unfavourable. We further theo-

rized that species in the understorey might rely more on

thermoregulation (e.g. shivering, Srygley, 1994), as

external energy is restricted. So, we also tested whether

thorax mass alone, a surrogate for potential to generate

heat from muscles, was associated with vertical stratifi-

cation in phylogenetically controlled analysis. The non-

significant relationships in males and the marginally

significant increase in thorax mass towards the canopy

in females contested our expectations though. However,

we believe this subject still needs proper investigation,

especially through direct measures of thermoregulation

and under experimental perspectives.

Interestingly, the correlation between wing–thorax
ratio and forest stratum was stronger in females

(R² = 0.35) than in males (R² = 0.22), thus indicating

that female phenotype varies more between strata than

that of males. Regardless of sex, flying is essential for

butterfly routine activities, such as searching for food,

escaping predation and dispersal (Kingsolver, 1983; Sry-

gley, 2004; Niitep~old et al., 2011). Nevertheless, males

and females differ in reproduction: males may perch or

patrol territories for mating encounters, whereas

females are engaged in finding suitable hosts for larvae

(Lederhouse et al., 1992; Wiklund, 2003; Bergman

et al., 2007). Because females face additional extrinsic

limitations to successfully complete the reproductive

cycle, that is host plant distribution, female phenotype

should associate more strongly with environmental gra-

dients, such as vertical stratification. This intricate

matching between flight morphology, optimal condi-

tions for flight and host occurrence may help explain

some reported divergence between female and host

stratification. For instance, some stout-bodied species

that inhabit the canopy and descend to the understorey

for oviposition (e.g. Temenis laothoe and Zaretis itys) are

associated with plants growing in areas that resemble

canopy conditions of light, temperature and moisture,

such as understorey gaps and forest edge (Muyshondt,

1973; DeVries, 1987). This further supports the argu-

ment that sunlight and its correlates are important in

determining vertical diversity patterns (DeVries, 1988).

The sexual dimorphism analyses showed that males

did not differ from females regarding stratum prefer-

ence, meaning that, on average, both sexes fly either in

the understorey or the canopy. Conversely, females

were significantly slenderer than males from the same

species independently from phylogeny (Fig. 3). This

was somewhat expected, especially considering the

reported trade-off between flight and reproduction (oo-

genesis-flight syndrome hypothesis, Johnson, 1963; Jer-

vis et al., 2005; Gibbs & Van Dyck, 2010) and that

different reproductive roles likely drive morphological

divergence between sexes (Badyaev, 2002). Females

prioritize abdominal mass in their energy budget

because of reproductive duties (Thornhill & Alcock,

1983; Marden & Chai, 1991). As a consequence, they

possess a smaller quantity of flight muscles per body

mass unit (Berwaerts et al., 2002) and may fly most of

the time near maximum energy output (Berrigan,

1991). Males, on the other hand, are able to invest

more in flight power, which is advantageous because

flight performance often determines the winner in

male–male mating contests (Thornhill & Alcock, 1983).

Further, in perching species, higher thoracic capacity

may enable the constant energetic outbursts that males

need for taking off to intercept potential mates and

competing males (Van Dyck et al., 1997; Dudley, 2000;

Berwaerts & Van Dyck, 2004). Thus, our results support

the assumption that flight and reproduction may

indeed compete for resources (Wheeler, 1995).

Vertical stratification had also an effect on flight

sexual dimorphism, as our PGLS model indicated that

males and females of understorey species differed

more strongly in wing–thorax ratio compared to

canopy inhabitants (Fig. 4). Because upper layers

have more complex forest structure and a higher pre-

dation pressure (Schulze et al., 2001; Ricklefs, 2004),

females may have evolved bodies as robust as those

of their conspecific males, so that they could benefit

from the optimal conditions for high-speed flight as

well. After seeing our results, we believe that female

phenotype is driving the sex dimorphism in wing-
thorax ratio, because their flight morphology varies

more strongly between strata than that of males

(Fig. 2).

In summary, our study revealed that (i) wing–thorax
ratio has a strong phylogenetic signal, (ii) flight mor-

phology explains in part the vertical stratification of

tropical fruit-feeding nymphalids, (iii) females are sig-

nificantly more slender than males, which possibly

reflects less investment in flight to redirect resources for

reproduction and (iv) sexual dimorphism is more

accentuated in understorey species. As these conclu-

sions were independent of phylogenetic relatedness, we

conclude that evolutionary processes related to adaptive

radiation have been stronger than phylogenetic con-

straint in the matching between flight morphology and

stratum preference. Nonetheless, the three-way associa-

tion of stratum preference, flight morphology and sex-

ual dimorphism revealed much unexplained variation,

suggesting that other factors are important in driving

habitat stratification among species. Our findings shed
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light on the background of the coevolution of flight

morphology, habitat preference and sexual dimorphism

in winged organisms.
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