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Abstract

Aim: To evaluate the relative importance of climatic versus soil data when predict-

ing species distributions for Amazonian plants and to gain understanding of poten-

tial range shifts under climate change.

Location: Amazon rain forest.

Methods: We produced species distribution models (SDM) at 5-km spatial resolu-

tion for 42 plant species (trees, palms, lianas, monocot herbs and ferns) using spe-

cies occurrence data from herbarium records and plot-based inventories. We

modelled species distribution with Bayesian logistic regression using either climate

data only, soil data only or climate and soil data together to estimate their relative

predictive powers. For areas defined as unsuitable to species occurrence, we

mapped the difference between the suitability predictions obtained with climate-

only versus soil-only models to identify regions where climate and soil might restrict

species ranges independently or jointly.

Results: For 40 out of the 42 species, the best models included both climate and

soil predictors. The models including only soil predictors performed better than the

models including only climate predictors, but we still detected a drought-sensitive

response for most of the species. Edaphic conditions were predicted to restrict spe-

cies occurrence in the centre, the north-west and in the north-east of Amazonia,

while the climatic conditions were identified as the restricting factor in the eastern

Amazonia, at the border of Roraima and Venezuela and in the Andean foothills.

Main conclusions: Our results revealed that soil data are a more important predic-

tor than climate of plant species range in Amazonia. The strong control of species

ranges by edaphic features might reduce species’ abilities to track suitable climate

conditions under a drought-increase scenario. Future challenges are to improve the

quality of soil data and couple them with process-based models to better predict

species range dynamics under climate change.
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1 | INTRODUCTION

Climate is an important determinant of species ranges at broad spa-

tial scales, so an understanding of how climate change will affect

ecological systems is urgently needed. The most obvious effect that

climate change can be expected to have on biodiversity is to shift in

species’ geographical distributions (Parmesan & Yohe, 2003; Thuiller,

2007). To avoid extinction, species must either track suitable climate

or adapt to novel climatic conditions. Some species are favoured by

climate changes and expand their ranges, but range shifts may be

decoupled from climatic tracking by other factors that restrict spe-

cies distributions, such as non-environmental spatial constraints, land

use, biotic interactions and soil conditions (Blach-Overgaard, Sven-

ning, Dransfield, Greve, & Balslev, 2010; Eiserhardt, Svenning, Kis-

sling, & Balslev, 2011; Hayes & Sewlal, 2004; Marage & G�egout,

2009; Wisz et al., 2013). Identification of both climatic and non-cli-

matic constraints on broad-scale species distributions is therefore

necessary to better predict how species will respond to climate

change.

Recent projections of global climate models predict significant

climate change in Amazonia by the end of the 21st century (Boisier,

Ciais, Ducharne, & Guimberteau, 2015), which would affect the plant

diversity patterns in important ways (Olivares, Svenning, van Bode-

gom, & Balslev, 2015). It is already known that soil conditions affect

species occurrence patterns in Amazonia, and therefore they deserve

special attention in the modelling of plant distributions. Edaphic

heterogeneity is tightly related to geological features, such as soil

age and mineralogical composition of the parent material (Irion,

1978; Quesada et al., 2010). Although climate is relatively uniform

over large parts of the Amazon basin, geological formations differ

widely in age and geochemistry. Many studies suggest that soils

exert the main control on broad-scale floristic patterns in Amazonia

(Fittkau, Junk, Klinge, & Sioli, 1975; Higgins et al., 2011; Sombroek,

2000; Tuomisto & Poulsen, 1996). However, studies focused on the

southern and northern extremes of Amazonia show significant turn-

over of species along precipitation and temperature gradients (ter

Steege et al., 2006; Toledo et al., 2011) suggesting that climatic con-

ditions may be important in constraining species ranges only at the

borders of the biome. Although both climate and soil are considered

important determinants of broad-scale floristic patterns in Amazonia,

there has been no evaluation of their relative contributions to pre-

dicting plant species ranges.

Several studies have used spatial correlative models to predict

current species distributions (Buermann et al., 2008; Moscoso, Alber-

naz, & Salom~ao, 2013; Vedel-Sørensen, Tovaranonte, Bøcher, Bal-

slev, & Barfod, 2013) and potential range shifts under climate

change for Amazonian species (Miles, Grainger, & Phillips, 2004;

Feeley, Malhi, Zelazowski, & Silman, 2012; Thomas, Caicefo, Loo, &

Roeland, 2014; Thomas et al., 2012). However, either these studies

relied on climatic and remote sensing variables, or used proxies, such

as coarse-resolution polygon-based maps of ecoregions or soil types,

to represent environmental factors other than climate (Feeley et al.,

2012; Thomas et al., 2014; Vedel-Sørensen et al., 2013). Soil

variables are often neglected in species distribution models (SDM)

because accurate and ecologically relevant data covering large

extents are scarce. Recent efforts to develop digital soil maps, such

as SoilGrids, have increased the availability of high-resolution grid-

based soil information (Hengl et al., 2014), which include chemical

and physical properties of the soil, as well as occurrence probabilities

of soil classes. These new soil products may predict plant species

range better than the previously used coarse-resolution proxies.

Here, we present the first broad-scale evaluation of how soil and

climate variables interplay to predict plant species ranges in Amazo-

nia using SDMs and a diverse set of climate and soil data layers. We

focused on 42 plant species from phylogenetically distant groups

that represent different growth forms: trees, palms, lianas, ferns and

monocot herbs. We aimed to: (1) test whether the inclusion of soil

variables improves the performance of climate-based SDMs; (2)

quantify the unique and joint contributions of climate and soil vari-

ables in explaining species distributions; (3) quantify the relative

importance of individual variables in predicting species distributions;

and (4) predict areas where soil and climatic conditions, indepen-

dently and jointly, restrict species ranges. We expect that inclusion

of a physiologically relevant set of edaphic predictors in SDM in

combination with climate variables would produce more accurate

predictions of species distributions and shed light on how soil and

climate changes may interact to drive shifts in species ranges in

Amazonia.

2 | MATERIALS AND METHODS

2.1 | Species and Environmental data

2.1.1 | Species data

We focused on 42 plant species (Table 1) to investigate the predic-

tive performance of climate and soil variables for mapping species

distributions. The species were selected to cover a wide spectrum of

plant sizes and life history strategies (trees, palms, lianas, monocot

herbs and ferns) as well as different range sizes (some restricted to

Amazonian rain forests and others also found in other biomes). Spe-

cies occurrence records were obtained from two sources: plot-based

inventories and herbarium records. To ensure data consistency, we

targeted species that are easy to identify in the field. We included

only species that had more than 20 presence records (see further

details: Table S1, Appendix S1 in Supporting Information).

2.1.2 | Environmental data

As climate predictors, we used both WorldClim variables and remote

sensing data. Out of the available WorldClim data (http://

www.worldclim.org), we used the 19 bioclimatic variables, which

express 11 temperature and 8 precipitation metrics at about 1-km

resolution (WorldClim version 1.4; Hijmans, Cameron, Parra, Jones,

& Jarvis, 2005). The WorldClim variables were produced by spatial

interpolation between meteorological stations, which creates high
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uncertainty in the estimated climate data in many parts of Amazonia,

where stations are sparse. Therefore, we also included precipitation

data estimated by the Tropical Rainfall Measuring Mission (TRMM)

satellite (Kummerow, Barnes, Kozu, Shiue, & Simpson, 1998; http://

disc.sci.gsfc.nasa.gov). We converted monthly data from 1998 to

2004 of the TRMM product 3B43 V6 at a 0.25° resolution (about

TABLE 1 List of the 42 Amazonian plant species, geographical regions of occurrence and the number of occurrence records (N) after
removing outliers and applying a spatial filtering procedure with the indicated radius distance (d) to reduce sample bias. The geographical
regions were classified as Amazonian rain forest (AM), Central American rain forest (CA), Cerrado biome (CE) and Atlantic rain forest (AT)

Plant group Species Family Geographical distribution N d (km)

Tree Caryocar glabrum (Aubl.) Pers. Caryocaraceae AM 375 50

Tree Caryocar microcarpum Ducke Caryocaraceae AM 106 25

Tree Couepia dolichopoda Prance Chrysobalanaceae AM 24 5

Tree Eperua falcata Aubl. Fabaceae AM 72 50

Tree Henriquezia nitida Spruce ex Benth. Rubiaceae AM 43 5

Tree Inga alba (Sw.) Willd. Fabaceae AM, CA, CE, AT 534 50

Tree Jacaranda copaia (Aubl.) D. Don Bignoniaceae AM, CA 513 50

Tree Jacaratia spinosa (Aubl.) A. DC. Caricaceae AM, CA, CE, AT 238 50

Tree Manilkara huberi (Ducke) A. Chev. Sapotaceae AM 178 50

Tree Mezilaurus itauba (Meisn.) Taub. ex Mez Lauraceae AM 318 50

Tree Minquartia guianensis Aubl. Olacaceae AM, CE 183 50

Tree Nectandra turbacensis (Kunth) Nees Lauraceae AM, CA, CE 89 50

Tree Poecilanthe effusa Huber Fabaceae AM 154 50

Tree Simarouba amara Aubl. Simaroubaceae AM, CA, CE, AT 576 50

Tree Siparuna decipiens (Tul.) A. DC. Siparunaceae AM 411 50

Palm Astrocaryum aculeatum G. Mey. Arecaceae AM 96 50

Palm Bactris acanthocarpa Mart. Arecaceae AM, AF 108 50

Palm Iriartea deltoidea Ruiz & Pav. Arecaceae AM.CA 133 50

Palm Leopoldinia pulchra Mart. Arecaceae AM 45 15

Palm Oenocarpus bataua Mart. Arecaceae AM 106 50

Palm Socratea exorrhiza (Mart.) H. Wendl. Arecaceae AM, CA 210 50

Liana Callichlamys latifolia (Rich.) K. Schum. Bignoniaceae AM, CA, CE, AT 231 50

Liana Machaerium amplum Benth. Fabaceae AM, CE, AF 83 20

Liana Machaerium ferox (Mart. ex Benth.) Ducke Fabaceae AM 62 5

Liana Machaerium multifoliolatum Ducke Fabaceae AM 41 15

Liana Martinella obovata (Kunth) Bureau & K. Schum. Bignoniaceae AM, CA, CE 162 50

Liana Pleonotoma jasminifolia (Kunth) Miers Bignoniaceae AM, CE 83 15

Liana Rourea cuspidata Benth. ex Baker Connaraceae AM, CE 74 30

Monocot herb Goeppertia fragilis (Gleason) Borchs. & S. Su�arez Marantaceae AM 20 5

Monocot herb Goeppertia loeseneri (J.F. Macbr.) Borchs. & S. Su�arez Marantaceae AM 33 5

Monocot herb Goeppertia zingiberina (K€orn.) Borchs. & S. Su�arez Marantaceae AM 69 20

Monocot herb Heliconia schumanniana Loes. Heliconiaceae AM 93 10

Monocot herb Hylaeanthe hexantha (Poepp. & Endl.) A.M.E. Jonker & Jonker Marantaceae AM 45 5

Monocot herb Ischnosiphon martianus Eichler ex Petersen Marantaceae AM 28 30

Monocot herb Monotagma ulei K. Schum. Marantaceae AM 30 5

Monocot herb Renealmia breviscapa Poepp. & Endl. Zingiberaceae AM 80 50

Fern Adiantum pulverulentum L. Pteridaceae AM, CA, CE, AT 257 50

Fern Adiantum tomentosum Klotzsch Pteridaceae AM 120 40

Fern Cyathea pungens (Willd.) Domin Cyatheaceae AM, CA, CE, AT 168 50

Fern Cyclopeltis semicordata (Sw.) J. Sm. Lomariopsidaceae AM, CA 190 50

Fern Lindsaea guianensis (Aubl.) Dryand. Lindsaeaceae AM, CA, CE, AT 100 50

Fern Schizaea elegans (Vahl) Sw. Schizaeaceae AM, CA, CE, AT 199 50

192 | FIGUEIREDO ET AL.
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28 km at the equator) into two climatic variables: annual precipita-

tion and dry season length, defined as the maximum consecutive

number of months with <100 mm of precipitation.

We used four remote sensing variables that describe terrain and

forest structure properties: elevation, percentage tree cover, per-

centage evergreen tree cover and canopy height. Elevation was

obtained from the Shuttle Radar Topography Mission (http://world

grids.org). Tree cover and evergreen tree cover were derived from

images of the NOAA’s Advanced Very High Resolution Radiometer

acquired in 1992–1993 (DeFries, Hansen, Townshend, Janetos, &

Loveland, 2000; http://www.landcover.org). Canopy height was

derived from the spaceborne Geoscience Laser Altimeter System

(Simard, Pinto, Fisher, & Baccini, 2011; http://daac.ornl.gov). All

remote sensing variables were originally provided at ~1-km resolu-

tion. We included the terrain and forest structure data in the pool of

climate variables because these variables can be expected to repre-

sent ecophysiological constraints on species distribution via complex

interactions between temperature, precipitation and solar radiation

(Grubb, 1977; Kempes, West, Crowell, & Girvan, 2011).

Soil variables were obtained from the SoilGrids 250 m database

(https://www.soilgrids.org). We used 19 soil variables that provide

predicted values for the surface soil layer (0–15 cm depth). These

included: three soil texture variables (percentages of clay, sand and

silt), which are related to soil drainage; two chemical variables

related to nutrient availability, the cation exchange capacity (CEC,

measured in cmolc kg
�1 at pH 7) and pH (determined in KCl); and

other 14 variables representing different soil classes (following the

classification of FAO’s World Reference Base), which are related to

soil physical conditions and nutrient availability (Quesada et al.,

2010). The soil classes were selected based on their moderate to

high occurrence probabilities in the Neotropics. We used each soil

class layer as an independent continuous predictor, where the value

for a given grid cell represents the probability of occurrence of that

soil class. In this way, our SDMs account for the uncertainty associ-

ated with the spatial limits of soil classes, and contrasts markedly

with approaches that treat polygon-based soil classes as categorical

variables in statistical models, where each grid cell belongs to one

soil class only. Extreme environmental conditions (bare soils, sparsely

vegetated areas and water bodies), which are unlikely to be occupied

by our species were excluded by combining the spatial mask present

in all environmental data and the spatial mask employed in SoilGrids

1 km (Hengl et al., 2014; product SMKISR accessed in http://world

grids.org). The latter excludes several non-vegetated areas that are

included in SoilGrids 250 m. We rescaled all environmental data to a

0.05° spatial resolution. Both environmental and species data were

transformed to the Mollweide equal-area projection before analysis.

The maps of all 44 environmental variables are presented in Fig-

ure S1.1.

2.2 | Modelling framework

To evaluate the role of climate and soil factors in predicting species

ranges, we built a set of three SDMs for each species: (1) CLIM

models based on WorldClim and remote sensing variables; (2) SOIL

models based on SoilGrids variables; (3) and CLIM+SOIL models

based on both sets of variables together. Our modelling approach

includes six steps, as detailed below:

Step 1: Pre-modelling: detecting outliers, reducing sample bias and set-

ting geographical background.

To improve SDM quality, we first coarsened the spatial resolu-

tion of the occurrence data. We retained only one presence record

per 5 9 5 km grid cell and removed geographical and environmental

outliers in the presence records. Then, we applied a spatial filter pro-

cedure to reduce sample bias (spatial aggregation) of occurrence

records (Figure S1.2). Finally, we constrained the area for model cali-

bration, evaluation and prediction separately for each species to

avoid predicting species presence in areas far beyond their potential

ranges. Details of the pre-modelling procedures are given in

Appendix S1b.

Step 2: Predicting relative species occurrence probabilities using Baye-

sian logistic regression

To predict the relative occurrence probability of a species in each

5 9 5 km grid cell, we applied logistic regression using presence and

background points. Logistic regression using presence and background

points is similar to methods widely used in ecology (e.g. MAXENT and

resource selection functions). All of these methods are closely related

to the Poisson point process model recently viewed as an appropriate

way to analyse presence-only data in a regression framework (Aarts,

Fieberg, & Matthiopoulos, 2012; Renner & Warton, 2013; Renner

et al., 2015; Warton & Shepherd, 2010). For each species, we gener-

ated 10,000 random background points over the geographical back-

ground area defined in step 1. We used Bayesian logistic regression

instead of a conventional maximum likelihood logistic model because

the maximum likelihood algorithm tends to overestimate b coefficients

when the number of presence records is very small in relation to

absence or background points, or when the distribution of a species

along an environmental gradient is very narrow (Hefley & Hooten,

2015). Bayesian logistic regression circumvents these problems by

combining the information of the likelihood functions and a weakly

informative default prior based on the Cauchy distribution to estimate

model parameters (Gelman, Jakulin, Pittau, & Su, 2008).

We performed stepwise model selection (backward–forward)

using the Akaike information criterion (AIC) to find the most parsi-

monious model for each species separately. We allowed high corre-

lated variables belonging to different source groups (WorldClim,

TRMM climatic data, remote sensing data or SoilGrids) to compete

in the same model selection. Before the model selection procedure,

we found pairs of variables that had correlation greater than 0.7 (ab-

solute value of Pearson correlation) and excluded the one with

greater variance inflation factor. We stopped the process when all

pairwise correlations were less than 0.7. Only linear and second-

order polynomial effects (Gaussian-shaped curve) were used. We

started the backward–forward procedure including linear effects

only. Second-order polynomials were allowed to enter the models at

any step. We repeated model selection three times for each species

to obtain the best model of CLIM+SOIL, CLIM and SOIL model.

FIGUEIREDO ET AL. | 193
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Step 3: Evaluating model performance

To evaluate the performance of CLIM+SOIL, CLIM and SOIL

models, we employed the DAIC, i.e. the difference in AIC between

the model being evaluated and the best model (Burnham & Ander-

son, 2002). As a rule of thumb, DAIC values smaller than 2 indicate

models with good support. Null models—those with only the inter-

cept term—were also included in the evaluation.

We evaluated the spatial accuracy of models using the area

under the receiver operating characteristic curve (AUC; Bradley,

1997). For the best models returned by the model selection proce-

dure, we applied a 10-fold cross-validation and computed the AUC

test of each replicate. AUC values range from 0 to 1, with AUC val-

ues higher than 0.7 indicating models with good performance and

values lower than 0.5 indicating that a model is worse than the null

model (Ara�ujo, Pearson, Thuiller, & Erhard, 2005). Before computing

AUC, the relative occurrence probability (ROP) was transformed into

cumulative values (hereafter defined as suitability index), which

range from 0 to 100 and is better than the raw ROP output to visu-

alize species range boundaries (Merow, Smith, & Silander, 2013; Phil-

lips, Anderson, & Schapire, 2006). Final prediction of all models was

produced by averaging the 10 replicates returned by cross-valida-

tion. We applied a two-tailed nonparametric Wilcoxon test to check

if spatial prediction0s accuracy measured by the AUC was higher

than that of null models. For those species with best models better

than null, the difference in AUC scores between CLIM+SOIL, CLIM

and SOIL models was tested using generalized mixed effect models

(GLMM) (Pinheiro & Bates, 2000) with species as the random term

and assuming that AUC values follow a beta distribution.

Step 4: Quantifying the unique and joint effects of climate and soil vari-

ables on species distribution models

As Bayesian logistic regression can be viewed as a generalized

linear model with a constrained approach to estimate model parame-

ters, we employed the same procedure of variance partitioning used

in linear modelling (Borcard, Legendre, & Drapeau, 1992) to quantify

how much of the variances explained by the best CLIM+SOIL, CLIM

and SOIL models were explained uniquely by climate or soil variables

and jointly by both sets of variables. Given that we applied the

model selection procedure to find the best models in each of the

three model settings, the SOIL and CLIM models do not necessarily

include the same subset of variables that were retained in the best

CLIM+SOIL model. Hence, our approach is not a true variance

partitioning, but an approximation of it. Percentage of total explained

variance (EV) in logistic models, also known as pseudo-R2, was

given by:

EV ¼ null deviance� residual deviance
null deviance

� 100

as suggested by Zuur, Ieno, Walker, Saveliev, & Smith (2009). The

unique contribution of climate was computed as EVclim+soil – EVsoil,

and that of soil as EVclim+soil – EVclim. The joint contribution of cli-

mate and soil was obtained as EVsoil + EVclim – EVclim+soil. We report

the unique and joint contributions of CLIM and SOIL model as per-

centages of EV rather than as percentages of total variance. This is

done because background data may be generated also for pixels

containing presence records, so the total variance will never be fully

explained.

Step 5: Quantifying the relative importance of individual variables.

For each species, we ran Bayesian logistic regressions separately

with each variable to quantify their relative importance. For each of

44 predictors, we ran single-variable SDM and selected the best

shape of the species response curve (no effect, linear or second-

order polynomial) using DAIC scores. The EV of the single-predictor

model was then expressed as a percentage of the EV of the best

model identified in step 3. Finally, we ranked variables based on

their median EV values over all species.

Step 6: Mapping the difference between predictions of CLIM and SOIL

models.

We mapped the difference between the models predictions only

in areas defined as unsuitable, i.e. in areas that species are likely to

be absent. To define the unsuitable areas, we applied a threshold on

each species suitability scores that maximizes the sum of sensitivity

(1—omission error) and specificity (the fraction of predicted area)

(Manel, Williams, & Ormerod, 2001). First, we mapped the difference

in suitability between the best model and each of the models being

tested, the CLIM or SOIL models. In both case, high values (over-

predictions) indicate areas where the variables evaluated are unlikely

to be the restricting factor for species occurrence. Second, to iden-

tify areas where both predictors may jointly or independently restrict

species range, we mapped the difference between predictions of the

CLIM and SOIL model. Values close to zero indicate areas where we

hypothesized that both soil and climate restrict species range. Posi-

tive values indicate regions where the CLIM model over-predicted

suitable conditions relative to SOIL model and, hence, we hypothe-

sized that species range was mainly restricted by soil in such areas.

Conversely, negative values indicate regions where climate may be

the main restricting factor. Finally, we averaged the maps of all spe-

cies across Amazonia sensu latissimo (Eva & Huber, 2005) to pro-

duce an overall predictive map of potential climate and soil

constraint on species ranges.

All analyses were conducted using the R platform (3.3.2; R

Development Core Team, 2015). Manipulation of raster and vector

data was done using the ‘raster’ (Hijmans, 2016) and ‘sp’ (Pebesma &

Bvand, 2005) packages. Data from GBIF and iDigBio were down-

loaded using the function occ from the package ‘spocc’ (Chamberlain,

Ram, & Hart, 2016). Geographical outliers were detected and

removed using the function rjack of the ‘biogeo’ package (Robertson,

2016). We executed the spatial filtering procedure using functions

lohboot and remove.duplicates of the ‘spatstat’ (Baddeley & Turner,

2005) and ‘dismo’ packages (Hijmans, Phillips, Leathwick, & Elith,

2017), respectively; exclusion of correlated variables with vifcor func-

tion of the ‘usdm’ package (Naimi, 2015); Bayesian logistic regression

with function bayesglm of the ‘arm’ package with default options

(Gelman & Su, 2016); computation of AUC scores using function auc

from package ‘MESS’ (Ekstrøm, 2016); and evaluation of model sig-

nificance with the wilcox.test function of the ‘stats’ package (R

Development Core Team, 2015). The tests of differences in model
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performance were done fitting a GLMM using function gamlss of the

‘gamlss’ package (Rigby & Stasinopoulos, 2005). We implemented

our own R function to perform the model selection procedure, which

is available in Appendix S1c.

3 | RESULTS

Our results show that soil data are important for the species distri-

bution models developed in this study (Figure 1). For 39 of the 42

species, the models combining climatic and soil data (CLIM+SOIL)

were supported as the best models. In the other three species, either

the relative ranking of the CLIM+SOIL and SOIL models was uncer-

tain, or the SOIL model had more support. The CLIM model was not

supported as the best model for any of the species. Models including

soil predictors only had better performance than models including

climate predictors only. Across all species the AUC values for the

SOIL models were significantly lower than those for CLIM+SOIL

models (p < .001) but higher than those for CLIM models (p < .005).

For every species, the best models showed fair to good prediction

accuracy. All median AUC of the best models were greater than 0.7

and significantly greater than the null model (all p < .005 based on

Wilcoxon test of AUC). All model statistics (ΔAIC, AUC, omission

rates, fractions of predicted area and thresholds used to define

unsuitable areas) are provided in Figure S1.3.

For 25 species (60%), more variance was explained uniquely by

SOIL variables than uniquely by CLIM variables, and for 30 species

(71%), more than 50% of the explained variance was due to the joint

contribution of CLIM and SOIL variables (Figure 2). Annual precipita-

tion, dry season length, canopy height, tree cover and Haplic Xanthic

Ferralsols were the variables with highest contributions to explained

variance, on average, in the single-variable SDMs (Figure 3). How-

ever, single-variable models never explained more than 15% of the

variance explained by the corresponding best model, and the aver-

age was <8% for each one of the 44 variables. Species response

curves along the most important CLIM variables revealed that most

species tend to avoid dry conditions (drought-sensitive) and occur

preferentially in tall closed forest (Figure S1.4).

Visual assessment of the SDMs for each of the 42 species

showed that CLIM+SOIL models predicted more patchy suitable

areas than CLIM models (Figure S1.3). CLIM models over-predicted

suitable conditions in central Amazonia, upper Rio Negro, northern

Guianas and in some areas of southern Amazonia, which reveals that

it is more likely that species are absent in these areas due to soil

restriction, not due to climate restriction (Figure 4a). The opposite

was true in areas where the SOIL model over-predicted suitable con-

ditions, i.e. in the Andean foothills, the border zone between Peru

and Acre state, eastern Amazonia, and the savannas of Roraima and

Venezuela (Figure 4b). Both models predicted low suitability in

model
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F IGURE 1 Performance of CLIM+SOIL, CLIM and SOIL species
distribution models of 42 plant species in Amazonia. The ranking of
model performance is based on ΔAIC scores, and the number of
species with each kind of ranking is shown in parentheses. The “=”
indicates a difference smaller than 2 (no evidence that the model
with lower ΔAIC is better) and “<” indicates a difference greater
than 2 (evidence that model with lower ΔAIC is better). ΔAIC values
for each species separately are presented in Figure S1.3
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southern Amazonia, which indicates that soil and climate jointly

restrict species occurrence in this area (Figure 4c).

4 | DISCUSSION

Using SDM and a diverse set of climatic and edaphic predictors, we

demonstrated that the soil-only models provide more accurate pre-

dictions than the climate-only models. This can be interpreted as

contradicting the classical assumption of biogeography that climate

is the main driver of broad-scale species distribution patterns (Gas-

ton, 2003; Pearson & Dawson, 2003). The higher importance of soil

relative to climate may reflect the fact that the variation in rainfall

and temperature is narrow across large parts of Amazonia. On the

other hand, the edaphic differences among regions can be so large

that they act as filters preventing species from occurring over the

entire biome. Indeed, the combined soil and climate models had the

best predictive power for most species, which is consistent with ear-

lier findings suggesting that both climate and soil properties are

important as drivers of plant diversity and community composition

across Amazonia (ter Steege et al., 2006; Tuomisto, Ruokolainen, &

Yli-Halla, 2003; Zuquim et al., 2014).

Climate and soils have been invoked to explain spatial patterns

of floristic variation across Amazonia. The main axis of tree floristic

variation has been associated with the south-west/north-east soil

fertility gradient and the second axis with a north-west/south-east

precipitation gradient (ter Steege et al., 2006). Our predictive maps

reveal a more complex and slightly different spatial pattern of soil

and climate control on species distribution. Soil might be more deci-

sive than climate in restricting species occurrence particularly in the

upper Rio Negro area, central Amazonia and the northern part of

the Guiana region, which are covered predominantly by poor nutri-

ent soils (Quesada et al., 2010; Sombroek, 2000; Zuquim et al.,

2014). These findings are in accordance with previous studies that

predict the absence of species associated to rich soils in large areas

of Amazonia, particularly in the centre of biome (Tuomisto et al.,

2016; Zuquim et al., 2014). On the other hand, where climate condi-

tions vary markedly over short distances (in the Andean foothills, in

the border between Peru and Acre state, eastern Amazonia and the

savannas of Roraima and Venezuela), climate may become more

restrictive to species occurrence, especially if soil conditions are rela-

tively uniform. The southern and north-western borders of Amazonia

were predicted as unsuitable by both climate-only and soil-only

models, suggesting that the north-west/south-east floristic gradient

interpreted as climatic by ter Steege et al. (2006) may also reflect

soil-related factors.

When the environmental variables were used separately in sin-

gle-predictor SDMs, the 10 most important predictors included pre-

cipitation-related variables, forest structural variables and soil

variables. However, alone they explained <15% of the variance

explained by the corresponding best model, indicating that species

ranges are controlled by multiple factors. Indeed, for most species,

the proportion of deviance explained jointly by climatic and edaphic

variables was more than 50% of total explained variance, suggesting

some degree of correlation between our predictor variables. Such

relationships can be causal, as temperature, precipitation and topog-

raphy are among the main factors that affect soil formation (Jenny,

1994). Nevertheless, climate conditions seem to be less important

than age and quality of the parent material and dynamic process of

removal-deposition of sediments in determining soil properties in

Amazonia (Irion, 1978; Quesada et al., 2010; R€as€anen, Salo, & Kalli-

ola, 1987). Forest structure and elevation, used here as climate vari-

ables, may also be inter-correlated with soil properties, such as soil

texture and nutrient content (Costa, Magnusson, & Luiz~ao, 2005;

Higgins et al., 2011; Levine et al., 2016; Tuomisto, Ruokolainen,

Aguilar, & Sarmiento, 2003). More detailed studies are still needed

to disentangle the complex relationships and interactions among cli-

mate, soil, topography and forest structure that can affect species

distributions.
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F IGURE 3 Individual variables ranked by their importance in
SDMs of 42 plant species in Amazonia. Importance is defined as the
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Current hydrological trends and recent projections of global cli-

mate models predict increasing dry season length for the southern

part of Amazonia (Boisier et al., 2015). Increasingly dry conditions

may cause forests to become shorter and more open (Hutyra et al.,

2005; Levine et al., 2016; Olivares et al., 2015). The species

response curves along annual precipitation, dry season length and

forest structure gradients suggest that most of our focal species

avoid dry conditions and prefer tall and closed forests. This is consis-

tent with the prevailing view that many Amazonian plant species are

sensitive to drought (Nepstad, Tohver, Ray, Moutinho, & Cardinot,

2007; Phillips et al., 2010) and that their ranges may contract if dry

seasons become more severe (Feeley et al., 2012; Olivares et al.,

2015). Temperature showed weak predictive power in our SDMs,

suggesting that changes in temperature may be less important for

range shifts than changes in water availability.

Massive species loss in Amazonia is expected under climate

change if species are not able to either track suitable climate by

migration or adapt to the new conditions (Feeley et al., 2012). If spe-

cies distributions are strongly controlled by soils, species migrations

may be effectively prevented by barriers created by large areas of

unsuitable soil (Tuomisto et al., 2016). In our analyses, climatic vari-

ables alone explained species range limits in fewer areas than soil

variables alone did, which suggests that species may indeed face

problems in finding suitable routes to track climate change. As soil

properties change much slower than climate does, and climate does

not seem to be an important driver of soil features in Amazonian

lowlands (Quesada et al., 2010), the presence of edaphic constraints

on species ranges can decouple potential range shifts from pure cli-

mate tracking.

Disregarding soil variables in fine-scale dynamic models has led

to inaccurate predictions of species potential distribution areas under

climate change (Bertrand, Perez, & G�egout, 2012). This drawback

arises because landscape heterogeneity and metapopulation dynam-

ics limit the ability of species to disperse and track suitable climate

changes (Opdam & Wascher, 2004; Schurr et al., 2012). Although

the fine spatial configuration of soil properties is not completely

reflected in the coarse spatial resolution of our analyses, our results

suggest that suitable areas for species occurrence are more patchy

than the rather continuous areas that are predicted by climate-only

models. The inclusion of edaphic dimension in the forthcoming pro-

cess-based dynamic models should guide useful conservation and

management strategies to protect Amazonian plant species under cli-

mate change.

Although the quality of the SoilGrids data layers has not yet

been properly assessed, inaccuracies must be expected simply

because the density of field sampling in Amazonia is very low and

other ecophysiological relevant soil variables, such as concentration

of base cations (Ca, Mg, K and Na) and phosphorus are missing in

the available soil data. These macronutrients have been shown to be

important correlates of floristic patterns and forests structure

(C�amara-Leret, Tuomisto, Ruokolainen, Balslev, & Kristiansen, 2017;

Figueiredo, Costa, Nelson, & Pimentel, 2014; Higgins et al., 2011;

F IGURE 4 Spatial projection of the differences in suitability scores between the SDMs, mapped only in areas defined as unsuitable to
species occurrence (averages across 42 plant species). Suitability scores range from 0 (low probability of species occurrence) to 100 (high
probability of occurrence). a) The difference in suitability between the CLIM and best models (Sclim � Sbest). b). The difference in suitability
between the SOIL and best models (Ssoil � Sbest). c) The difference in suitability between the CLIM and SOIL models (Sclim � Ssoil). High values
in panels a) and b) denote regions where the CLIM and SOIL models over-predict the suitable conditions relative to the best models
respectively. In panel c) values close to zero indicate areas where the CLIM and SOIL models jointly predict edaphic and climatic restrictions to
species occurrence; negative values denote areas where the CLIM models predict less suitable condition, but the SOIL models over-predict and
the positive values means the opposite. So negative values indicate where climate is the main restricting factor and positive values indicate
where soil is the main restricting factor. Maps are in Mollweide equal-area projection, the dashed line denotes the Equator and inset shows
the Amazonian limits in red [Colour figure can be viewed at wileyonlinelibrary.com]

FIGUEIREDO ET AL. | 197

 13652699, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.13104 by IN

PA
 - Instituto N

acional de Pesquisas da A
m

azonia, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Quesada et al., 2012; Tuomisto, Ruokolainen, & Yli-Halla, 2003, Tuo-

misto et al., 2016; Zuquim et al., 2014). CEC is available, but it did

not come out as an important variable in our SDMs. The drawback

with CEC provided by SoiGrids is that cations are extracted raising

the soil pH to 7, creating artificial charges on soil colloids and inac-

curate estimates of plant exchangeable cations (Quesada et al.,

2011). Therefore, CEC obtained at pH 7 have weak relations with

other proxies of soil fertility and should be used only to soil classifi-

cation purposes (Quesada et al., 2011). In addition, our analyses

were carried out at a 5-km resolution, which reduced our ability to

capture fine-scale soil variation. A probable consequence of this is

that models predict wider edaphic niches than they are in reality,

which lead to spatial over-predictions of suitable conditions. It is

beyond the scope of the present study to assess the extent of such

problems, although they are likely to lead to underestimation of the

importance of soil factors in the SDMs.

The relative importance of climate as opposed to edaphic dri-

vers of species distribution has traditionally been considered a

matter of scale of analysis. Climate is expected to be useful at

broad spatial extent (e.g. global, continental and regional) and soil

is expected to be relevant only at small spatial extents and in

high-resolution studies (e.g. landscape and local scales) (Eiserhardt

et al., 2011; Pearson & Dawson, 2003). In our analyses, soil vari-

ables emerged as the most important even at the continental

extent. This is no doubt related to relative homogeneity of the cli-

mate within Amazonia, at least when compared to subtropical,

temperate and montane areas where climatic differences are much

larger, and therefore, more restrictive to plant distributions. How-

ever, even at global-scale, edaphic variables can better explain

ecological patterns (e.g. the variation in some leaf functional traits)

than climatic variables (Maire et al., 2015). In Amazonia, soils

mediate several ecological patterns and processes, such as large-

scale floristic turnover (ter Steege et al., 2006; Tuomisto et al.,

2016), biotic interactions (Fine, Mesones, & Coley, 2004), species

diversification (Fine, Daly, Mu~noz, Mesones, & Cameron, 2005),

forest dynamics and resilience (Levine et al., 2016; Quesada et al.,

2012). We believe that it is time to scale-up the importance of

soil in ecology and biogeography. The inclusion of the soil compo-

nent in macroecological models will also provide a better frame-

work towards understanding the complex impacts of

environmental change on ecological systems.
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