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Abstract

Biogeographic barriers such as rivers have been shown to shape spatial patterns of biodiversity 
in the Amazon basin, yet relatively little is known about the distribution of genetic variation across 
continuous rainforest. Here, we characterize the genetic structure of the brilliant-thighed poison 
frog (Allobates femoralis) across an 880-km-long transect along the Purus-Madeira interfluve south 
of the Amazon river, based on 64 individuals genotyped at 7609 single-nucleotide polymorphism 
(SNP) loci. A population tree and clustering analyses revealed 4 distinct genetic groups, one of 
which was strongly divergent. These genetic groups were concomitant with femoral spot coloration 
differences, which was intermediate within a zone of admixture between two of the groups. The 
location of these genetic groups did not consistently correspond to current ecological transitions 
between major forest types. A multimodel approach to quantify the relative influence of isolation-
by-geographic distance (IBD) and isolation-by-environmental resistance (IBR) nevertheless 
revealed that, in addition to a strong signal of IBD, spatial genetic differentiation was explained 
by IBR primarily linked to dry season intensity (r2 = 8.4%) and canopy cover (r2 = 6.4%). We show 
significant phylogenetic divergence in the absence of obvious biogeographical barriers and that 
finer-scaled measures of genetic structure are associated with environmental variables also known 
to predict the density of A. femoralis.

Subject area:  molecular adaptation and selection
Keywords:  RADseq, genetic clusters, landscape genetics, Amazonia, amphibians

Introduction

A key goal in ecology and evolutionary studies is to understand the 
processes that explain contemporary patterns of genetic diversity. 
Based on the classic allopatric speciation model, genetic divergence 

is a consequence of geographic isolation (Wallace 1852; Mayr 1963; 
Coyne and Orr 2004). However, divergence can also arise when iso-
lation is incomplete, under scenarios that may include ecologically 
mediated selection triggered by environmental heterogeneity (Nosil 
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2012; Shafer and Wolf 2013; see also Endler 1977 for an early “gra-
dient diversification hypothesis”). Recent evidence that incipient 
diversification along environmental clines is often associated with 
secondary contact of already existing ancient lineages (e.g., Dean 
et al. 2019; Marques et al. 2019) further suggests that, when species’ 
range expand and contract over time, allopatric and sympatric diver-
sification models are not necessarily mutually exclusive.

Neutral genetic population structure arises through the interplay 
of drift, mutation, and migration. Disentangling the legacy of histor-
ical events on patterns of genetic structure from more contemporary 
effects needs to account for the sensitivity of the molecular assays, 
the analytical approaches employed, as well as recognizing the time 
required for causal processes to shape genetic structure (Stow et al. 
2001; Anderson et al. 2010; Epps and Keyghobadi 2015). Although 
isolation-by-geographic distance (IBD; Wright 1943; Slatkin 1987) 
is revealed by most empirical studies (for summaries, see, e.g., 
Jenkins et  al. 2010; Sexton et  al. 2014), gene flow can be further 
influenced by the landscape matrix where habitat heterogeneity re-
sults in different levels of resistance to migration (Manel et al. 2003; 
Storfer et al. 2010). Because patterns of isolation-by-environmental 
resistance (IBR) are influenced by species-specific life-history attri-
butes and ecological preferences, such as propensity and ability for 
migration through given environments, they reveal essential infor-
mation about habitat relationships of the studied taxa (Balkenhol 
et al. 2017; Armansin et al. 2020). The spatial scale of sampling is an 
especially important consideration when testing for IBD and IBR. If 
the scale of sampling is too small relative to the scale of gene flow of 
the target species, gene flow from beyond the study area may over-
whelm patterns of genetic structure mediated by local environmental 
variables (Anderson et al. 2010). On the other hand, observed gen-
etic discontinuities may also have arisen from past events rather than 
contemporary landscapes, due to a time lag between demographic 
processes and their consequences for population genetic structure 
(Epps and Keyghobadi 2015).

For the world’s largest area of continuous rainforest in the 
Amazon basin, the main processes responsible for spatial patterns of 
biodiversity remain debated (Moritz et al. 2000; Hoorn et al. 2010; 
Ribas et al. 2012; Leite and Rogers 2013). The majority of empir-
ical studies demonstrate that the retraction of past environmental 
barriers in the Holocene resulted in range expansions of lineages 
that diverged in isolation up to about 0.8 million years ago (Ma), 
with major rivers often acting as local biogeographic boundaries 
(e.g., Naka et  al. 2012; Nazareno et  al. 2017; Ribas et  al. 2018; 
Thom et al. 2020). The vast, forested areas between major rivers of 
the Amazon basin are however also characterized by gradual envir-
onmental variation, for which patterns of IBD and, possibly, IBR 
might be expected for broadly distributed taxa. However, difficulties 
in systematically sampling the vast, often inaccessible terrain of the 
Amazon basin has resulted in the gradient hypothesis receiving little 
attention (Beheregaray et al. 2015).

Amphibians are well suited to detect environmental and geo-
graphic influences on genetic divergence because they have low dis-
persal abilities and are sensitive to ecological conditions (e.g., Zeisset 
and Beebee 2008; Pabijan et al. 2020). The brilliant-thighed poison 
frog Allobates femoralis (Dendrobatoidea: Aromobatidae, Grant 
et al. 2017) is a small (~33 mm), ground-dwelling, iteroparous di-
urnal frog commonly distributed throughout primary forest in the 
Amazon basin (Silverstone 1975; Amézquita et al. 2009) and likely 
comprises cryptic taxa (Grant et al. 2006, 2017; Fouquet et al. 2007; 
Santos et al. 2009; Simões et al. 2010). It prefers clay-rich soils and 
is more abundant in open forest than in forest with closed canopies 

(Ferreira et al. 2018). Males exhibit territorial behavior and signal 
territory ownership by calling from elevated positions on the forest 
floor (Roithmair 1994; Montanarin et al. 2011), with their mating 
success possibly correlated to territory size (about 200 m2 max-
imally, Kaefer et al. 2012). Females lay egg clutches under leaf litter 
during the rainy season, and tadpoles are usually transported by 
males to ephemeral puddles in order to complete their development 
(Ringler et al. 2013). Both sexes are highly polygamous (Ursprung 
et al. 2011), and lifetime dispersal rates are generally low (about 100 
m, Ringler et al. 2009; Pašukonis et al. 2016). Populations across 
Amazonia vary in the coloration of a conspicuous femoral spot, 
which is both an aposematic signal through mimicry with syntopic 
toxic species as well as sexually selected trait (Amézquita et al. 2009, 
2017; ASF et al., unpublished data).

Here, we assess environmental and historical influences on the 
spatial genetic structure of A.  femoralis along an ~880-km-long 
transect in the Purus-Madeira interfluve (PMI) south of the Amazon 
river. We explore the existence of local genetic structure along the 
transect using clustering techniques and assess whether the genetic 
structure of A. femoralis conforms to previous studies on other taxa 
along the same transect (De Abreu et al. 2018; Ortiz et al. 2018). In 
parallel, we employ landscape genetic inferences to compare the rela-
tive contribution of IBD and IBR, predicting that genetic structure 
will be influenced by landscape variables that have previously been 
shown to determine the occurrence and abundance of A. femoralis 
along this transect (land cover, silt content, temperature seasonality, 
and intensity of the dry season; Ferreira et al. 2018). We also test 
whether there are genetic signals for selection associated with these 
variables. Finally, we examine whether patterns of femoral spot col-
oration are congruent with distinct genetic lineages and whether 
there is any evidence of lineage admixture.

Materials and Methods

Study Area and Sampling
The PMI is situated south of the Amazon River and covers approxi-
mately 15.4 million hectares, with vegetation, soil, and climatic con-
ditions gradually changing along a latitudinal gradient (Cintra et al. 
2013; Schietti et  al. 2016). The mean annual precipitation varies 
from 2200 to 2800 mm and is highest in central areas (Alvares et al. 
2013; Fick and Hijmans 2017). The northeast of the PMI is charac-
terized by dense lowland rainforest with a mean tree basal area of 
56.45 m2/ha, plinthosols with a predominance of silt, and a complex 
hydrography with large seasonally flooded areas (Fan and Miguez-
Macho 2010; Schietti et al. 2016). Southwestern and central parts 
are characterized by open lowland rainforest with a mean tree basal 
area of 19.31 m2/ha, podzolic soils with high clay content, and small 
temporary rivers filled during the rainy season (Cintra et al. 2013; 
Ferreira et al. 2018). Considerable areas of savanna are also present 
between these 2 forested regions (IBGE 1997; Figure 1).

Between November and March 2010–2015, we collected a 
total of 66 A.  femoralis individuals from 13 localities along an 
established 880 km transect which runs in parallel to a federal 
highway (BR-319), and spans the entire length of the PMI (Figure 1; 
Supplementary Table S1). Sampling was carried on regularly spaced 
biodiversity monitoring plots (modules) constructed by the Rapid 
Assessment for Long Duration Ecological Projects (RAPELD) system 
(for details, see Magnusson et al. 2013). The same sampling design 
has previously been used to quantify environmental correlates for 
the occurrence and abundance of A. femoralis (Ferreira et al. 2018) 
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and revealed that the species is present in all but 3 modules (M3–
M5, see Figure 1). Allobates femoralis was sampled by acoustic and 
visual surveys during the daily periods of peak vocalization (7:00–
10:00 a.m. and 14:00–18:00 p.m.). We captured frogs by hand and 
maintained them in sealed plastic bags until arrival in the labora-
tory, where they were sacrificed and fixed after tissue (leg muscle) 
was removed for genetic analyses and stored in 96% ethanol. For 
each captured individual, the femoral spot coloration was noted as 
yellow, red, or orange.

DNA Extraction, Genotyping, and Initial Filtering
Extraction of DNA and single-nucleotide polymorphism (SNP) dis-
covery was carried out at Diversity Arrays Technology sequencing 
Pty. Ltd. (DArTseq) facility (Canberra, Australia; more detail in 
Supplementary Information Text S1). A  modified double-digest 
restriction-site associated DNA sequencing protocol was performed 
on libraries prepared using a combination of Pstl-Hpall restriction 
enzymes (Kilian et al. 2012). The Pstl enzyme adaptor also contained 
an Illumina adaptor sequence, a primer sequence and a variable-
length barcode as described by Elshire et  al. (2011). The Hpall 
adaptor contained an Illumina flow cell attachment and overhang 
sequence. Following enzymatic digestion, fragments were amplified 
and sequenced on an Illumina HiSeq2500. DNA sequences were 
aligned via BLAST using the Nanorana parkeri reference genome 
(Sun et al. 2015). To check for contamination, sequences were also 
blasted to bacterial and fungal genomes (NCBI).

A raw data set of 147 595 SNPs was filtered for missing data 
using the filter_dart function of the R package RADIATOR v. 0.010 
(Gosselin 2017). Only individuals and loci with ≥95% SNPs geno-
typed were retained. SNPs were also screened for allele coverage, 
with any SNPs displaying a local and global minor allele frequency 
threshold of less than 1% removed from the dataset. In cases where 
multiple SNPs were found within the same read, only one locus was 
retained (chosen randomly per RAD tag) to avoid statistical bias 
from physical linkage (Zheng et al. 2012; Lemay and Russello 2015). 
Two samples from M14 had <95% of loci genotyped and were re-
moved, which resulted in 64 individuals from 13 populations geno-
typed at 10  275 SNPs (see Supplementary Table S2 for summary 
of filtering steps). File types required for downstream analyses were 
created using the RADIATOR package (Gosselin 2017), PGDSpider 
v. 2.1.1.3 (Lischer and Excoffier 2012), and PLINK v. 1.9 (Chang 
et al. 2015).

Phylogenomic Relationships
In order to evaluate the evolutionary relationships among 
A.  femoralis possessing different femoral spot coloration, we con-
structed a population tree by coalescence using SNAPP v.  1.4.1 
(Bryant et al. 2012) implemented in BEAST v. 2.5 (Bouckaert et al. 
2014). This analysis assumes a lack of gene flow among lineages 
which is inferred by phenotypic distinctiveness and further tested 
using clustering analyses. To reduce computational requirements and 
run times, we selected 2–3 representative individuals per population 

Figure 1.  The distribution of modules from which samples of Allobates femoralis were collected in the PMI, central-southern Amazonia, Brazil. White circles 
indicate absence of A. femoralis. For sample sizes at each module see Table 1. See online version for full colors.
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without signatures of between-population admixture (assessed 
though femoral spot color). We used our data set of 10 275 SNPs, 
and mutation rates (u and v) as estimated by SNAPP, with the birth 
rate (λ) of the Yule prior based on the number of samples used. The 
trial run for each dataset used a chain length of 1 000 000 gener-
ations, sampling every 1000 trees. We inspected final log files and 
created maximum clade credibility trees (median node heights) by 
combining 3 independent runs in TreeAnnotator v. 2.5 implemented 
in BEAST after discarding 25% as burn-in.

Detection of SNPs Associated With Selection
We removed SNPs with evidence of being associated with selection 
because our population and landscape genetic inferences assume 
neutral loci (see, e.g., Rellstab et al. 2015). Analyses to detect loci as-
sociated with selection were conducted on the full dataset using 2 dif-
ferent approaches. First, we detected SNPs under putatively positive 
or negative selection using FST outlier analysis with BayeScan v.2.1 
(Foll and Gaggiotti 2008), a Bayesian method based on a logistic 
regression model which is suited to detecting outliers in scenarios 
with low-admixtured samples while taking into account sample size 
and genetic structure (De Villemereuil et al. 2014; Luu et al. 2017). 
We ran BayeScan using a prior model (prior odds parametrization) 
set to 100, thinning interval of 10–20 pilot runs of length 10 000, 
and burn-in of 50 000 steps. Second, we used environmental asso-
ciation analysis (EAA) with latent factor mixed models (LFMM), 
implemented in the R package LEA v. 2.1.0 (Frichot and François 
2015). LFMM uses a hierarchical Bayesian mixed model based on 
residuals from principal component analysis (PCA) that take popu-
lation genetic structure into account (e.g. Benestan et al. 2016). We 
ran LFMMs for each of the 4 environmental variables, which were 
previously identified as predictors of local abundance (Ferreira et al. 
2018): land cover, silt content, temperature seasonality, and inten-
sity of the dry season, separately using 10 000 iterations, a burn-in 
of 5000 steps, and 5 repetitions. We set both BayeScan and LFMM 
with a false discovery rate (FDR) of 0.05 (5%). We also investigated 
whether the SNPs identified as signaling selection could be attrib-
uted to a functional part of the genome in order to complement our 
tests of the influence of landscape variables on gene flow, as vari-
ables influencing connectivity may also impose selection (Armansin 
et al. 2020). Consequently, gene annotations were sought for RAD 
tags that contained SNPs identified with both BayeScan and LFMM 
using the NCBI BLAST platform (Johnson et al. 2008). Sequences 
were annotated to genes classified as “amphibians” (taxid:8292), 
“vertebrates” (taxid:7742), and aligned using the Nanorana parkeri 
(taxid:125878) reference genome (Sun et  al. 2015), using BLAST 
with an E-value threshold of 0.0001.

All SNPs that provided evidence for selection were removed 
from the data set for all downstream analyses of genetic structure. 
Summary statistics were calculated for each of the modules and any 
remaining loci that deviated from Hardy–Weinberg equilibrium at 
a Bonferroni-correction α = 0.004 (1000 simulations) were also ex-
cluded from the dataset. Estimates of observed (HO) and expected 
(HE) heterozygosity, inbreeding coefficients (FIS), and private alleles 
were calculated using the R package diveRsity v.  1.9.90 (Keenan 
et  al. 2013) with 95% confidence interval calculated with 1000 
bootstraps.

Genetic Structure
Genetic structure was described with putatively neutral loci using the 
model-based clustering approaches implemented by ADMIXTURE 

(Alexander et al. 2009) and sNMF in the R package LEA v. 2.1.0 
(Frichot et al. 2014). To ensure that the underlying genetic structure 
was not violating the assumptions of these models, we also carried 
out discriminant analysis of principal components (DAPC) calcu-
lated using the R package adegenet v. 2.1.1 (Jombart et al. 2010). 
Genetic partitioning was further described by calculating pairwise 
FST between 11 sites in the R package adegenet v. 1.3.1 (Jombart and 
Ahmed 2011).

sNMF is a method based on sparse non-negative natrix factoriza-
tion algorithms (NMF) and least-squares optimization (Frichot et al. 
2014). We tested the number of genetic clusters (K) ranging from 1 
to 11 (upper limit equal to the number of sampling localities) with 
20 independent runs per test, alpha set at 100, a tolerance error of 
0.00001, entropy set as true (where the cross-entropy criterion is 
calculated), a random seed of 50, and 10 000 interactions in the al-
gorithm. The best-supported K was determined by the lowest error 
value of ancestry through the cross-entropy criterion. ADMIXTURE 
simultaneously estimates the probability of the observed geno-
types using ancestry proportions and population allele frequencies 
(Alexander et al. 2009). Significance was defined at P < 0.05, above 
which individuals were considered pure. We ran ADMIXTURE 
using a cross-validation with a random seed as 43, the block relax-
ation algorithm as the point estimation method, QuasiNewton as 
the convergence acceleration algorithm, and a delta of <0.0001 to 
terminate point estimations. The number of K was determined by the 
lowest cross-validation error value. DAPC is a multivariate method 
that performs discriminant functions to describe the relationships 
between clusters as well as membership probabilities of each indi-
vidual for different groups, optimizing variance between groups 
while minimizing variance within groups (Jombart et al. 2010). We 
used cross-validation to define the number of principal components 
(PCs) retained in the analysis, identifying the optimal point in the 
trade-off between retaining too few and too many PCs in the model. 
We used the number of PCs associated with the lowest root mean 
squared error as the optimum number for the PCA in the DAPC 
analysis. Eight PCs and 2 DAs were retained for the analyses and 
explained 41% of the total variance. To test whether the number of 
sampled individuals in each module was sufficient for the inferences 
of genetic structure, we ran the above analyses with 2 alternative 
datasets: all individuals sampled and 3 randomly chosen individuals 
for each module only.

Construction of Environmental Resistance Surfaces
To test the effects of landscape variables on genetic connectivity, 
we used 4 environmental variables known to influence the occur-
rence and abundance of A. femoralis along our transect (see Ferreira 
et al. 2018): land cover, silt content, temperature seasonality (rep-
resenting the annual range in temperatures), and the Walsh index, 
a measure of the intensity and duration of the dry season (Walsh 
1996). Environmental data were obtained from the public repository 
Ambdata (www.dpi.inpe.br/Ambdata; Amaral et al. 2013) and con-
verted to raster format using the R package raster v. 2.6.7 (Hijmans 
2017) with a cell resolution of 30 arcsecond (1 km2). To avoid model 
overparameterization, we tested for collinearity between variables 
through pairwise Pearson’s correlations analyses based on values ex-
tracted of each sampling location. The 4 variables were not strongly 
correlated with each other (r < 0.65 in all cases) and were therefore 
retained. To facilitate comparisons among surfaces, we standardized 
all raster files to values between 1 and 100 (following Row et al. 
2017, see Figure 2).
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We generated multiple resistance surfaces from our environ-
mental variables to test multiple hypotheses about their effects on 
genetic distance following Yadav et al. (2019), evaluating each re-
sistance surface model separately. We assumed that resistance in each 
raster cell was a function of environmental variables as follows:

ri = 1+ α

Å
vi − 1
max− 1

ãγ
,

where ri is the resistance of raster cell i, vi is the environmental vari-
ables value in cell i, and max is the maximum value of the raster sur-
face (in our case 100, see above). Furthermore, α is a parameter that 
determines the maximum possible resistance value, and γ is an ex-
ponent that determines the shape of the relationship (slope) between 
environmental variable values (vi) and resistance (ri), being linear 
when γ = 1 and nonlinear when γ ≠ 1 (Shirk et al. 2010; Dudaniec 
et al. 2013, 2016). This approach has been shown to effectively iden-
tify IBR including linear and nonlinear relationships (Shirk et  al. 
2010; Dudaniec et al. 2013, 2016; Yadav et al. 2019). The equation 
expresses resistance as a function of the effect of landscape features. 
Based on previous information (Ferreira et al. 2018), we assume that 
the effects of land cover and temperature seasonality on resistance 
are negative and positive, respectively (Figure 3).

We used values of 0, 5, 10, 100, 1000 for intercept (α), and 
values of 0.01, 0.1, 0.5, 1, 5, 10, 100 for slope (γ) to create linear 
and nonlinear resistance surfaces. Models where α is equal to zero 
(7 models for each landscape feature) are identical regardless of γ 
values, indicating no influence of resistance on genetic connectivity, 
which reduced the resistance surfaces for each dataset to 29 unique 
models. Values of γ < 1 represent resistance surfaces with increased 
sensitivity, γ = 1 represents a linear resistance relationship and γ > 1 
are resistance surfaces with reduced sensitivity (Figure 2). We calcu-
lated pairwise resistance distance matrices for all landscape features 
using circuit theory (McRae et al. 2008; Hanks and Hooten 2013) 
as implemented in CIRCUITSCAPE v. 4.0.5 (McRae 2006). This ap-
proach identifies all possible pathways of movement between focal 
points across a given raster dataset and calculates average cumula-
tive resistance between all pairwise sampling sites.

Landscape Genetic Resistance Modeling
To evaluate the contribution of landscape features to genetic dif-
ferentiation, we fitted a maximum-likelihood population-effects 
(MLPE) mixed-effects model as implemented within the mlpe_rga 
function using the R package ResistanceGA v.  4.0-4 (Peterman 
2018). This model uses individual pairwise metrics for genetic dif-
ferentiation and landscape resistance, considering each pairwise data 

Figure 2.  Rasters capturing each of the 4 environmental variables used in CIRCUITSCAPE to generate resistance distance matrices between each pair of 
sampling locations (a) land cover, (b) silt content, (c) temperature seasonality–Bio4, and (d) Walsh index. See online version for full colors.
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point as an observation. The lack of independence is incorporated as 
a population-level factor which distinguishes between data points 
that share a common deme, and those that do not (Clarke et  al. 
2002; Row et al. 2017). Individual-based pairwise genetic distance 
was measured as FST/(1 − FST) and used as the dependent variable, 
resistance distance as the independent variable, and population as 
the random variable. We fitted the mixed-effects models using par-
ameterization to account for the nonindependence of values within 
pairwise distance matrices without restricting maximum likelihood 
(Clarke et al. 2002; Van Strien et al. 2012). Next, to identify which 
model best described genetic distance among sites, we performed a 
model selection approach using Akaike information criteria (AICc). 
We then calculated the difference between the AIC of each model and 
the minimum AIC value found (Burnham and Anderson 2002; Diniz-
Filho et al. 2008) with the lowest change in AICc score (ΔAICc = 0) 
and the largest AIC weight (wAICc) considered the most parsimo-
nious model. These analyses were performed using the R package 
ResistanceGA v. 4.0-4 (Peterman 2018), with MLPE models fitted 
with mlpe_rga using the standard lme4 v. 1.1–17 formula interface 
(Clarke et al. 2002; Bates et al. 2015), magrittr v. 1.5 (Bache and 
Wickham 2014), and dplyr v. 0.7.4 (Wickham et al. 2017).

Effects of IBD and IBR on Genetic Differentiation
We used a Mantel test (Mantel 1967) to estimate the significance 
of any relationship between pairwise FST and geographic distance 
(km) using the function mantel.randtest implemented in the ade4 
v.  1.7–11 R package (Dray and Dufour 2007), with 10  000 per-
mutations. We also carried out an independent test for spatial 
autocorrelation between geographic and genetic distance using a 
Mantel correlogram (Oden and Sokal 1986), computed using the 
function mantel.correlog with 10 000 permutations. The number of 
geographic distance classes was selected by the Strurges equation, 
Pearson correlation, and correction of P values through FDR in the 
R package vegan v. 2.5.1 (Oksanen et al. 2018).

The effect of IBR decoupled from IBD was calculated using 
distance-based redundancy analysis (dbRDA) using vegan v.  2.5.1 
(Oksanen et  al. 2018). dbRDA is a direct extension of a multiple 
regression to model multivariate response data (Legendre and 
Gallagher 2001; Benestan et al. 2016) and was used to quantify the 
correlation between the best MLPE model for each landscape vari-
able and FST/(1 − FST), assuming models with genetic differentiation 

as the dependent variable and cost distances as independent vari-
ables, conditioned on IBD. We obtained statistical significance from 
each dbRDA model using analyses of variance (ANOVA; 1000 
permutations).

To verify that our limited sample size did not affected the MLPE 
and dbRDA inferences, we subsampled our data with 3 random in-
dividuals for each module, recalculated FST values, and correlated the 
complete and subsampled FST matrices against each other. A correl-
ation coefficient of 1.00 suggested that the sample sizes in the ana-
lyses provided reliable estimates.

Results

FST Outlier Analysis and Environmental Association 
Analysis
Outlier analysis with BayeScan detected 174 SNPs with significantly 
high FST (2.28%). The analysis with LFMM identified 1281, 912, 
859, and 689 SNPs associated with land cover, the Walsh index, 
silt content, and temperature seasonality, respectively. Of these, 43 
SNPs were associated with each of the 4 environmental variables 
(Supplementary Figure S1). Twenty-three outliers were in common 
for the BayeScan and LFMM analyses, none of which resulted in sig-
nificant matches to either the N. parkeri genome or during BLAST 
searches using GenBank.

We removed the 23 loci in consensus between EAA and outlier 
approaches to produce an approximately neutral data set for popu-
lation and landscape genetic analyses. Preliminary analyses indi-
cated that inclusion or exclusion of these loci deviating from neutral 
expectations made no detectable difference to the results. Because 
of the strong genetic divergence of modules 1 and 2 from the re-
maining modules (see SNAPP analysis below), these 2 modules were 
excluded from the landscape genetic analyses to allow for subtle en-
vironmental influences on genetic structure to be detected. With the 
exclusion of the SNPs with signatures of selection and data from M1 
and M2, a total of 7609 SNPs were available for analysis. Summary 
statistics for modules M6–M14 are provided in Table 1.

Population Tree
The population tree constructed with SNAPP showed that individ-
uals from the northern modules M1 and M2 (yellow femoral spot) 

Table 1.  Number of sampled individuals (NTOTAL) and summary genetic data at each sampling site for Allobates femoralis along the PMI in 
central-southern Amazonia

  Parameter

Site NTOTAL Ho He Fis Fis_Low Fis_High PA HWE

M6 5 0.08 0.09 0.0434 −0.0341 0.0827 234 1
M7 5 0.1 0.1 0.0126 −0.0756 0.0719 434 1
M8 4 0.12 0.12 0.0389 −0.1102 0.1448 170 1
B8_9 7 0.11 0.13 0.1672 0.0524 0.2390 258 1
M9 5 0.11 0.13 0.1202 −0.0517 0.2236 170 1
B9_10 3 0.11 0.11 0.0023 −0.0530 0.0985 200 1
M10 3 0.11 0.11 −0.0151 −0.0719 0.0770 189 1
M11 6 0.1 0.11 0.1244 −0.0025 0.1777 118 1
M12 6 0.09 0.1 0.0386 −0.0846 0.1041 119 1
M13 6 0.09 0.09 0.0090 −0.1280 0.0742 275 1
M14 4 0.08 0.08 −0.077 −0.2999 0.0515 416 1

Heterozygosity (HO), expected heterozygosity (HE), inbreeding coefficient (FIS) and their low and high values (95%), number of private alleles (PA), and prob-
ability of deviating from Hardy–Weinberg equilibrium (HWE) are provided.
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belong to a strongly divergent lineage (Figure  4, Supplementary 
Figure S2), consistent with the relatively high pairwise FST values 
found between M1 or M2 and the other localities (FST range 0.72–
0.83). The remaining modules were split into 3 markedly shallower 
but distinct individual clades (posterior probability  =  1.00 in all 
cases), with Cluster C formed by the most distal node (Figure 4).

Corresponding with the genetic lineages identified using SNAPP, 
the population genetic inferences with ADMIXTURE, sNMF and 
DAPC produced a congruent result of 3 inferred genetic clusters from 
Module 6 onward (Figure 5, see also Figure S3). The first Cluster 
A comprised 14 individuals with red femoral spots across modules 
M6-M8 in dense forest. It was distinct from a second Cluster B, 
which comprised 24 individuals from 5 populations (BM8_M9 - 
M11) across dense and open forest. This cluster largely comprised 
individuals with yellow femoral spots, with the exception of popula-
tion BM8_9 with an intermediate (orange) coloration and evidence 
of genetic admixture (Figure 5). A third cluster (C, characterized by 
red femoral spots) was confined to 16 individuals from the eastern 
bank of the upper Madeira river (M12 to M14), an open forest area 
separated from the remainder of the transect by patches of savannah. 
Reducing the dataset to 3 individuals for all modules did not alter 
the genetic partitioning revealed by each of the 3 clustering methods, 
demonstrating that the sampling regime was sufficient to resolve 
genetic structure (Supplementary Figure S4).

IBD and IBR
Pairwise genetic distances (FST) across modules M6–M14 ranged 
from 0.020 (M13 and M14) to 0.207 (M6 and M14; Table 2), with 
a strong association between genetic and geographic distances and 
therefore IBD (Mantel test: P  <  0.0001, r2  =  0.96, Figure  6). The 
Mantel correlograms calculated for 7 classes of geographic distance 
revealed spatial autocorrelation in 4 cases: positively at geographic 
distances to 60 km (r  =  0.67, P  <  0.001) and 143 km (r  =  0.24, 
P = 0.02) and negatively at distances of 476 km (r = −0.61, P = 0.03) 
and 560 km (r = −0.61, P < 0.001; Supplementary Figure S5).

Our MLPE analysis showed that a land cover model with α = 5 
and γ = 10 explained 98% of the genetic variation (Table 3). The 
Walsh index explained 96% of the genetic variation at α = 100 and 
γ = 5, and temperature seasonality and silt content explained 95% of 
the genetic variation each, at α = 10 and 1000, and at γ = 5 and 1, re-
spectively (Table 3). The α values determine the maximum resistance 

of the variables (e.g., in the case of Walsh index, α = 100 suggests 
that landscape resistance to gene flow is 100 times greater than zero), 
and the γ values indicate whether the variable influenced genetic 
connectivity linearly or non-linearly. Silt presented a value of γ = 1, 
suggesting a linear resistance relationship. All other confidence sets 
of resistance surfaces presented values γ > 1, supporting resistance 
surfaces with reduced resistance sensitivity. ΔAIC values were iden-
tical for the 4 landscape features (0.00), supporting the maximum-
likelihood models. In the dbRDA models, the Walsh index captured 
8.4% of the observed genetic variation (F1,52 = 41.72, P = 0.001), 
followed by land cover (6.4%; F1,52 = 26.85, P = 0.001), temperature 
seasonality (5.3%; F1,52 = 20.54, P = 0.001) and silt content (3.5%; 
F1,52 = 11.79, P = 0.001; Table 3; Supplementary Figure S6).

Discussion

We characterized patterns of genetic structure and femoral spot col-
oration for the brilliant-thighed poison frog A. femoralis that was 
sampled along an 880 km transect through continuous rainforest 
in a major Amazonian interfluve. We revealed 4 genetically distinct 
clusters, one derived from a deep lineage divergence, and each cluster 
corresponding with a consistent femoral spot coloration which dif-
fered from the color possessed by individuals from adjacent clusters. 
Transitions between major forest types were not consistently associ-
ated with the boundaries of genetic clusters. Genetic variation was 
characterized by a pattern of IBD across hundreds of kilometers, and 
subtle but significant effects of contemporary landscape features on 
the distribution of individual measures of genetic variation.

Under a pronounced pattern of IBD, as is the case for our study 
system, genetic clustering algorithms can overestimate the number of 
partitions or lead to misleading admixture inferences (Frantz et al. 
2009; Garcia-Erill and Albrechtsen 2020). We nevertheless argue 
that the clusters identified along our A. femoralis transect represent 
biologically meaningful entities, as they were identified through 4 
independent approaches and conform to variation observed with 
a phenotypic trait (femoral spot coloration). Although precise time 
calibrations are beyond the scope of the present study, the pheno-
typic differences suggest that the clusters have arisen from past rather 
than contemporary phenomena, reflecting the “time lag problem” of 
landscape genetic inferences (see, e.g., Epps and Keyghobadi 2015). 
That the DAPC approach failed to identify the zone of admixture is 

Figure 3.  The IBR relationships tested for the effect of land cover and temperature seasonality on genetic distance FST/(1 − FST) using 7 values of γ (0.01, 0.1, 0.5, 
1, 5, 10, 100). The different slopes are not shown (α values) and are displayed here for α = 5 for simplicity. The curves show decreasing landscape resistances 
from right to left for land cover (a) and left to right for temperature seasonality (b).
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expected because it does not assess differential ancestry proportions 
for each individual (see also Miller et al. 2020).

Possible taxonomic implications of the deeply diverged popula-
tion of A.  femoralis from the northeast of the PMI (localities M1 
and M2) will require further work. Timing the divergence is needed 
to evaluate the role of historical processes in isolating these local-
ities from the remainder of the PMI. The northeast of the PMI is 
well drained, of young sedimentary origin (Late Pleistocene-Early 
Holocene, see, e.g., Sombroek 2001) and due to the proximity to the 
Amazon river subject to rapid changes in topography and hydrology 
that might have resulted in periods of isolation (Hoorn et al. 2010; 
Latrubesse et al. 2010; Pupim et al. 2019). At present, the popula-
tions from M1 and M2 are separated from the remainder of the tran-
sect by approximately 150 km of lowland dense forest unoccupied 
by A. femoralis (Ferreira et al. 2018). Isolation by unsuitable habitat 
is also suggested for cluster C (M12–M14, red femoral spots), which 
is separated from the remainder of the modules by secondary vege-
tation, including intervening savannah over about 150 km, an eco-
logical barrier that is likely to have been further strengthened during 
the glacial periods in the late Pleistocene (Cohen et al. 2014).

In contrast to the association of Clusters A and C, the area of 
contact between Clusters A and B (M8–M9) does not occur at the 

location of a current ecotone. This implies that the divergence of 
Clusters A and B might be linked to a barrier, which is no longer pre-
sent. Our finding for A. femoralis contrasts with recent data on the 
genetic structure of a treefrog (Ortiz et al. 2018) and with plumage 
coloration in birds (De Abreu et al. 2018) along the same transect, 
which both reveal a zone of divergence spatially matching with the 
ecotone between open and closed forest (M10 and M11). For these 
species, it was concluded that present day environmental differences 
were responsible for the genetic partitioning.

Individuals in Cluster A possess different femoral spot coloration 
(red) from those in Cluster B (yellow), except in a relatively narrow 
(~100 km) zone of admixture where individuals possess orange fem-
oral spots. This color transition mirrors a well-studied model hybrid 
zone system between the European red (fire)-bellied toad Bombina 
bombina and the yellow-bellied toad B. variegate, that form orange-
bellied hybrids in parapatry (e.g., Szymura and Barton 1986, 1991). 
In this system, spatial separation through differential habitat prefer-
ences leads to a narrow zone of admixture despite the lack of pro-
nounced postzygotic mating barriers (Vines et  al. 2003). Another 
mechanism that can lead to narrow zones of admixture is sexual 
selection, and assortative mating in accordance with red or yellow 
femoral spot coloration has been demonstrated with A.  femoralis 

Figure 4.  A population tree generated using SNAPP, and a histogram showing individual ancestry proportions, estimated using ADMIXTURE. The location of 
the collection modules are color coded to reflect the color assigned to each genetic cluster in the ADMIXTURE plot (the white circles for M3–M5 indicate the 
absence of Allobates femoralis). Posterior probabilities obtained at each node are shown on the tree. Cluster 1 corresponds to individuals with yellow femoral 
spots, Cluster A corresponds to individuals with red femoral spots, Cluster B corresponds to individuals with yellow femoral spots, with a zone of admixture 
between Cluster A–B (BM8-9) with an intermediate color phenotype (orange), and Cluster C corresponds to individuals with red femoral spot. See online version 
for full colors.
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mate choice experiments (Ferreira et al., unpublished data). In add-
ition, femoral spot coloration in A. femoralis spatially varies in as-
sociation with mimicry with syntopic toxic species (Amézquita et al. 
2017), and evaluating locally co-occurring taxa to investigate such 
relationships may help shed light on the mechanisms underpinning 
the distribution of color variation at this locality.

Spatially structured transitions of coloration across an area 
of genetic admixture could serve as a mechanism to generate new 
phenotypes (Stelkens and Seehausen 2009; Sefc et al. 2017). In other 
poison dart frogs, hybridization has been shown to result in inde-
pendent aposematic lineages and novel colors morphs (Medina et al. 

2013; Ebersbach et  al. 2020). Examining the evolutionary history 
of admixed individuals with color variation across the wider distri-
bution of A. femoralis in the Amazon basin will help establish the 
role of hybridization in generating this polymorphism. In addition, 
testing for assortative mating particularly for individuals possessing 
the orange phenotype and conditions allowing disassortative mating 
(e.g., low mate availability; Medina et al. 2013) will contribute to-
ward a better understanding of the isolating processes involved.

Although contemporary environmental variation was not con-
sistently associated with the 4 distinct genetic clusters we have 
described, genetic connectivity still varies with environmental 

Table 2.  Pairwise genetic distances FST (below diagonal) and geographic distance (in km, above diagonal) between Allobates femoralis 
sampling locations within the PMI

 M6 M7 M8 BM8_9 M9 BM9_10 M10 M11 M12 M13 M14

M6 — 53.08 98.19 124.81 148.94 203.06 230.45 300.38 560.32 575.38 601.44
M7 0.037 — 49.81 75.33 98.34 153.35 181.32 253.53 512.75 527.40 553.44
M8 0.058 0.048 — 26.65 51.07 104.90 132.46 203.87 463.37 478.16 504.21
BM8_9 0.080 0.071 0.043 — 24.63 78.36 106.11 178.37 437.42 452.09 478.13
M9 0.094 0.082 0.050 0.032 — 55.17 83.39 157.16 415.05 429.48 455.50
BM9_10 0.121 0.108 0.076 0.055 0.051 — 28.33 103.05 359.91 374.31 400.33
M10 0.127 0.114 0.082 0.063 0.058 0.051 — 75.08 331.67 346.14 372.17
M11 0.137 0.125 0.092 0.073 0.070 0.061 0.053 — 259.96 275.19 301.25
M12 0.198 0.185 0.154 0.135 0.133 0.130 0.133 0.116 — 17.77 42.23
M13 0.201 0.189 0.157 0.138 0.137 0.133 0.137 0.122 0.021 — 26.06
M14 0.207 0.194 0.162 0.143 0.141 0.139 0.141 0.125 0.029 0.020 —

Figure 5.  Histograms for individual Allobates femoralis sampled along the PMI using 3 different clustering approaches: (a) ADMIXURE, (b) sNMF, and (c) DAPC. 
Each individual is represented by a bar partitioned into different colors to represent individual ancestry proportions. K represents the most likely number of 
genetic clusters. See online version for full colors.
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conditions. Environmental variables have been shown to influence 
gene flow in other anurans. For example, IBR contributed an add-
itional 10–20% in variation to models governed by IBD for the 
European common frog Rana temporaria (Van Buskirk and Jansen 
van Rensburg 2020). Given that this study was conducted in rugged, 
alpine terrain, the magnitude of these values are consistent with 
the environmental influence that we measured in a more gradually 
varying environment. We found that the influence of land cover was 
strongly supported by our MLPE models, confirming previous evi-
dence that dense forest flooded by streams and overflowing rivers 
are not favorable habitats for A.  femoralis (Ferreira et  al. 2018). 
Our dbRDA results showed that the Walsh index was also associated 
with less connectivity. A possible explanation is that rainfall strongly 
determines the existence and persistence of water-filled ditches on 
the forest floor, a requirement for reproduction for many amphib-
ians including A. femoralis (Menin et al. 2011; Ringler et al. 2015). 
Rainfall gradients and the 2 dominant forest phytophysiognomies 
in the PMI are autocorrelated, which likely explains the inconsist-
ency with the highest ranking variable resolved with the MLPE and 
dbRDA results (forest cover vs. Walsh index, respectively). Open for-
ests in the drier, southwestern areas of the PMI are more seasonal 
and have lower stem densities and higher tree mass compared with 
wetter, dense forest at northeastern parts (Sombroek 2001; Cintra 
et al. 2013; Schietti et al. 2016).

Environmental variation also appears to impose different se-
lective pressures along the PMI, with environmental association 
analyses showing the largest number of SNP loci associated with 

the Walsh index and forest cover. Further work with greater SNP 
densities and a reference genome will contribute toward the iden-
tification of genes under selection. Nonetheless, our existing results 
suggest that both the levels of connectivity and differences in fitness 
associated with environmental variation may contribute to the ob-
served fine-scale patterns of genetic variation. We reduced the risk of 
false positives in such inferences (see Hoban et al. 2016; Ahrens et al. 
2018) by considering only those loci which were identified by both 
BayeScan and LFMM.

Although strong IBD and environmental-based selection are 
conditions that may lead to divergence in accordance with the gra-
dient diversification hypothesis (Endler 1977), our data also sug-
gest a role of historical processes in the generation of the patterns 
of genetic divergence we describe for A.  femoralis. In particular, 
the relatively rapid restructuring of the Amazon region may give 
rise to conditions where historical isolation and processes associ-
ated with secondary contact reduce the potential for environmental 
gradients to strongly influence genetic and phenotypic variation. 
For example, reinforcement by the development of reproductive 
character displacement could potentially be a stronger influence 
on gene flow than the effects of environmental gradients (Rojas et 
al. 2019). Accumulating genetic data from additional species using 
the standardized sampling system along the PMI provides a unique 
opportunity to look for traits (e.g., variation in mating cues) that 
predict whether current environmental transitions or mechanisms 
associated with past landscapes generate diversity in areas of con-
tinuous habitat.

Table 3.  Summary of model selection using MLPE and dbRDA that evaluated the effects of IBR on genetic distance (log(FST/1 – FST))

 MLPE dbRDA

Variables α γ AICc ΔAIC r2 SE t-value r2 F P

Land cover 5 10 36.66 0.00 0.98 0.0800 21.223 0.064 26.85 0.001
Walsh index 100 5 51.81 0.00 0.96 0.0707 17.025 0.084 41.72 0.001
Temperature seasonality 10 5 52.73 0.00 0.95 0.0903 16.053 0.053 20.54 0.001
Silt content 1000 1 50.69 0.00 0.95 0.0887 16.557 0.035 11.79 0.001

For MLPE, the AIC, r2 value, standard error (SE), and the parameter combination (α and γ) are given for the best models for each landscape variable. For 
dbRDA, the magnitude of difference is given by the t-value, and the F and P values were obtained by ANOVA. Bolded P values show significant effects of IBR on 
genetic distance.

Figure 6.  Relationship between genetic and geographic distance in Allobates femoralis across the PMI.
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