

Original Article

Fecundity selection depends on local environmental conditions among sympatric populations of two Amazonian stream-shrimp species

Elmo Pereira da Silva^{1,*}, , Pedro A.C.L. Pequeno², , William E. Magnusson^{1,3},

¹Graduate Program in Ecology, National Institute for Amazonian Research, André Araújo Avenue, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil

²National Institute of Sciences and Technology for Synthesis of Amazonian Biodiversity, André Araújo Avenue, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil

³Biodiversity Coordination, National Institute for Amazonian Research, André Araújo Avenue, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil

*Corresponding author. Graduate Program in Ecology, National Institute for Amazonian Research, André Araújo Avenue, 2936, Petrópolis, Manaus, AM 69067-375, Brazil. E-mail: elmopereira1317@gmail.com

ABSTRACT

In most ectotherms, females are larger than males. Darwin suggested that this was because larger females have a fitness advantage: they had more space and resources to bear more offspring, an idea known as fecundity selection. However, evidence for a strong fecundity-size relationship among populations is contradictory and may depend strongly on local environmental conditions. Here, we tested for divergence in the fecundity-size relationship in shrimp reproductive females along small-scale environmental gradients in a tropical rainforest. We sampled 235 reproductive females of two endemic shrimp species (*Macrobrachium inpa* and *Macrobrachium amazonensis*) in 50-m stream reaches across a 64-km² area in Central Amazonia. Total body size of individuals was measured and all eggs were counted. Our results showed that *M. inpa* reproductive-female body length was significantly different between stream catchments, while *M. amazonensis* body length was significantly associated with a stream-area gradient. Furthermore, the fecundity-size relationship for *M. inpa* varied along a water-velocity gradient, while that of *M. amazonensis* varied along a substrate-type gradient. These patterns could be explained by either local adaptation, plasticity, or both. Regardless, they show that the expression of fecundity selection varies even across relatively small spatial extents and along subtle environmental gradients within a tropical rainforest.

Keywords: local adaptation; environmental gradients; body length; fecundity traits; plasticity

INTRODUCTION

Evolution is dependent on processes that guarantee an organism's reproduction and viability over time. Survival, mating success, and fecundity are some of the processes that define the trajectories of adaptations (Darwin 1859, Bell 2008). These processes are the basis for three selection mechanisms: natural, sexual, and fecundity. In contrast to natural and sexual selection, fecundity selection studies remain lacking despite its major role in species life-history processes (Shine 1988, Roff 2002). The term 'fecundity selection' was originally derived from Darwin's fecundity-advantage hypothesis (Darwin 1874), to explain the sexual dimorphism when females are larger than males across animal species. The primary causes for these body-size differences between sexes are that larger females can accommodate a greater number of eggs and allocate more energy for reproductive events (i.e. energy reserve hypothesis) (Williams 1966, Calder 1984).

Despite Darwin's assumptions, fecundity selection is not always related to female-biased sexual size dimorphism (SSD) (Pincheira-Donoso and Tregenza 2011, Soulsbury *et al.* 2014). Female-biased SSD can also be a result of sexual selection, particularly for smaller male body size and not necessarily acting on female size (Pincheira-Donoso and Hunt 2017). Fecundity selection can vary within species through natural selection by ecological divergence (Roff 2002), as selective mechanisms can interact spatially and temporally (Badyaev and Ghalambor 2001, Hoekstra *et al.* 2001). Many studies have shown the effect of environment on fecundity at a large scale (i.e. hundreds to thousands of kilometres), and a strong positive relationship between fecundity and size (Nali *et al.* 2014, Dick *et al.* 2017). However, this relationship can change across environments, even at local scales, but most evidence comes from bird populations (Pincheira-Donoso and Hunt 2017). Therefore, larger females do not always have higher

Received 24 July 2025; revised 3 October 2025; accepted 21 October 2025

© The Author(s) 2026. Published by Oxford University Press on behalf of The Linnean Society of London. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

fecundity and more research is needed to investigate this relationship in other taxa.

Historically, fecundity selection was treated as a function of fecundity traits, since this type of selection favours traits that increase the reproductive output (Roff 2001). Instead, most studies use body size as a proxy of fitness traits in fecundity selection studies since fecundity is usually a function of body size (Pincheira-Donoso and Hunt 2017, Ahti *et al.* 2020, Common *et al.* 2020). The correlation between body size and fecundity may result from several mechanisms, where either small or large sizes can display higher fecundity (Gergely and Tökölyi 2023). For instance, in limited conditions, larger individuals may allocate more energy for tissue maintenance than reproduction (i.e. energy demand hypothesis) (Reim *et al.* 2006). Conversely, smaller individuals require less energy for tissue maintenance and may reproduce sooner and with better effort (Blanckenhorn 2000). Nevertheless, larger females often reproduce unequally more than smaller females (Barneche *et al.* 2018), both intra- and inter-specifically (Hayward and Gillooly 2011, Dick *et al.* 2017), although that correlation depends greatly on the species and the environment.

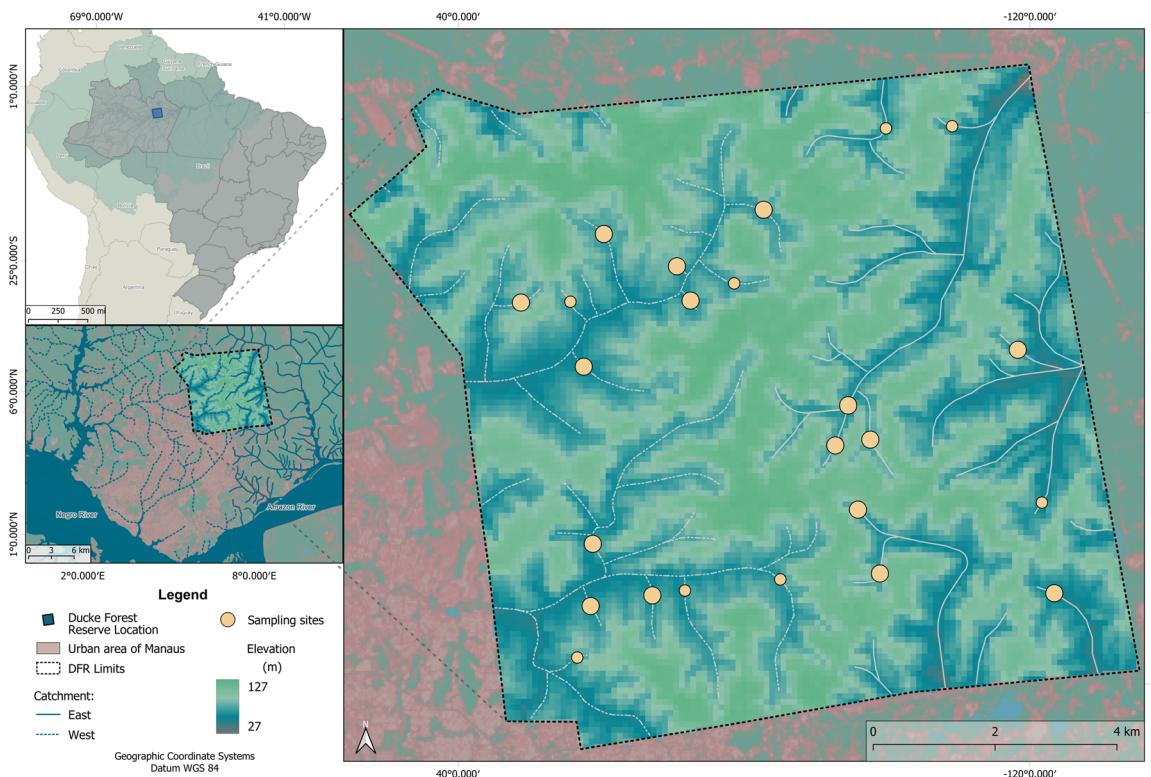
Fecundity selection has been reported for many taxa, mostly ectotherms and some endotherms (crustaceans: Hirst and Kiorboe 2014, Nguyen and Nguyen 2018; insects: Afaq and Afaq 2012, Hu *et al.* 2015; fish: Winkler *et al.* 2012, Horne *et al.* 2020; amphibians: Juarez *et al.* 2023; reptiles: Meiri *et al.* 2012; birds: Lisle and *et al.* 2009, Caron and Pie 2024; mammals: Cassini 2017), and has been found to operate primarily towards female size. However, fecundity selection may also act on male size if males play a significant role in reproductive success or for selective pressures acting independently in both sexes (Pincheira-Donoso and Hunt 2017). For example, in Syngnathidae fish, larger males can enhance female reproductive output as male brood pouches and female abdomens are selected to guarantee fecundity and offspring viability (Wilson 2009, Winkler *et al.* 2012).

Besides female size, other conditions can limit the number of offspring that a female can bare (Yampolsky and Scheiner 1996, Kolding and Fenchel 1981, Dani and Kodandaramaiah 2017). Resource availability and seasonality can affect species reproductive processes, as resources can change spatially and temporally (Castiglioni *et al.* 2018, Kürschner *et al.* 2021). Consequently, divergent relationships between fitness traits and ecological resources may arise among contrasting environments (Silvestro *et al.* 2023). This is the main premise of ecological divergence. Therefore, divergent selection could indicate local adaptation by populations that experience different resource availability. Habitat and food availability were reported as key drivers affecting reproduction and survival of species (Thomas *et al.* 2001, Durant *et al.* 2007), once the quantity and quality of those resources affects species energetic demands, which depends on organism size (Blanckenhorn 2000).

Environmental gradients are suggested as the main drivers of biological diversification in freshwater systems, even at microgeographic scales (Loomis *et al.* 2020). Among those gradients, system size has been widely associated with ecological divergence for increasing habitat availability and niche partitioning (Chavarie *et al.* 2018, Tiddy *et al.* 2024), although those are more related to fish populations in temperate and glacial regions. Populations

restricted to freshwater environments are also limited by dispersal barriers between river catchments (e.g. plateaus separating water-bodies) (McGlashan and Hughes 2000, Hughes 2007), in which a population's selective regimes depend on direct or temporary connections between catchments (Bilton *et al.* 2001). In this way, populations that occupy different catchments are characterized by unique selective aspects (Avise 1994, Cook *et al.* 2002), possibly leading to strong selection at catchment level.

Crustaceans, such as shrimps and crabs, were the first animals used by evolutionists to investigate natural selection and adaptation in the field (Weldon 1890). Variation in their egg number has been linked to female size and environmental variation (e.g. temperature, dissolved oxygen) (Reid and Corey 1991, Pantaleão *et al.* 2018, Limberger *et al.* 2024). However, the potential role of spatial and temporal variation in fecundity selection is still poorly understood, and most studies focus only on the effects of season on egg number (Castiglioni *et al.* 2018). Shrimp species commonly present strong patterns of fecundity selection (Tamburus *et al.* 2012, Herrera-Correal *et al.* 2013) and their distribution is often related to environmental changes (Silva *et al.* 2020). However, the role of local environmental gradients on selection for size-specific fecundity is unclear.


In Amazonian small streams, shrimp species distributions are mainly affected by environmental factors (Kemenes *et al.* 2010, Silva *et al.* 2020). For the same species, populations were found to be size-structured, where small individuals shared minimal habitat resources with large ones (Silva and Magnusson 2023). However, the extent to which Amazonian shrimp species are under divergent fecundity selection is unknown. Here, we collected comprehensive data on two abundant Amazonian shrimp species (*Macrobrachium inpa* Kensley & Walker, 1982 and *Macrobrachium amazonensis* Ramos-Porto, 1979) to test if (i) reproductive female size has diverged between sites with contrasting local environmental conditions; and (ii) whether such divergence can be explained by differential fecundity selection (i.e. different relationships between number of eggs and body length) in sympatric populations of Amazonian small-stream shrimps.

MATERIAL AND METHODS

Study area and environmental sampling

The study was undertaken in Amazonian small streams within a 64-km² trail system in Ducke Forest Reserve (DFR) (2°56' S; 59°54' W). DFR covers an area of 10 000 ha of *terra-firme* tropical rainforest (i.e. non-flooded) (Fig. 1). Average air temperature is around 26°C and annual precipitation between 1966 and 2018 was 2570 mm (Costa *et al.* 2020). Vegetation cover is predominantly old-growth *terra-firme* rainforest and soils are mainly clayey, becoming sandier at low elevations (Chauvel *et al.* 1987, Guillau-met 1987). DFR streams drain to different catchments in the East and West. Eastern streams drain to the Amazon River and western streams drain to the Negro River.

Twenty-four first- and second-order stream reaches (50-m) were sampled between September 2021 and January 2024. Sampling sites corresponded to 10 stream reaches in the eastern catchment and 14 in the western catchment. Sites were chosen to coincide with some of the 38 permanent study plots established by the National Institute for Amazonian Research (INPA) Graduate Program in Ecology

Figure 1. Location of Ducke Forest Reserve (DFR) showing the distribution of 24 sampling sites in streams divided between two catchments, East (streams shown as continuous lines) and West (streams shown as dashed lines). Larger circles represent sites where both species were sampled, and smaller circles represent sites where one or the other species was sampled.

and coordinated by the Biodiversity Research Program of Western Amazonia (PPBio-AmOc). Data collection followed an adaptation of the standard PPBio protocol for fish (Mendonça *et al.* 2005). Specimens and environmental variables were collected on the same day and by the same researchers in each plot.

Environmental variables were measured before shrimp sampling to avoid changes in habitat structure caused by researcher movement. Stream hydraulic features were measured in four transects across streams spaced 16-m apart along the sample reach. Channel morphometry at the position of each of the four transects was represented by total channel width and by average depth, measured at nine equidistant points across the channel in each transect. Stream surface velocity at the centre of the channel was estimated using the time that a floating low-density object took to travel a 1-m distance (i.e. distance divided by the travel time). Substrate type was registered at each of the nine depth-measurement points and was categorized as sand, clay, pebble, coarse litter, fine litter, root, trunk, or macrophyte.

Shrimp species

Shrimp individuals were captured through active sampling using fine-mesh hand nets manipulated by two researchers moving in a downstream-upstream direction. Sampling was carried out in the daytime and at night (only for the first five samples) by the same collectors for 2 hours in each stream reach. Shrimps could not be reliably identified in the field, so they were kept in well-aerated buckets with stream water and later killed by anaesthesia in alcohol diluted in stream water and in cold water with ice and stored in 70% ethanol. Individuals were identified to species level using

specialized guides (Kensley and Walker 1982, Melo 2003). Sex was determined for each specimen by the presence (male) or absence (female) of an appendix masculina on the second pleopod. Total length (TL: from the tip of the rostrum to the end of the telson) was measured using a manual caliper (0.05 mm) and for ovigerous females all eggs were counted. Here, TL (cm) was used to represent body length for statistical analysis and fecundity refers to the number of eggs in a single clutch (i.e. single reproductive episode), also known as transient fecundity (Pincheira-Donoso and Hunt 2017). For most reproductive females analysed here, eggs were in a similar embryonic development stage, which was the transition between no apparent embryo formation to the visualization of developing eyes (i.e. eggs change colour to whitish with a black spot), although no apparent hatching was observed. Ovigerous females in very early embryonic development stages were not considered, since early-fertilized eggs popped before counting, as well as females in late stages with apparent egg hatching or loss.

At least four species of shrimps are found in DFR (Fonseca *et al.* 2009, Silva *et al.* 2020, Carvalho *et al.* 2025), but only two (*Macrobrachium inpa* and *Macrobrachium amazonensis*) were sufficiently common for analysis. Both species are endemic to the Amazonian region with more records in the Amazon state of Brazil (Kensley and Walker 1982, Melo 2003). *Macrobrachium inpa* occurs mainly on submerged leaf litter and stream-margin roots, feeding generally on terrestrial and aquatic invertebrates, including young stages of shrimp (Kensley and Walker 1982). For this species, males are larger than females, with ovigerous females average total body length (TL) of 27 mm and clutches consisting of 8 to 19 elliptical, yolk-rich, dark-red eggs (Magalhães 2016).

For analyses, this species was represented by 171 adult females collected in 24 stream reaches.

Macrobrachium amazonensis occurs mainly in open waters with sandy substrate and floating roots, feeding on invertebrates, especially annelids and insects (Kensley and Walker 1982). For this species, females are larger than males, ovigerous females have a mean TL of 36.5 mm and clutches consisting of 13 to 19 elliptical, yolk-rich, dark-green eggs (Magalhães and Medeiros 1998). For analyses, this species was represented by 64 adult females collected in 16 stream reaches.

Statistical analysis

Sample units corresponded to the reproductive females (i.e. individuals with presence of eggs) collected in all sampling sites and months. Due to relatively high collinearity, depth and width ($r^2 = 0.77$; $t = 38.6$; $p < 0.0001$) were summarized into a principal component axis (PCA) as a proxy of channel morphometry using the *prcomp* function from the *stats* package. Substrate proportions were summarized into the first three principal component axes, representing 66 (for *M. inpa*) to 78% (for *M. amazonensis*) of the variation among all eight substrate types (Supporting Information, Table S1). Catchment identity (East or West) was used as a categorical variable to test for stream-basin effect on dependent variables. To account for autocorrelation among individuals from the same site and month, we used those as random factors in our models (see below). First, we compared models using different random factors (i.e. site or month) but the same fixed factors assuming Maximum Likelihood (ML). Second, we ran models again using Restricted Maximum Likelihood (REML) to estimate better variance for random-factor coefficients. This method is more likely to avoid type I error bias by fixed factor estimation without overloading models (Patterson and Thompson 1971, Clifford *et al.* 1989, Rameez *et al.* 2022). Finally, we used Akaike information criterion (ΔAIC) to select the best fitted model, considering the random factors and avoiding type I and II errors (Barnett *et al.* 2010). As sites and months produced similar effects in our analyses (Supporting Information, Table S2), we chose sampling sites to represent the autocorrelation component in our tests due to lower ΔAIC in most of the models. All statistical analyses were performed in R statistical software v.4.3.1 (R Core Team 2025).

Body-size and fecundity-selection-divergence models

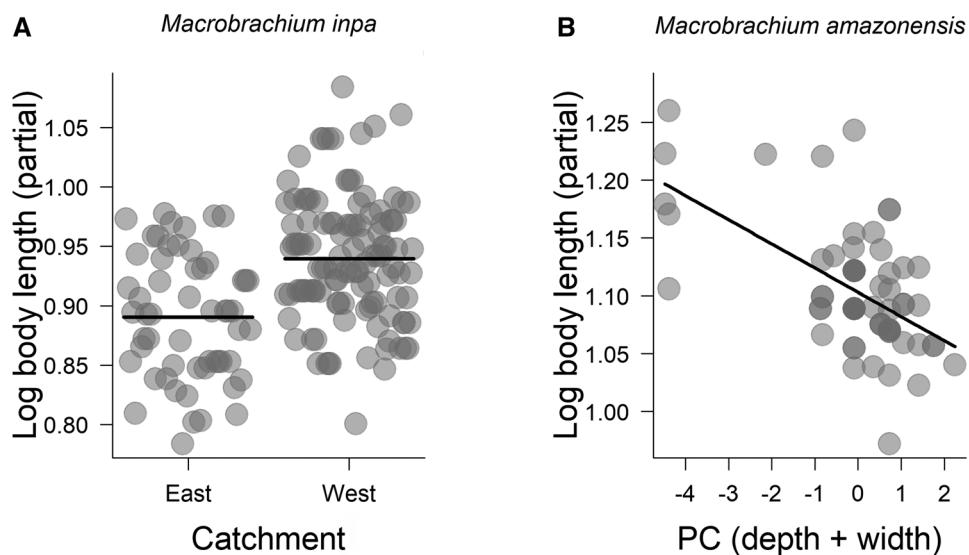
Dependent variables corresponded to reproductive-female size for body-size models and to the number of eggs for those same females for fecundity-selection models. Generalized linear mixed models (GLMM) were used to test for possible relationships between reproductive-female size and number of eggs (each separately) with environmental gradients. GLMMs were constructed with log-transformed dependent variables and assuming residuals with normal distribution. The following predictors were included: catchment identity (East or West), channel morphometry (principal component), substrate type (principal components), water velocity (m/s), and sampling sites (random factor). Predictors were selected based on their variation among stream reaches, their independent effect (i.e. Pearson correlation coefficients < 0.6), and their importance for shrimp distribution in tropical streams. To test for divergent-fecundity selection, the model for number of eggs included interactions between body length and each environmental predictor. For the purpose of this study, the independent effect of size on egg number, considering the fecundity-selection-divergence

models without interactions, will be referred as habitat-independent selection. All models were constructed using the *gam* function in the *mgcv* package (Wood *et al.* 2016).

RESULTS

Body-size divergence

Macrobrachium inpa reproductive-female size showed a significant relationship only with catchment identity ($t = 2.324$; $p = 0.001$) (Table 1; Fig. 2A). *Macrobrachium amazonensis* reproductive-female size showed a significant relationship only with channel morphometry ($t = -2.723$; $p = 0.009$) (Table 1; Fig. 2B), which represents depth and width measurements.


Fecundity-selection divergence

Macrobrachium inpa presented a statistically significant relationship between number of eggs and body length independent of environmental predictors (i.e. habitat-independent fecundity selection) ($t = 2.982$; $p = 0.003$) (Table 2; Fig. 3A). Water velocity and substrate gradient-PC3, which represent proportions of fine litter and macrophytes (Supporting Information, Table S1), were correlated with egg number (WV: $t = -2.460$, $p = 0.01$; PC3: $t = 2.491$, $p = 0.01$)

Table 1. Generalized linear mixed models (GLMM) of reproductive-female size on environmental gradients (fixed components) and sampling sites (random component). The number of replicates (reproductive females) was at least 64 for each analysis.

Generalized Linear Mixed Models					
Statistics					
Fixed components	<i>t</i> -value	<i>p</i>	<i>edf</i>	<i>R</i> ²	
<i>Macrobrachium inpa</i>					
Catchment (East/West)	2.324	0.001	-	-	
Channel morphometry (PC)	0.344	0.73	-	-	
Substrate (PC1)	-1.114	0.92	-	-	
Substrate (PC2)	-0.102	0.75	-	-	
Substrate (PC3)	0.782	0.43	-	-	
Water velocity (m/s)	0.630	0.53	-	-	
Random component					
Sampling sites	-	0.01	6.56	0.23	
<i>Macrobrachium amazonensis</i>					
Catchment (East/West)	-0.074	0.94	-	-	
Channel morphometry (PC)	-2.273	0.03	-	-	
Substrate (PC1)	-1.189	0.24	-	-	
Substrate (PC2)	0.156	0.88	-	-	
Substrate (PC3)	-0.167	0.87	-	-	
Water velocity (m/s)	-0.261	0.8	-	-	
Random component					
Sampling sites	-	0.01	5.86	0.52	

Bold values indicate low probability associated with null hypothesis.

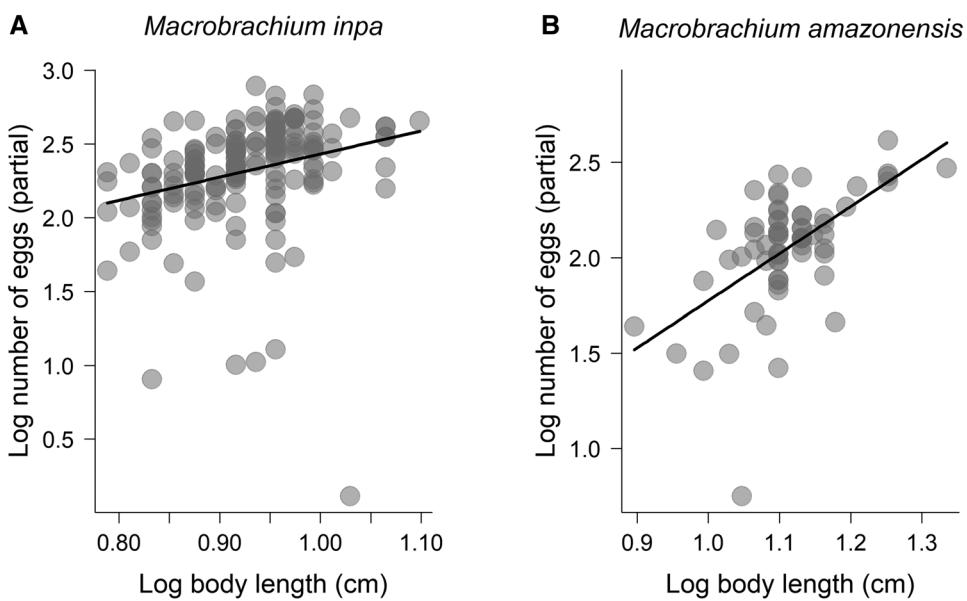
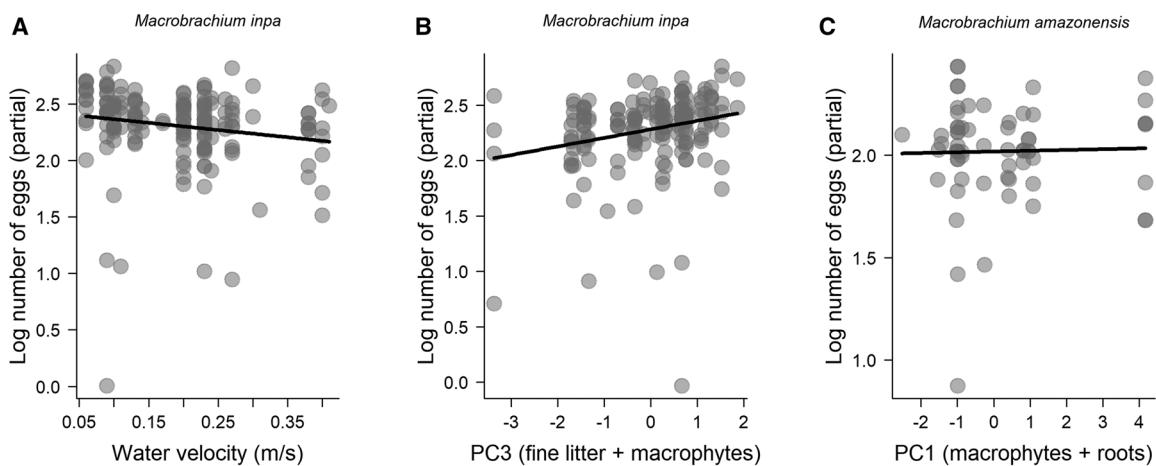


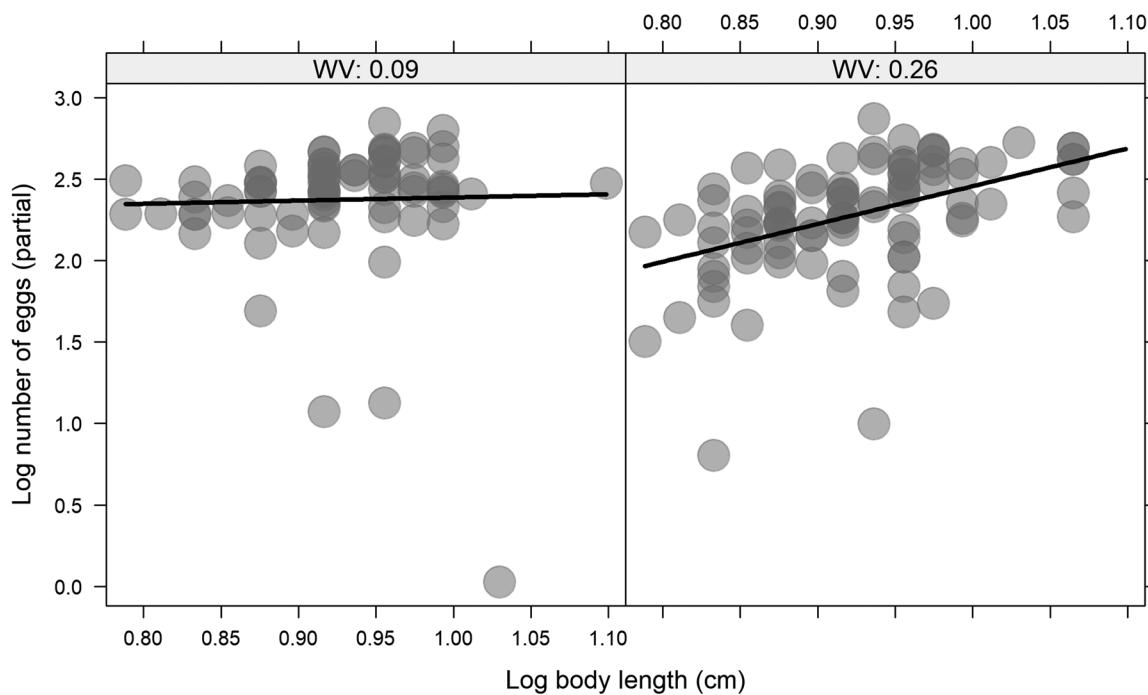
Figure 2. Partial-regression plots (fixed + random components) for a generalized linear mixed model (GLMM) illustrating the relationship between the log of body length (cm) with catchment identity (East or West) for *Macrobrachium inpa* (A) and with stream area (depth + width) for *Macrobrachium amazonensis* (B).


Table 2. Generalized linear mixed models (GLMM) of size-specific fecundity on environmental gradients (fixed components) and sampling sites (random component). The number of replicates (reproductive females) was at least 64 for each analysis.

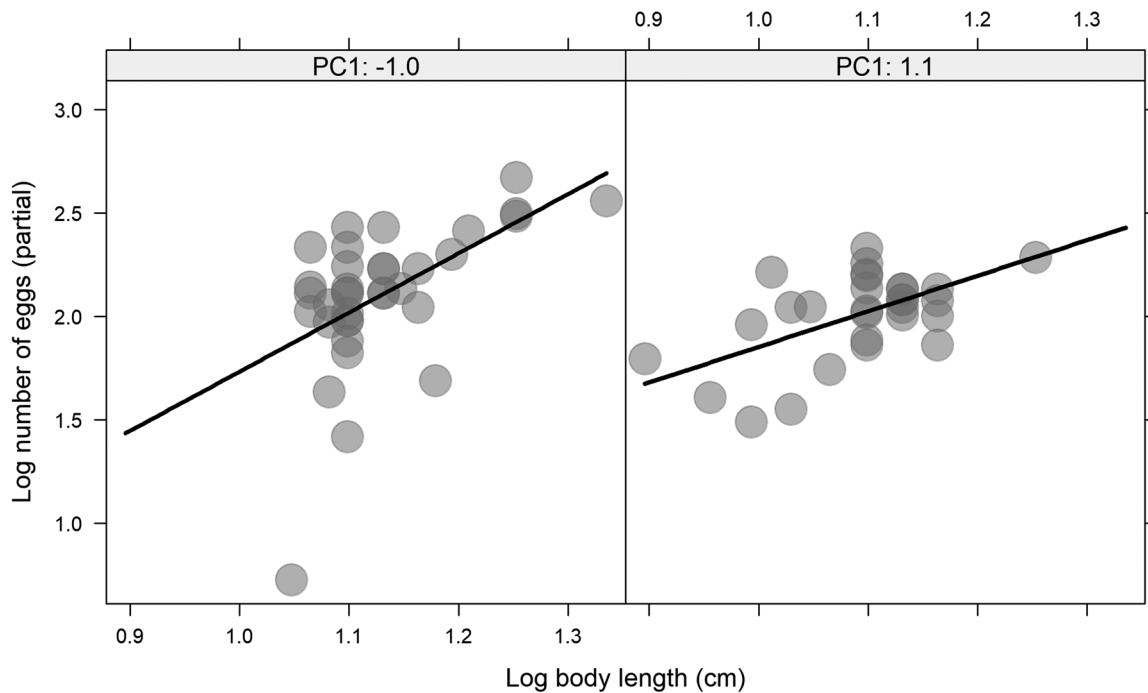
Generalized Linear Mixed Models					
	Statistics				
	Fixed components	t-value	p	edf	R ²
Macrobrachium inpa					
	Habitat-independent body length (cm)	2.982	0.003	-	-
	Body length (cm)	-0.806	0.42	-	-
	Catchment (East/West)	1.048	0.3	-	-
	Channel morphometry (PC)	-0.797	0.43	-	-
	Substrate (PC1)	-0.568	0.57	-	-
	Substrate (PC2)	-0.955	0.34	-	-
	Substrate (PC3)	2.491	0.01	-	-
	Water velocity (m/s)	-2.460	0.01	-	-
	Body length: Water velocity	2.392	0.02	-	-
	Body length: PC3	-1.376	0.17	-	-
Random component					
	Sampling sites	-	0.1	4.15	0.14
Macrobrachium amazonensis					
	Habitat-independent body length (cm)	3.150	0.002	-	-
	Body length (cm)	3.579	0.0007	-	-
	Catchment (East/West)	-0.454	0.65	-	-
	Channel morphometry (PC)	0.07	0.94	-	-
	Substrate (PC1)	2.016	0.05	-	-
	Substrate (PC2)	-0.849	0.4	-	-
	Substrate (PC3)	-1.751	0.09	-	-
	Water velocity (m/s)	-0.653	0.52	-	-
	Body length: PC1	-1.981	0.05	-	-
Random component					
	Sampling sites	-	0.84	<0.0001	0.24

Bold values indicate low probability associated with null hypothesis.

Figure 3. Partial-regression plots (fixed + random components) for a generalized linear mixed model (GLMM) illustrating the habitat-independent relationship between the log of number of eggs (partial) and the log of body length (cm) for *Macrobrachium inpa* (A) and for *Macrobrachium amazonensis* (B).


Figure 4. Partial-regression plots (fixed + random components) for a generalized linear mixed model (GLMM) illustrating the relationship between the log of number of eggs with water velocity (m/s) for *Macrobrachium inpa* (A), with substrate type (fine litter + macrophytes) for *Macrobrachium inpa* (B), and with substrate type (macrophytes + roots) for *Macrobrachium amazonensis* (C).

(Table 2; Fig. 4A, B). For this species, size-specific fecundity showed divergent relationships only along the water-velocity gradient ($t=2.392$; $p=0.02$) (Table 2; Fig. 5). *Macrobrachium amazonensis* also showed significant habitat-independent fecundity selection ($t=3.150$; $p=0.002$) (Table 2; Fig. 3B). Substrate gradient-PC1, which represents proportions of macrophytes and roots (Supporting Information, Table S1), was correlated with egg number ($t=2.016$, $p=0.05$) (Table 2; Fig. 4C). For this species, size-specific fecundity was only related to the substrate gradient-PC1 ($t=-1.981$, $p=0.05$) (Table 2; Fig. 6).


DISCUSSION

Here, we showed that fine geographical scales can promote ecological divergence through differences in the fecundity-size relationship along subtle environmental gradients in Amazonian small-stream

shrimps. Size of reproductive females for *M. inpa* varied among different catchments, although none of the measured environmental predictors were related to such variation. This pattern in reproductive-female-size variation between catchments could be a result of non-measured environmental gradients or genetic differences accumulated among individual trait values (Raffard et al. 2024). Differences among river catchments are the main drivers of divergence for freshwater populations (Hughes et al. 2009), and environmental gradients are related to freshwater shrimp species divergence within and between catchments (Rahman et al. 2020). Variation in reproductive-female size was also observed for *M. amazonensis*, but this was more related to changes in channel morphometry. Habitat complexity associated with system-area and depth gradients promote intra- and inter-specific divergence through selection in freshwater environments (Skoglund et al. 2015, Recknagel et al. 2017), as different strata are subject to distinct biotic and

Figure 5. Partial-regression plot (fixed + random components) for a generalized linear mixed model (GLMM) illustrating the habitat-dependent fecundity selection divergence for the relationship between the log of number of eggs and the log of body length along the water-velocity gradient (WV; m/s) for *Macrobrachium inpa*.

Figure 6. Partial-regression plot (fixed + random components) for a generalized linear mixed model (GLMM) illustrating the habitat-dependent fecundity selection divergence for the relationship between the log of number of eggs and the log of body length along the substrate gradient-PC1 (macrophytes + roots) for *Macrobrachium amazonensis*.

abiotic conditions. In this study, only populations of *M. amazonensis* showed evidence of reproductive-size selection along environmental gradients, with stream area being the most important selective component. Morphological divergence for sympatric populations could be a result of genotypically plastic responses to environmental

variation or genotype related habitat preference (Pequeno *et al.* 2021).

Macrobrachium inpa showed evidence of habitat-independent fecundity selection, and that is inconsistent with species whose males are larger than females, as fecundity selection usually results

in female-biased SSD (Darwin 1874, Williams 1966, Calder 1984). However, strong fecundity selection not related to female-biased SSD had already been recorded for other taxa (Monroe *et al.* 2015). This outcome suggests that other selective mechanisms could interact with fecundity selection, as sexual selection can also affect SSD and fecundity (Badyaev and Ghilambor 2001, Hoekstra *et al.* 2001, Pincheira-Donoso and Hunt 2017). Sexual selection usually favours larger males than females as a result of territoriality and male-male competition (Slatkin 1984, Simpson *et al.* 2016), common behaviours for *Macrobrachium* species. In the species studied, variation in size-specific fecundity was consistent with divergent selection for contrasting stream-water-velocity environments. Processes that occur strongly in fast-flowing streams (e.g. intra- and inter-specific competition, predation risk, reduced food availability) may exert a direct effect of size on egg number, where larger females produce more eggs, which could be a result of fecundity selection mediated through environmental variation (Stahlschmidt *et al.* 2020). Conversely, reproductive-female size seems to be a neutral trait in slow-flowing streams, where the number of eggs produced does not depend on size, although more eggs are produced in those environments.

Selection tends to favour individuals that reduce the costs for reproduction, which may be associated with ecology (van Noordwijk and de Jong 1986, Brommer 2000, Harshman and Zera 2007). Environments with fast-flowing water may increase intra- and inter-specific competition, leading to greater acquisition of food items and a better direct competitive performance by larger females. Meanwhile, slow-flowing environments seem to be more stable, with less competitive pressures and/or more resource availability, as egg number is independent of size, where all females produce a similar number of eggs and in a larger amount than those from fast-flowing environments. These results suggest that either local adaptation or phenotypic plasticity to distinct local water-velocity environments could be related to such divergence in *M. inpa* populations, where intraspecific competition may be more intense in one environment than in the other, then traits with fewer competitors present a greater fitness (Slatkin 1979, Abrams *et al.* 1993).

Habitat-independent fecundity selection was also evident for *M. amazonensis* populations, where larger females bore more eggs. A recent review updated this species status, where the previous genus (i.e. *Pseudopalaemon*) was considered a junior synonym of *Macrobrachium* (Mota *et al.* 2025). For all species from the previous *Pseudopalaemon* genus, females are larger than males. As fecundity selection usually favours species with larger females than males (Darwin 1874, Williams 1966, Calder 1984), the observed outcome was expected for such populations. For this species, variation in size-specific fecundity was consistent with selection associated with macrophyte and root proportions. Selection varied along the substrate gradient, but the fecundity-size relationship remained positive, although the slope varied significantly. Phenotypic variability can be affected by some adaptative processes, such as directional and stabilizing selection (Haller and Hendry 2014), and those depend greatly on environmental conditions. Streams with lower proportions of macrophytes and roots sustain larger individuals with more eggs, and that could be related to niche shifts in substrate use among individuals of different sizes or lower competition/predation risk in those environments. For this

species, size-related niche partitioning has already been recorded, although sex-specific effects were not considered and reference was only made to changes in stream depth (Silva and Magnusson 2023). In our study location, streams vary largely in substrate composition and hydraulic features, and those often follow changes in habitat/food availability and in susceptibility to predation, which could affect size at sexual maturity and egg production (Blanckenhorn 2000, Dani and Kodandaramaiah 2017, Pantaleão *et al.* 2018, Paschoal and Zara 2020).

Palaemonidae shrimps usually display a direct effect of size on egg number (Tamburini *et al.* 2012, Bertini *et al.* 2013, Lima *et al.* 2014, Carnevali *et al.* 2016, De Oliveira *et al.* 2019), although average size, size at sexual maturity, and fecundity depend greatly on environmental variation (Mashiko 2000, Pantaleão *et al.* 2012, Pantaleão *et al.* 2018, Paschoal and Zara 2020). Both species tested here are common in non-seasonally-flooded streams in the Amazonia region. They complete their entire life cycle in freshwater environments, have advanced abbreviated larval development (i.e. larvae hatch at an advanced stage), and low fecundity, but with large yolk-rich eggs (Magalhães and Walker 1988, Magalhães and Medeiros 1998, Magalhães 2016). However, species vary mainly in average egg number and metamorphosis duration (Magalhães and Medeiros 1998, Magalhães 2016). The different patterns observed between the species may be related to distinct selection mechanisms acting on populations as well as ecological differences, since habitat-related niche partitioning (i.e. along water velocity and pH gradients) has already been recorded between these species for the same environments (Silva *et al.* 2020).

Fecundity selection originally implied the selection of fitness components that grant higher fecundity, usually expressed as a positive directional relationship (Darwin 1874). However, the expression of this type of selection depends mostly on natural selection through offspring viability (Pincheira-Donoso and Hunt 2017). Lack's (1947) and Williams' (1966) principles predict that fecundity is displayed as a stabilizing selection (i.e. intermediate traits being favoured), considering offspring viability and parental energy allocation, respectively. Habitat-dependent fecundity selection was expressed only as positive directional selection for *M. amazonensis* along the macrophytes and roots gradient and as divergent selection for *M. inpa* along the water-velocity gradient, and that possibly reflects differences in the species' ecological fitness, which is affected by a single trait in one species and by multiple traits in the other.

CONCLUSION

Our results highlight that phylogenetically related, and to a lesser extent, ecologically related (Silva *et al.* 2020, Silva and Magnusson 2023, Mota *et al.* 2025), tropical shrimp populations can display divergent natural selection to local environmental gradients for the fecundity-size relationship, which may be a result of local adaptation, plasticity to contrasting environments, or both. Although genetic processes were not tested here, effects of selection on different fitness traits caused by ecological variation could be sufficient to isolate local populations (Richardson *et al.* 2014), as ecological divergence usually implies genetic divergence (Nosil 2012). Habitat isolation is frequently cited as a major mechanism behind sympatric population divergence, once genotypes are

habitat-specific, enabling local adaptation and possibly speciation (Rice 1984, Edelaar *et al.* 2008).

ACKNOWLEDGEMENTS

We are grateful to the National Institute for Amazonian Research (INPA) and to the Graduate Program in Ecology (PPG-Eco) for bureaucratic support. We thank the Biodiversity Research Program of Western Amazonia (PPBio-AmOc), the Center for Integrated Studies of Biodiversity in the Amazon (INCT-CENBAM), and the Program for Long-Term Ecological Research (PELD-IAFA) for logistical support. We are also grateful to the Department of Reserves (DISER) of the National Institute for Amazonian Research for logistical support and maintenance of study sites. Special thanks to C. Cola, C. Nogueira, C. Rodrigues-Filho, E. Duarte, F. Bezerra, F. Zara, G. Rodrigues, J. Alves, L. Paschoal, and J. Lopes for their assistance during the fieldwork, and to A. Viana and I. Viana for support in all procedures prior to data collection.

AUTHOR CONTRIBUTIONS

Elmo Pereira da Silva (Conceptualization, Investigation, Data curation, Conducting the research, Methodology, Formal analysis, Data interpretation, Preparation of figures and tables, Funding acquisition, Writing—original draft preparation, Writing—review and editing), Pedro A.C.L. Pequeno (Conceptualization, Investigation, Data curation, Methodology, Formal analysis, Data interpretation, Writing—review and editing), William E. Magnusson (Methodology, Funding acquisition, Writing—review and editing).

SUPPORTING INFORMATION

Supplementary data is available at *Biological Journal of the Linnean Society* online.

CONFLICT OF INTEREST

The authors of this manuscript have no conflicts of interest to declare.

FUNDING

This project was financially supported by the Academic Excellence Program—PROEX (grant number #0742/2020); E.P.S. was supported with a PhD Scholarship (grant number #88887.388203/2019-00) from the Coordination for the Advancement of Higher Education (CAPES); P.A.C.L.P. was supported with a Research Scholarship from the National Council for Scientific and Technological Development (CNPq); W.E.M. was supported with Research Scholarships (grant numbers #301873/2016-0; #307178/2021-8) from the National Council for Scientific and Technological Development (CNPq).

DATA AVAILABILITY STATEMENT

The authors declare that the dataset used in this manuscript is not publicly available yet but is available from the corresponding author on reasonable request.

ETHICAL APPROVAL

Specimen sampling was conducted under permits for invertebrate sampling issued through Sisbio/ICMBio number 75452; cod 0754520220210707.

REFERENCES

Abrams PA, Matsuda H, Harada Y. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. *Evolutionary Ecology* 1993;7:465–87.

Afaq O, Afaq U. Evaluation of Darwin's fecundity advantage hypothesis in *Parthenium* beetle, *Zyogramma bicolorata*. *Insect Science* 2012;20:531–40.

Ahti PA, Kuparinen A, Uusi-Heikkilä S. Size does matter - the eco-evolutionary effects of changing body size in fish. *Environmental Reviews* 2020;28:311–24.

Avise JC. *Molecular Markers, Natural History and Evolution*, Vol. 1. New York, NY: Chapman & Hall, 1994.

Badyaev AV, Ghalambor CK. Evolution of life histories along elevational gradients: trade-off between parental care and fecundity. *Ecology* 2001;82:2948–60.

Barneche DR, Robertson DR, White CR *et al.* Fish reproductive energy output increases disproportionately with body size. *Science* 2018;360:642–5.

Barnett AG, Koper N, Dobson AJ *et al.* Using information criteria to select the correct variance-covariance structure for longitudinal data in ecology. *Methods in Ecology and Evolution* 2010;1:15–24.

Bell G. *Selection: the Mechanism of Evolution*. Oxford: Oxford University Press, 2008.

Bertini G, Baeza JA, Perez E. A test of large-scale reproductive migration in females of the amphidromous shrimp *Macrobrachium acanthurus* (Caridea: Palaemonidae) from south-eastern Brazil. *Marine and Freshwater Research* 2013;65:81–93.

Bilton DT, Freeland JR, Okamura B. Dispersal in freshwater invertebrates. *Annual Review of Ecology and Systematics* 2001;32:159–81.

Blanckenhorn WU. The evolution of body size: what keeps organisms small? *The Quarterly Review of Biology* 2000;75:385–407.

Brommer JE. The evolution of fitness in life-history theory. *Biological Reviews of the Cambridge Philosophical Society* 2000;75:377–404.

Calder WA. *Size, Function and Life History*. Cambridge, MA: Harvard University Press, 1984.

Carnevali RP, Collins PA, Poi ASG. Reproductive pattern of the freshwater prawn *Pseudopalaemon bouvieri* (Crustacea, Palaemonidae) from hypo-osmotic shallow lakes of Corrientes (Argentina). *Studies on Neotropical Fauna and Environment* 2016;51:159–68.

Caron FS, Pie MR. The macroevolution of sexual size dimorphism in birds. *Biological Journal of the Linnean Society* 2024;144:blad168.

Carvalho FL, Silva EP, Mota TA, *et al.* The description and ecology of a novel diminutive species of *Macrobrachium* Spence Bate, 1868 (Decapoda: Caridea: Palaemonidae) from Amazonia, the first lacking a mandibular palp. *J Crust Biol* 2025;45:ruaf049.

Cassini MH. Role of fecundity selection on the evolution of sexual size dimorphism in mammals. *Animal Behaviour* 2017;128:1–4.

Castiglioni DdS, Streck MT, Rodrigues SG *et al.* Reproductive strategies of a population of a freshwater amphipod (Crustacea, Amphiopoda, Hyalellidae) from southern Brazil. *Biota Neotropica* 2018;18:1–8.

Chauvel A, Lucas Y, Boulet R. On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. *Experientia* 1987;43:234–41.

Chavarie L, Howland KL, Harris LN *et al.* From top to bottom: do lake trout diversify along a depth gradient in Great Bear Lake, NT, Canada? *PLoS One* 2018;13:e0193925.

Clifford P, Richardson S, He'monn D. Assessing the significance of the correlation between two spatial processes. *Biometrics* 1989;45:123–34.

Common LK, O'Connor JA, Dudaniec RY *et al.* Evidence for rapid downward fecundity selection in an ectoparasite (*Philornis downsi*) with earlier host mortality in Darwin's finches. *Journal of Evolutionary Biology* 2020;33:524–33.

Cook BD, Bunn SE, Hughes JM. Genetic structure and dispersal of *Macrobrachium australiense* (Decapoda: Palaemonidae) in western Queensland, Australia. *Freshwater Biology* 2002;47:2098–112.

Costa FRC, Zuanon JAS, Baccaro FB et al. Effects of climate change on central Amazonian forests: a two decades synthesis of monitoring tropical biodiversity. *Oecologia Australis* 2020;24:317–35.

Dani KGS, Kodandaramaiah U. Plant and animal reproductive strategies: lessons from offspring size and number tradeoffs. *Frontiers in Ecology and Evolution* 2017;5:1–21.

Darwin C. *On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life*. London, UK: John Murray, 1859.

Darwin C. *The Descent of Man and Selection in Relation to Sex*, 2nd edn. New York, NY: D. Appleton & Company, 1874.

De Oliveira LJF, Sant'Anna BS, Hattori GY. Population biology of the freshwater prawn *Macrobrachium brasiliense* (Heller, 1862) in the Middle Amazon Region, Brazil. *Tropical Zoology* 2019;32:19–36.

Dick EJ, Beyer S, Mangel M et al. A meta-analysis of fecundity in rockfishes (genus *Sebastes*). *Fisheries Research* 2017;187:73–85.

Durant JM, Hjermann DØ, Ottersen G et al. Climate and the match or mismatch between predator requirements and resource availability. *Climate Research* 2007;33:271–83.

Edelaar P, Siepielski AM, Clobert J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. *Evolution; International Journal of Organic Evolution* 2008;62:2462–72.

Fonseca CRV, Magalhães C, Rafael JA et al. A Fauna de artrópodes da Reserva Florestal Ducke: estado atual do conhecimento taxonômico e biológico [The arthropod fauna of Ducke Forest Reserve: current state of taxonomic and biological knowledge]. In: INPA (ed.), *Decapoda*. Manaus, Brazil: Editora INPA, 2009, 35–40.

Gergely R, Tökölyi J. Resource availability modulates the effect of body size on reproductive development. *Ecology and Evolution* 2023;13:e9722.

Guillaumet JL. Some structural and floristic aspects of the forest. *Experientia* 1987;43:241–51.

Haller BC, Hendry AP. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. *Evolution; International Journal of Organic Evolution* 2014;68:483–500.

Harshman LG, Zera AJ. The cost of reproduction: the devil in the details. *Trends in Ecology & Evolution* 2007;22:80–6.

Hayward A, Gillooly JF. The cost of sex: quantifying energetic investment in gamete production by males and females. *PLoS One* 2011;6:e16557.

Herrera-Correal J et al. Reproductive aspects of the caridean shrimp *Atya scabra* (Leach, 1815) (Decapoda: Atyidae) in São Sebastião Island, southwestern Atlantic, Brazil. *Latin American Journal of Aquatic Research* 2013;41:676–84.

Hirst AG, Kiorboe T. Macroevolutionary patterns of sexual size dimorphism in copepods. *Proceedings of the Royal Society B: Biological Sciences* 2014;281:1–10.

Hoekstra HE, Hoekstra JM, Berrigan D et al. Strength and tempo of directional selection in the wild. *Proceedings of the National Academy of Sciences of the United States of America* 2001;98:9157–60.

Horne CR, Hirst AG, Atkinson D. Selection for increased male size predicts variation in sexual size dimorphism among fish species. *Proceedings of the Royal Society B: Biological Sciences* 2020;287:20192640.

Hu X-S, Liu X-F, Thieme T et al. Testing the fecundity advantage hypothesis with *Sitobion avenae*, *Rhopalosiphum padi*, and *Schizaphis graminum* (Hemiptera: Aphididae) feeding on ten wheat accessions. *Scientific Reports* 2015;5:18549–10.

Hughes JM. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. *Freshwater Biology* 2007;52:616–31.

Hughes JM, Schmidt DJ, Finn DS. Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. *BioScience* 2009;59:573–83.

Juarez BH, Moen DS, Adams DC. Ecology, sexual dimorphism, and jumping evolution in anurans. *Journal of Evolutionary Biology* 2023;36:829–41.

Kemenes A, Forsberg BR, Magalhães C, Anjos H. Environmental factors influencing the community structure of shrimps and crabs (Crustacea: Decapoda) in headwater streams of the Rio Jauá, Central Amazon, Brazil. *Pan-American Journal of Aquatic Sciences* 2010;5:36–46.

Kensley B, Walker I. *Palaemonidae Shrimp from the Amazon Basin (Crustacean: Decapods: Natantia)*. Smithsonian Contribution to Zoology, Vol. 362. Washington, DC: Smithsonian Institution Press, 1982.

Kolding S, Fenchel TM. Patterns of reproduction in different populations of five species of the amphipod genus *Gammarus*. *Oikos* 1981;37:167–72.

Kürschner T, Scherer C, Radchuk V et al. Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions. *Ecology and Evolution* 2021;11:5728–41.

Lack D. The significance of clutch size. *Ibis* 1947;89:302–52.

Lima JdF, Silva LMA, Silva TCD et al. Reproductive aspects of *Macrobrachium amazonicum* (Decapoda: Palaemonidae) in the State of Amapá, Amazon River mouth. *Acta Amazonica* 2014;44:245–54.

Limberger M, Rangel C, Graichen DAS et al. Ecological and reproductive biology of two sympatric species of *Hyalella* (Crustacea, Amphipoda, Hyalellidae) from southern Brazil. *Iheringia. Série Zoologia* 2024;114:e273856.

Lislevand T, Figuerola J, Székely T. Evolution of sexual size dimorphism in grouse and allies (Aves: Phasianidae) in relation to mating competition, fecundity demands and resource division. *Journal of Evolutionary Biology* 2009;22:1895–905.

Loomis SJ, Anatone K, Bither L et al. Microgeographic variation and inter-riffle migration of *Rhinichthys atratulus* (Pisces: Cyprinidae) in a small Connecticut stream, United States. *Open Journal of Ecology* 2020;10:460–81.

Magalhães C. Abbreviated larval development of *Macrobrachium inpa* Kensley and Walker, 1982 (Crustacea: Decapoda: Palaemonidae) from an Amazon Basin forest stream, Brazil, reared in the laboratory. *Nauplius* 2016;24:1–13.

Magalhães C, Walker I. Larval development and ecological distribution of Central Amazonian palaemonid shrimps (Decapoda, Caridae). *Crustaceana* 1988;55:279–92.

Magalhães C, Medeiros N. The larval development of palaemonid shrimps from the Amazon Region reared in the laboratory. VI. Abbreviated development of *Pseudopalaemon amazonensis* Ramos-Porto, 1979 (Crustacea: Decapoda: Caridea). *Acta Amazonica* 1998;28:433–48.

Mashiko K. Variations in body size of individuals at sexual maturity among local populations of the freshwater prawn *Macrobrachium nipponense* (de Haan), with special reference to freshwater colonization. *Crustacean Research* 2000;29:20–6.

McGlashan DJ, Hughes JM. Reconciling patterns of genetic variation with stream structure, earth history and biology of the Australian freshwater fish *Craterocephalus stercusmuscarum* (Atherinidae). *Molecular Ecology* 2000;9:1737–51.

Meiri S, Brown JH, Sibly RM. The ecology of lizard reproductive output. *Global Ecology and Biogeography* 2012;21:592–602.

Melo GAS. Manual de Identificação dos Crustacea Decapoda de Água Doce do Brasil. São Paulo, SP: Ed. Loyola, 2003, 429.

Mendonça FP, Magnusson WE, Zuanon J. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. *Copeia* 2005;2005:751–64.

Monroe MJ, South SH, Alonso SH. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. *Journal of Evolutionary Biology* 2015;28:1793–803.

Mota TA, De Grave S, Carvalho FL. Multigene analysis reveals that *Pseudopalaemon* Sollaud, 1911 is a junior synonym of the widespread genus *Macrobrachium* Spence Bate, 1868 (Decapoda: Caridea: Palaemonidae). *Journal of Crustacean Biology* 2025;45:ruaf048.

Nali RC, Zamudio KR, Haddad CFB et al. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. *The American Naturalist* 2014;184:727–40.

Nguyen VT, Nguyen NH. Quantitative genetic changes in reproductive performance of giant freshwater prawn after ten years of selection for increased growth rate. *Reproduction in Domestic Animals* 2018;54:199–206.

Nosil P. *Ecological Speciation*. Oxford: Oxford University Press, 2012.

Pantaleão JAF, Hirose GL, Costa RC. Relative growth, morphological sexual maturity, and size of *Macrobrachium amazonicum* (Heller 1862) (Crustacea, Decapoda, Palaemonidae) in a population with an entirely freshwater life cycle. *Invertebrate Reproduction & Development* 2012;56:180–90.

Pantaleão JAF *et al.* The influence of environmental variables in the reproductive performance of *Macrobrachium amazonicum* (Heller, 1862) (Caridea: Palaemonidae) females in a continental population. *Anais Da Academia Brasileira de Ciências* 2018;90:1445–58.

Paschoal LRP, Zara FJ. Size at onset of sexual maturity in *Macrobrachium amazonicum* (Heller, 1862) phenotypes: an integrative approach. *Anais da Academia Brasileira de Ciências* 2020;92:1–19.

Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal. *Biometrika* 1971;58:545–54.

Pequeno PACL, Franklin E, Norton RA. Microgeographic morphophysiological divergence in an Amazonian soil mite. *Evolutionary Biology* 2021;48:160–9.

Pincheira-Donoso D, Tregenza T. Fecundity selection and the evolution of reproductive output and sex-specific body size in the *Liolaemus* lizard adaptive radiation. *Evolutionary Biology* 2011;38:197–207.

Pincheira-Donoso D, Hunt J. Fecundity selection theory: concepts and evidence. *Biological Reviews of the Cambridge Philosophical Society* 2017;92:341–56.

R Core Team. *R: a Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing, 2025.

Raffard A, Jacob S, Schtickzelle N. Non-genetic phenotypic variability affects populations and communities in protist microcosms. *The Journal of Animal Ecology* 2024;93:221–30.

Rahman S, Schmidt D, Hughes JM. Genetic structure of Australian glass shrimp, *Paratya australiensis*, in relation to altitude. *PeerJ* 2020;8:e8139.

Rameez R, Jahageerdar S, Jayaraman J *et al.* Evaluation of alternative methods for estimating the precision of REML-based estimates of variance components and heritability. *Heredity* 2022;128:197–208.

Recknagel H, Hooker OE, Adams CE *et al.* Ecosystem size predicts eco-morphological variability in a postglacial diversification. *Ecology and Evolution* 2017;7:5560–70.

Reid D, Corey S. Comparative fecundity of decapod crustaceans II. The fecundity of fifteen species of anomuran and brachyuran crabs. *Crustaceana* 1991;61:175–89.

Reim C, Teuschl Y, Blanckenhorn WU. Size-dependent effects of larval and adult food availability on reproductive energy allocation in the yellow dung fly. *Functional Ecology* 2006;20:1012–21.

Rice WR. Disruptive selection on habitat preference and the evolution of reproductive isolation: a simulation study. *Evolution; International Journal of Organic Evolution* 1984;38:1251–60.

Richardson JL, Urban MC, Bolnick DI *et al.* Microgeographic adaptation and the spatial scale of evolution. *Trends in Ecology & Evolution* 2014;29:165–76.

Roff. Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. *Journal of Evolutionary Biology* 2001;13:434–45.

Roff DA. *Life History Evolution*. Sunderland, MA: Sinauer Associates, 2002.

Shine R. The evolution of large body size in females: a critique of Darwin's "fecundity advantage" model. *The American Naturalist* 1988;131:124–31.

Silva EP, Magnusson WE. A matter of size: does habitat use depend on body size in Amazonian small-stream shrimp species? *Inland Waters* 2023;13:121.

Silva EP *et al.* Habitat segregation among freshwater shrimp species in an Amazonian rainforest stream system. *Freshwater Biology* 2020;65:674–87.

Silvestro R, Mura C, Alano Bonacini D *et al.* Local adaptation shapes functional traits and resource allocation in black spruce. *Scientific Reports* 2023;13:21257.

Simpson LA, Ambrosio LJ, Baeza JA. Sexual dimorphism and allometric growth in the enigmatic pygmy crab *Petramithrax pygmaeus* (Bell, 1836) (Decapoda: Brachyura: Mithracidae), with a formal test of Rensch's rule in spider crabs (Superfamily Majoidea). *Journal of Crustacean Biology* 2016;36:792–803.

Skoglund S, Siwertsson A, Amundsen P-A *et al.* Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment. *Ecology and Evolution* 2015;5:3114–29.

Slatkin M. Frequency- and density-dependent selection on a quantitative character. *Genetics* 1979;93:755–71.

Slatkin M. Ecological causes of sexual dimorphism. *Evolution; International Journal of Organic Evolution* 1984;38:622–30.

Soulsbury CD, Kervinen M, Lebigre C. Sexual size dimorphism and the strength of sexual selection in mammals and birds. *Evolutionary Ecology Research* 2014;16:63–76.

Stahlschmidt ZR, Chu I, Koh C. When do looks matter? Effects of mate quality and environmental variability on lifetime reproduction. *Behavioral Ecology and Sociobiology* 2020;74:11.

Tamburus AF, Mossolin EC, Mantelatto FL. Populational and reproductive aspects of *Macrobrachium acanthurus* (Wiegmann, 1836) (Crustacea: Palaemonidae) from North Coast of São Paulo State, Brazil. *Brazilian Journal of Aquatic Science and Technology* 2012;16:9–18.

Thomas DW, Blondel J, Perret P *et al.* Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. *Science* 2001;291:2598–600.

Tiddy IC, Schneider K, Elmer KR. Environmental correlates of adaptive diversification in postglacial freshwater fishes. *Journal of Fish Biology* 2024;104:517–35.

van Noordwijk AJ, de Jong G. Acquisition and allocation of resources: their influence on variation in life history tactics. *The American Naturalist* 1986;128:137–42.

Weldon WFR. II. The variations occurring in certain decapod crustacea.—I. *Crangon vulgaris*. *Proceedings of the Royal Society of London* 1890;47:445–53.

Williams GC. *Adaptation and Natural Selection*. Princeton, NJ: Princeton University Press, 1966.

Wilson AB. Fecundity selection predicts Bergmann's rule in syngnathid fishes. *Molecular Ecology* 2009;18:1263–72.

Winkler JD, Stölting KN, Wilson AB. Sex-specific responses to fecundity selection in the broad-nosed pipefish. *Evolutionary Ecology* 2012;26:701–14.

Wood SN, Pya N, Säfken B. Smoothing parameter and model selection for general smooth models. *Journal of the American Statistical Association* 2016;111:1548–63.

Yampolsky LY, Scheiner SM. Why larger offspring at lower temperatures? A demographic approach. *The American Naturalist* 1996;147:86–100.