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Abstract
1.	 Despite	great	interest	in	metrics	to	quantify	the	structure	of	ecological	networks,	
the	effects	of	sampling	and	scale	remain	poorly	understood.	 In	fact,	one	of	the	
most	challenging	issues	in	ecology	is	how	to	define	suitable	scales	(i.e.,	temporal	
or	spatial)	to	accurately	describe	and	understand	ecological	systems.

2.	 Here,	 we	 sampled	 a	 series	 of	 ant–plant	 interaction	 networks	 in	 the	 southern	
Brazilian	Amazon	rainforest	 in	order	to	determine	whether	the	spatial	sampling	
scale,	from	local	to	regional,	affects	our	understanding	of	the	structure	of	these	
networks.

3.	 To	 this	end,	we	 recorded	ant–plant	 interactions	 in	adjacent	25	×	30	m	subplots	
(local	 sampling	 scale)	nested	within	 twelve	250	×	30	m	plots	 (regional	 sampling	
scale).	Moreover,	we	combined	adjacent	or	random	subplots	and	plots	in	order	to	
increase	the	spatial	sampling	scales	at	the	local	and	regional	levels.	We	then	calcu-
lated	commonly	used	binary	and	quantitative	network-level	metrics	for	both	sam-
pling	 scales	 (i.e.,	 number	of	 species	and	 interactions,	nestedness,	 specialization	
and	modularity),	all	of	which	encompass	a	wide	array	of	structural	patterns	in	in-
teraction	networks.

4. We observed increasing species and interactions across sampling scales, and 
while	most	network	descriptors	 remained	 relatively	 constant	 at	 the	 local	 level,	
there	was	more	variation	at	the	regional	scale.	Among	all	metrics,	specialization	
was	most	constant	across	different	spatial	sampling	scales.	Furthermore,	we	ob-
served	 that	 adjacent	 assembly	 did	 not	 generate	more	 variation	 in	 network	de-
scriptor	 values	 compared	 to	 random	 assembly.	 This	 finding	 indicates	 that	 the	
spatially aggregated distribution of species/individuals and abiotic conditions 
does	not	affect	the	organization	of	these	interacting	assemblages.

5.	 Our	results	have	a	direct	impact	on	our	empirical	and	theoretical	understanding	of	
the	ecological	dynamics	of	species	interactions	by	demonstrating	that	small	spa-
tial	 sampling	scales	 should	suffice	 to	 record	some	patterns	commonly	 found	 in	
ant–plant	interaction	networks	in	a	highly	diverse	tropical	rainforest.
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1  | INTRODUC TION

One	of	the	most	persistent	challenges	in	ecology	is	the	definition	of	
suitable	scales	(i.e.,	temporal	or	spatial)	at	which	to	describe	an	eco-
logical	system	(reviewed	by	Chave,	2013).	Recent	evidence	indicates	
that	many	real-	world	patterns	and	processes	are	context	dependent,	
which	generates	non-	convergent	(i.e.,	unique)	patterns	across	scales	
(Chalcraft,	Williams,	Smith,	&	Willig,	2004;	Crawley	&	Harral,	2001;	
Suding,	Farrer,	King,	Kueppers,	&	Spasojevic,	2015).	Therefore,	scale	
effects	 create	 fundamental	 problems	 for	 ecologists	who	work	 on	
most ecological processes, from population to ecosystem levels 
(Levin,	1992;	Rahbek,	2005).

Understanding	 how	 and	why	 the	 structure	 of	 interaction	 net-
works	 vary	 can	 help	 us	 better	 understand	 the	 role	 of	 ecological	
interactions	 in	 maintaining	 biodiversity	 (reviewed	 by	 Bascompte	
&	 Jordano,	 2014;	 Dáttilo	 &	 Rico-	Gray,	 2018;	 Vázquez,	 Blüthgen,	
Cagnolo,	 &	 Chacoff,	 2009).	 However,	 the	 effect	 of	 spatial	 scale	
(local	 vs.	 regional)	 on	 ecological	 network	 analysis	 (but	 see	 Pillai,	
Gonzalez,	 &	 Loreau,	 2011;	 Roslin,	 Várkonyi,	 Koponen,	 Vikberg,	 &	
Nieminen,	 2014;	 Thompson	 &	 Townsend,	 2005;	 Trøjelsgaard	 &	
Olesen,	2016;	Wood,	Russell,	Hanson,	Williams,	&	Dunne,	2015)	is	
frequently	not	explicitly	considered	in	the	literature	(Chacoff	et	al.,	
2012;	Gibson,	Knott,	 Eberlein,	&	Memmott,	 2011;	 Jordano,	2016;	
Nielsen	&	Bascompte,	2007;	Vizentin-	Bugoni	et	al.,	2016).	Seminal	
studies	that	deal	with	the	structure	of	ecological	networks	assumed	
that	observed	patterns	and	structuring	processes	are	scale	invariant	
(e.g.,	Bascompte,	Jordano,	Melián,	&	Olesen,	2003);	however,	mul-
tiple	network	descriptors	are	not	 scale	 invariant	 (Blüthgen,	Fründ,	
Vázquez,	&	Menzel,	2008;	Trøjelsgaard	&	Olesen,	2016).	More	 re-
cent	studies	revealed	that	some	network	structure	descriptors	are	
strongly	affected	by	 temporal	 scales	 (Falcão,	Dáttilo,	&	Rico-	Gray,	
2016;	 Rasmussen,	 Dupont,	 Mosbacher,	 Trøjelsgaard,	 &	 Olesen,	
2013)	 and	 time-	structured	 sampling	 effort	 (Chacoff,	 Resasco,	 &	
Vázquez,	2018;	Rivera-	Hutinel,	Bustamante,	Marín,	&	Medel,	2012;	
Vizentin-	Bugoni	et	al.,	2016),	and	these	features	could	lead	to	erro-
neous	conclusions	regarding	the	ecological	and	evolutionary	dynam-
ics	of	ecological	networks.

Species	and	their	ecological	 interactions	can	also	vary	across	
sampling	 scales	 (Belmaker	 et	al.,	 2015;	 Gering	 &	 Crist,	 2002;	
Thompson,	2005).	 For	 instance,	when	 the	 spatial	 sampling	 scale	
is	increased,	the	number	of	species	and	interactions	(i.e.,	network	
size)	 and	 environmental	 heterogeneity	 (both	 biotic	 and	 abiotic)	
also	increase,	a	phenomenon	that	generates	a	complex	mosaic	of	
interactions	(Aizen,	Sabatino,	&	Tylianakis,	2012;	Burkle	&	Knight,	
2012;	 Carstensen,	 Sabatino,	 &	 Morellato,	 2016;	 Trøjelsgaard,	
Jordano,	 Carstensen,	 &	 Olesen,	 2015).	 In	 this	 case,	 spatially	
closer	 networks	 tend	 to	 present	more	 similar	 abiotic	 conditions	
and, consequently, a reduced turnover of species and interactions 
(Dáttilo,	Guimarães,	&	Izzo,	2013).	Such	networks	are	expected	to	
present	greater	similarity	 in	terms	of	 interaction	patterns	than	is	
the	case	with	more	distant	networks.	Despite	the	 importance	of	
considering	 the	effect	of	sampling	scale	on	studies	of	ecological	
networks,	we	are	only	beginning	to	understand	how	and	why	the	

spatial	 sampling	scale	 (i.e.,	 the	grain	and	extent	of	 the	sampling)	
can	affect	interaction	network	patterns	(Carstensen,	Trøjelsgaard,	
Ollerton,	 &	 Morellato,	 2018).	 Indeed,	 most	 ecological	 network	
studies	 to	 date	 have	 only	 considered	 how	 structural	 patterns	
change	spatially	 (e.g.,	Burkle	&	Alarcón,	2011;	Trøjelsgaard	et	al.,	
2015;	 Vázquez	 et	al.,	 2009)	 or	 explored	 the	 influence	 of	 animal	
movement	 in	 continuous	 space	 on	 the	 networks	 (e.g.,	 Dupont	
et	al.,	2014;	Morales	&	Vázquez,	2008).	Recent	studies	highlighted	
that	the	spatial	turnover	of	pairwise	interactions	between	plants	
and	 pollinators	 can	 be	 highly	 variable,	 where	 distant	 communi-
ties present lower similarity in terms of interactions and species 
composition	 (Carstensen,	 Sabatino,	 Trøjelsgaard,	 &	 Morellato,	
2014)	that	could	influence	network	structure.	Many	of	the	poten-
tial	mechanisms	that	underlie	changes	 in	network	properties	are	
therefore	 related	 to	 interaction	 rewiring	 (i.e.,	 the	 reorganization	
of	 interactions	 among	 species	 over	 scales)	 and	 species	 turnover	
(CaraDonna	et	al.,	2017),	for	instance,	due	to	limited	dispersal	and	
phenology	 (Nekola	 &	 White,	 1999).	 Further,	 other	 mechanisms	
that	 are	 not	 associated	 with	 natural	 history	 of	 the	 interacting	
species,	such	as	sampling	error,	can	also	alter	network	properties	
(Falcão	et	al.,	2016).

Mutualistic	 interactions	between	ants	and	plants	with	extraflo-
ral	nectaries	(EFN-	bearing	plants)	constitute	a	suitable	study	system	
with	which	to	explore	such	questions.	In	this	system,	plants	produce	
a	nutritious	 liquid	for	ants	that,	 in	exchange,	protect	the	host	plant	
against	 herbivores	 (Rico-	Gray	 &	Oliveira,	 2007).	While	 knowledge	
regarding	the	structure	and	dynamics	of	ant–plant	networks	has	in-
creased	over	recent	years	(Chamberlain,	Kilpatrick,	&	Holland,	2010;	
Del-	Claro	 et	al.,	 2016;	Díaz-	Castelazo,	 Sánchez-	Galván,	Guimarães,	
Raimundo,	&	Rico-	Gray,	2013;	Dáttilo,	Rico-Gray,	Rodrigues,	&	Izzo,	
2013),	we	are	only	aware	of	two	studies	that	directly	tested	how	spa-
tial	sampling	variation	shapes	the	spatial	structure	of	ant–plant	net-
works	(Dáttilo,	Guimarães,	et	al.,	2013;	Sugiura,	2010).	For	instance,	
Dáttilo,	Guimarães,	et	al.	 (2013),	working	with	 the	same	plots	as	 in	
this	study,	examined	whether	spatially	closer	plots	present	more	sim-
ilar	network	 structures	 compared	 to	more	distant	plots.	The	 study	
found	 a	 consistent	 and	 non-	random	 pattern	 of	 ant–plant	 network	
organization	that	is	independent	of	variations	in	local	and	landscape	
environmental factors. Some recent studies demonstrated a clear 
spatial	structure	in	interaction	networks	(e.g.,	Carstensen	et	al.,	2016;	
Maruyama,	 Vizentin-	Bugoni,	 Oliveira,	 Oliveira,	 &	 Dalsgaard,	 2014;	
Moreira,	Boscolo,	&	Viana,	2015).	However,	it	remains	unknown	how	
the	patterns	currently	described	for	ant–plant	networks	depend	on	
the	utilized	spatial	sampling	scale.	A	next	step	in	the	analysis	of	ant–
plant	networks	would	be	to	understand	how	variable	spatial	sampling	
scales	influence	the	organization	of	these	interacting	assemblages.

In	 this	 study,	we	 used	 a	 dataset	we	 previously	 sampled	 to	 in-
vestigate	whether	 the	spatial	 sampling	scale	affects	 the	structural	
patterns	observed	in	ant–plant	 interaction	networks.	The	resulting	
database	is	one	of	the	largest	compiled	to	date	in	terms	of	species	
richness	and	number	of	ant–plant	 interactions;	 it	comprises	a	total	
of	881	interactions	between	112	ant	and	88	plant	species	(partially	
published	in	Dáttilo,	Guimarães,	et	al.,	2013).	Specifically,	we	tested	
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whether	 increasing	 the	 sampling	 scale	 (from	 local	 to	 regional)	 af-
fected	the	observed	interaction	patterns,	including	both	binary	and	
quantitative	 network	 descriptors.	 We	 hypothesized	 that,	 due	 to	
the	considerable	monopolization	of	food	sources	by	a	spatially	and	
temporally	 constant	 core	 of	 competitive	 ant	 species	 (reviewed	 by	
Del-	Claro	 et	al.,	 2016),	 small	 spatial	 sampling	 scales	would	 suffice	
to	record	the	patterns	commonly	found	in	ant–plant	networks.	This	
phenomenon	should	occur	because	the	core	of	strongly	competitive	
(or	dominant)	ant	species	with	the	highest	proportion	of	the	 inter-
actions	would	 already	be	 recorded	 in	 the	 first	 plots	 sampled,	 and	
the	other	 rare	 species	 collected	as	 a	 result	of	 increasing	 the	 sam-
pling	 scale	would	 add	 little	 information	 to	 the	 network	 structure.	
Some	dominant	ant	species	could	therefore	be	more	constrained	in	
their	 choice	 of	 interaction	 partners	 (i.e.,	 link	 conservatism)	 across	
local	communities,	as	recently	shown	by	Carstensen	et	al.	(2018)	for	
plant–pollinator	networks.	This	effort	produced	data	that	 included	
spatially	 fine-	grained	resolution	of	 interaction	patterns	 (local	sam-
pling	scale)	as	well	as	distance	replication	(regional	sampling	scale)	in	
the	southern	Brazilian	Amazon	rainforest.	We	compared	both	local	
and	regional	sampling	scales	since	different	processes	and	mecha-
nisms	could	operate	at	these	distinct	levels.	For	instance,	differences	
in	 landscape	 characteristics	 at	 local	 (e.g.,	 quality	 of	 food	 source	
patches)	and	regional	(e.g.,	amount	of	suitable	available	habitat)	lev-
els	may	favour	some	species	while	impairing	others	and	could	influ-
ence	the	spatial	distribution	of	species	interactions	in	an	ecosystem.	
Such	evaluation	of	species	 interaction	pattern	constancy	at	differ-
ent	spatial	sampling	scales	should	contribute	to	our	understanding	
of	the	factors	that	shape	the	organization	of	ecological	networks	in	
highly	diverse	tropical	rainforests.

2  | MATERIAL S AND METHODS

2.1 | Study area

Fieldwork	 was	 carried	 out	 in	 an	 undisturbed	 ombrophilous	 for-
est	 within	 the	 southern	 Brazilian	 Amazon,	 in	 the	 municipality	 of	
Cotriguaçu,	 in	 the	northern	portion	of	Mato	Grosso	state	 (9º48ʹS,	
58º15ʹW,	between	230	and	274	m	a.s.l.).	Vegetation	 in	 the	7,000-	
ha	 forest	 consists	mainly	 of	 primary	 tropical	 rainforest,	with	 can-
opy	 trees	 that	 reach	30–40	m	 in	height	 and	 some	emergent	 trees	
that	 reach	up	 to	45	m.	The	 topography	 in	our	 study	 region	 varies	
40	m	 between	 plateaus	 and	 valleys.	 Despite	 this	 relatively	 small	
difference,	 several	 studies	conducted	 throughout	Amazonia	 found	
elevation	 influences	 the	structure	and	composition	of	 the	edaphic	
communities	(Castilho	et	al.,	2006;	Magnusson	et	al.,	2005;	Phillips	
et	al.,	 2003),	 which	 is	 in	 part	 due	 to	 long-	term	 erosion	 processes	
and	variation	in	the	effects	of	flooding	regimes.	Indeed,	a	previous	
study	performed	at	our	sampling	sites	showed	high	variation	in	ant	
and	plant	species	richness	and	composition	over	small	spatial	scales	
(5	km2;	Dáttilo,	Guimarães,	 et	al.,	 2013).	According	 to	 the	Köppen	
classification,	the	regional	climate	is	defined	as	tropical	monsoon	–	
Am	(also	known	as	a	tropical	wet),	with	distinct	dry	(May–October)	
and	 rainy	 (November–April)	 seasons.	Mean	 annual	 temperature	 is	

24°C,	mean	annual	relative	humidity	is	85%,	and	mean	annual	rainfall	
ranges	from	2,000	to	2,300	mm	(Dáttilo	&	Dyer,	2014).

2.2 | Data collection

We sampled ant–plant interactions in December 2010 and January 
2011	(always	between	09:00	and	15:00)	within	a	grid	system	man-
aged	by	the	Brazilian	Research	Program	in	Biodiversity	(PPBio).	This	
grid was composed of sampling plots uniformly distributed between 
two	 parallel	 east–west	 trails	 5	km	 in	 length,	 located	 1	km	 apart	
(5	km2).	A	 sampling	plot	of	250	×	30	m	 (7,500	m2)	was	established	
every	km	along	each	 trail	 (12	plots	 total).	Due	 to	 the	high	hetero-
geneity	in	our	study	area	(see	above),	we	considered	each	of	the	12	
plots	as	an	independent	sample	of	ants	and	plants.	In	other	words,	
we	considered	that	the	distance	among	sampling	plots	was	enough	
to	guarantee	that	an	individual	found	in	a	plot	would	never	interact	
with	an	 individual	on	another	 sampling	plot.	At	each	plot,	 two	 re-
searchers	traversed	the	entire	area	on	foot	and	recorded	all	acces-
sible	ant	species	that	fed	on	EFN	(from	0.5	to	3	m	high).	For	every	
new	observed	ant–plant	interaction,	we	recorded	the	exact	position	
of	the	interaction	on	a	Cartesian	plane	within	each	plot	(Supporting	
Information	Appendix	S2).

2.3 | Spatial sampling scales

In	order	to	 investigate	whether	the	spatial	sampling	scale	affected	
the	description	of	ant–plant	networks,	we	used	two	scales.	At	 the	
local sampling scale,	 we	 subdivided	 each	 of	 the	 12	 plots	 into	 ten	
25	×	30	m	 (750	m²)	 adjacent	 subplots	 and	 created	a	 continuum	by	
combining	 data	 from	 these	 subplots	 (i.e.,	 recording	 species	 rich-
ness	 and	 interactions)	 so	 that	 the	 local	 subplot	 continuum	 gradu-
ally	 increased	 from	750	m²	 (one	subplot)	 to	7,500	m²	 (10	subplots)	
(Figure	1).	One	may	argue	that	a	single	subplot	is	too	small	to	provide	
an	accurate	description	of	a	network;	however,	the	single	subplot	has	
heuristic	value,	since	the	gradual	accumulation	of	subplots	can	indi-
cate	at	which	point	of	the	continuum	a	network	descriptor	reaches	
a	constant	value.	At	the	regional sampling scale,	we	created	another	
continuum	by	adding	 (i.e.,	 increasing	 species	 richness	 and	 interac-
tions)	plots	gradually	up	to	an	accumulated	total	of	12	plots,	which	
increased	from	7,500	m²	(one	plot)	to	90,000	m²	(12	plots)	(Figure	1).	
Note	that	our	spatial	sampling	scale	is	related	to	the	ecological	con-
cept	of	spatial	scale,	which	encompasses	both	grain	 (the	minimum	
spatial	resolution	of	the	data)	and	extent	(defined	as	the	size	of	the	
study	area).	Previous	studies	on	ant–plant	networks	considered	only	
one	of	the	two	components.	We	conducted	analyses	over	a	large	ex-
tent	with	a	fine	grain	size,	and	this	design	allowed	us	to	test	whether	
increasing	the	spatial	sampling	scale	affected	the	observed	patterns	
in	ant–plant	networks.

We	 first	 created	 these	 local	 and	 regional	 continuums	 by	 add-
ing	adjacent	subplots	(local sampling scale)	or	nearest	plots	(regional 
sampling scale).	However,	since	ants	and	EFN-	bearing	plants	may	be	
particularly	aggregated	in	space,	spatially	closer	plots	are	expected	
to	be	similar	(Dáttilo,	Guimarães,	et	al.,	2013).	Thus,	the	fixed	order	
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of	addition	of	adjacent	sampling	unities	(subplots	or	plots)	is	prone	to	
produce	continuums	that	are	biased	towards	sites	particularly	suit-
able	for	ant	nesting.	To	account	for	these	potential	influences	arising	
from	juxtaposition,	we	used	an	adaptation	of	the	rarefaction-	like	ap-
proach	applied	by	Vizentin-	Bugoni	et	al.	(2016)	in	which	we	summed	
plots	in	all	possible	combinations	regardless	of	their	spatial	position	
to	create	randomized	continuums	of	 increasing	area	for	both	 local	
and	 regional	 sampling	scales.	This	method	 is	hereafter	 referred	 to	
as random assembly,	while	 the	adjacent	sum	of	plots	 is	called	adja-
cent assembly.	Note	that	the	random	(non-	adjacent)	aggregation	of	
subplots	or	plots	can	be	considered	as	a	null	model	for	a	hypothesis	
where	the	clustered	distribution	of	ants	and	plants	would	influence	
network	metrics.	In	this	case,	if	changes	in	network	descriptors	with	
increasing sampling scale occur faster in random compared to adja-
cent	assembly,	then	the	aggregation	of	plants	and	ants	in	space	may	
affect	 the	patterns	of	ant–plant	 interactions	and,	 therefore,	 reveal	
the	role	of	species	spatial	distribution	as	a	driver	of	changes	in	net-
work	descriptors	through	sampling	scales.	The	number	of	assembled	
networks	for	each	size	class	of	randomly	assembled	continuums	de-
pended	on	the	number	of	possible	combinations	among	plots	in	each	
class.	Thus,	at	the	local	sampling	scale,	there	were	120	unique	sub-
plots,	which	allowed	for	540	combinations	of	two	subplots,	1,440	of	
three	subplots	and	2,520,	3,024,	2,520,	1,440,	540,	120	and	12,	re-
spectively,	for	the	subsequent	increments.	At	the	regional	sampling	
scale,	this	resulted	in	12	combinations	of	one	plot,	66	of	two	plots	
and, subsequently, 220, 495, 792, 924, 792, 495, 220, 66, 12 and 1. 
A	few	combinations	for	local	sampling	led	to	networks	that	were	too	
small	to	calculate	some	network	metrics	due	to	the	low	numbers	of	

ants	and	plants.	We	therefore	removed	these	cases	from	the	con-
fidence	 interval	calculation.	Specifically,	 these	removals	represent,	
at	most,	 26.7%	 (32	out	 of	 120	 combinations)	 for	 a	 single	 subplot,	
2.4%	(13	out	of	540)	for	two	subplots	and	0.1%	(2	out	of	1440)	for	
three	subplots.	For	the	other	combinations,	it	was	always	possible	to	
calculate all metrics.

2.4 | Data analysis

Initially,	we	estimated	the	sampling	completeness	of	our	ant–plant	
interaction	networks	throughout	the	increasing	sampling	scale	(simi-
lar	to	Chacoff	et	al.,	2012).	For	this	effort,	we	generated	accumula-
tion	curves	with	the	number	of	plants	and	ant	species	and	distinct	
pairwise	interactions	across	both	local	and	regional	sampling	scales.	
We	used	the	Chao2	estimator	since	it	is	one	of	the	least	biased	es-
timators for small matrices and least sensitive to undersampling 
(Colwell	 &	 Coddington,	 1994).	 To	 investigate	 the	 change	 in	 plant	
and	ant	composition	within	each	subplot	and	among	plots,	we	used	
the	 additive	 partitioning	 of	 diversity	 (γ = α + β)	 and	 analysed	 the	 
β- diversity in two different spatial sampling scales: β1 – between 
subplots	within	 each	 plot	 in	 a	 same	 tree	 and	 β2 – between plots 
(Veech,	Summerville,	Crist,	&	Gering,	2002).

We	built	a	quantitative	matrix	of	interactions	(A)	for	each	of	the	
120	 subplots	 (local	 sampling	 scale)	 or	 12	 plots	 (regional	 sampling	
scale)	 in	which	 elements	Aij	 represent	 the	 number	 of	 interactions	
between ant species i and plant species j. In order to avoid overes-
timation	of	 the	ant	species	with	more	efficient	recruiting	systems,	
we	calculated	the	frequency	of	ant–plant	interactions	based	on	the	

F IGURE  1 Schematic	representation	of	sampling	methods	that	shaped	ant–plant	networks	at	two	spatial	sampling	scales.	At	the	local	
sampling	scale,	we	subdivided	each	of	the	12	plots	into	ten	25	×	30	m	side-	by-	side	subplots	and	a	continuum	was	created	by	adding	up	
subplots	(i.e.,	species	richness	and	interactions),	such	that	the	local	continuum	gradually	increased	from	750	m²	(1	subplot)	to	7,500	m²	
(10	subplots).	At	the	regional	sampling	scale,	we	created	a	continuum	by	gradually	adding	the	12	larger	plots	(i.e.,	species	richness	and	
interactions),	such	that	the	continuum	ranged	from	7,500	m²	(1	plot)	to	90,000	m²	(12	plots).	Note	that	we	adjacently	and	randomly	
combined	subplots	or	plots	in	order	to	create	continuums	of	increasing	sampling	spatial	scales	at	local	and	regional	levels,	respectively	(see	
Materials	and	Methods	for	more	information)

Regional scale (plots)

Local scale (subplots)

+

+
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frequency	at	which	an	ant	species	was	recorded	interacting	with	a	
plant	species	in	a	subplot	or	plot,	rather	than	the	number	of	workers	
on	a	plant	(Dáttilo,	Sánchez-	Galván,	Lange,	Del-	Claro,	&	Rico-	Gray,	
2014).	For	each	ant–plant	network,	we	calculated	the	following	net-
work	descriptors:	plant	richness,	ant	richness,	number	of	ant–plant	
interactions	(visits),	binary	nestedness	(NODF),	weighted	nestedness	
(wNODF),	 specialization	 (H2′),	 binary	 modularity	 (Q)	 and	 weighted	
modularity	(wQ).	These	measures	are	the	most	commonly	used	net-
work	descriptors	 in	 the	 literature	 that	address	ant–plant	networks	
since	they	cover	a	wide	range	of	possible	structures	with	comple-
mentary	biological	significance,	such	as	the	overlap	and	distribution	
of	interactions	between	species	and	the	level	of	species	interdepen-
dence	in	a	community	(Dormann,	Fründ,	Blüthgen,	&	Gruber,	2009).	
Previous	studies	showed	that	ant–plant	networks	mediated	by	EFN	
exhibit	a	binary	 (but	not	weighted)	nested	pattern	of	 interactions,	
a	non-	modular	pattern	(considering	both	binary	and	weighted	data)	
and	 an	 average	 level	 of	 network	 specialization	 (Del-	Claro	 et	al.,	
2018).

We	evaluated	the	hierarchical	arrangement	of	networks	by	test-
ing	whether	species	with	fewer	links	and	interactions	interacted	with	
a	subset	of	the	partners	of	species	with	more	links	and	interactions	
(i.e.,	nested	pattern	of	interactions).	For	this	effort,	we	estimated	bi-
nary	nestedness	using	the	NODF	metric	(Almeida-	Neto,	Guimaraes,	
Guimarães,	 Loyola,	 &	Ulrich,	 2008).	We	 also	 estimated	 the	 quan-
titative nestedness based on quantitative matrices called wNODF 
(Almeida-	Neto	&	Ulrich,	2011).	Both	nestedness	metrics	vary	from	
zero	(not	nested)	to	100	(perfectly	nested).	While	NODF computes 
the	sequence	of	decreasing	marginal	totals	(i.e.,	number	of	links)	and	
the	 overlap	 of	 resources	 used,	wNODF	 considers	 the	 same	NODF 
principles	but	weighted	by	relative	frequency	(i.e.,	total	interactions;	
Almeida-	Neto	&	Ulrich,	2011).	In	other	words,	rare	species	may	ap-
pear	 specialized	 in	NODF	 since	 they	 are	not	 observed	 very	often,	
while	wNODF	gives	a	better	idea	of	which	species	are	true	special-
ists	by	considering	the	distribution	of	interactions	among	partners.	
Specialization	was	quantified	by	H2′,	an	index	derived	from	Shannon	
entropy	based	on	the	deviation	between	the	observed	distribution	
of	 interactions	and	the	expected	distribution	of	 interactions	given	
resource	availability.	In	this	specialization	index,	extreme	generaliza-
tion	of	an	ecological	network	 is	H2′	=	0	and	extreme	specialization	
is H2′ =	1	(Blüthgen,	Menzel,	&	Blüthgen,	2006).	Modularity	(Q)	was	
calculated	with	the	DIRTLPA+	algorithm,	which	is	known	to	outper-
form	similar	algorithms	(Beckett,	2016).	Modules	are	defined	as	sub-
sets	of	species	that	are	more	highly	 interlinked	among	themselves	
compared	to	other	species	in	the	network.	Stochastically,	DIRTLPA+	
repeatedly	divides	a	network	into	modules	(we	set	it	at	106	swaps)	
and	recalculates	modularity	until	it	reaches	an	optimal	Q	value,	which	
ranges	 from	0	 to	1	 (maximum	possible	modularity).	We	calculated	
both	binary	(Q)	and	weighted	modularity	(wQ);	while	the	former	only	
considers	the	presence	or	absence	of	interactions,	the	latter	consid-
ers	the	observed	frequencies	of	interactions.	As	expected,	we	found	
that	basically	all	metrics	correlated	to	network	size	at	both	spatial	
scales	 (see	 Supporting	 Information	 Appendix	 S1).	 Therefore,	 we	
used	null	model	 corrections	 (z-	transformations)	 to	 standardize	 the	

difference	 in	 the	metrics	while	 accounting	 for	 variation	 in	 species	
richness,	 connectance	 and	 heterogeneity	 of	 interactions	 between	
the	sampling	subplots	or	plots.	This	analysis	allowed	cross-	network	
comparisons	(Dalsgaard	et	al.,	2017;	Sebastián-	González,	Dalsgaard,	
Sandel,	 &	 Guimarães,	 2015).	 Values	 of	 specialization,	 nestedness	
and	modularity	were	standardized	as	Z-	scores,	which	is	defined	as:	
Zscore	=	(x	−	μ)/σ,	where	x	is	the	observed	value	(H2′, NODF, wNODF, 
Q or wQ),	μ	is	the	mean	value	of	randomized	matrices,	and	σ	is	the	
standard	deviation	of	 the	 randomized	matrices.	 For	 each	 adjacent	
subplot	or	plot	 in	both	 scales,	we	generated	1,000	 random	matri-
ces.	We	used	the	null	model	that	kept	marginal	totals	to	distribute	
the	interactions	and	produce	a	set	of	networks	in	which	all	species	
were	randomly	associated	implemented	in	the	bipartite	package	in	R	
(Dormann	et	al.,	2009).	We	used	metric	means	and	standard	devia-
tions	to	calculate	the	Z-	scores	for	both	adjacent	assembly	and	ran-
dom assembly.

In	order	 to	 evaluate	 trends	of	 the	network	 structures	with	 in-
creasing	 sampling	 scale,	 each	 network	 metric	 was	 calculated	 for	
each	 class	 across	 the	 local	 and	 regional	 sampling	 scales	 by	 both	
random	assembly	and	adjacent	assembly.	For	 randomly	assembled	
continuums,	we	plotted	mean	values	and	95%	confidence	intervals	
(all	values	between	the	2.5%	and	97.5%	quantiles)	for	both	local	and	
regional	 continuums,	 while	 for	 adjacently	 assembled	 continuums,	
we plotted z-	scores	for	each	of	the	12	local	scale	plots	and	the	sin-
gle	regional	plot.	We	calculated	the	metric	sensitivity	for	increasing	
sampling	scales	by	evaluating	the	variation	in	means	and	confidence	
intervals	with	the	accumulation	of	subplots	or	plots.

3  | RESULTS

We	recorded	112	ant	species	 (or	morphospecies)	of	19	genera	and	
seven	 subfamilies.	Myrmicinae	was	 the	most	 represented	 subfam-
ily	(40.17%	of	the	total	ant	species,	n	=	45),	followed	by	Formicinae	
(31.25%,	 n	=	35)	 and	 Dolichoderinae	 (13.39%,	 n	=	15).	 Ant	 species	
richness	 per	 sampling	 subplot	 was	 6.75	±	4.02	 (mean	±	standard	
deviation)	and	23.21	±	5.85	at	the	regional	scale.	For	the	plants,	we	
found	88	species	(or	morphospecies)	that	belonged	to	41	genera	and	
26	families	within	the	study	area.	The	family	Bignoniaceae	comprised	
26.3%	of	plant	species,	followed	by	22.8%	Fabaceae:	Mimosoideae	
and	10.5%	Fabaceae:	Caesalpinioideae.	Average	plant	 species	 rich-
ness	per	sampling	subplot	was	4.6	±	2.0	and	21.4	±	3.8	at	the	regional	
scale.	Ants	and	plants	engaged	in	881	interactions.	Overall,	the	sam-
pling	completeness	of	ant–plant	networks	varied	between	scales.	At	
the	local	sampling	scale,	we	recorded	a	mean	of	72.4%	of	the	plant	
species	 (observed:	21	species;	estimated:	29	species),	78.5%	of	the	
ant	species	(observed:	22	species;	estimated:	28	species)	and	82.2%	
of	the	expected	pairwise	interactions	(observed:	65	interactions;	esti-
mated:	79	interactions).	At	the	regional	sampling	scale,	we	recorded	a	
mean	of	56.6%	of	the	plant	species	(observed:	89	species;	estimated:	
157	 species),	 52.5%	of	 the	 ant	 species	 (observed:	 112	 species;	 es-
timated:	 213	 species)	 and	52.7%	of	 the	 expected	pairwise	 interac-
tions	(observed:	881	interactions;	estimated:	1,671	interactions).	For	
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both	plant	and	ant	composition,	we	observed	that	species	turnover	
between	plots	(β2)	was	higher	between	plots	than	between	subplots	
within	each	plot	(β1;	Supporting	Information	Appendix	S3).

3.1 | Trends in network descriptors across the 
spatial sampling scales

The	number	of	plant	and	ant	species	increased	with	the	addition	
of	 subplots	 (Figure	2)	 and	 plots	 (Figure	3),	 as	 did	 the	 number	 of	

interactions	 among	 species.	We	 recorded	 a	 higher	 accumulation	
rate	at	the	regional	compared	to	the	local	sampling	scale,	regard-
less	of	adjacent	or	random	subplot	or	plot	addition	(compare	trends	
in	Figures	2	and	3).	However,	network	descriptors	remained	fairly	
constant	as	sample	area	increased	at	the	local	sampling	scale,	but	
were	more	variable	at	the	regional	sampling	scale.	At	the	regional	
scale,	nestedness	(both	binary	and	weighted)	and	modularity	(bi-
nary)	substantially	varied	depending	on	the	order	and	number	of	
plots	 added.	For	weighted	modularity,	 there	was	an	 initial	 steep	

F IGURE  2 Mean	(black	line)	and	95%	confidence	interval	(shaded	area)	of	the	observed	network	patterns	over	the	expanding	local	
sampling	scale	by	all	possible	combinations	of	individual	subplots	to	create	increasing	spatial	continuums.	Since	the	possibilities	of	
randomizations	are	minimal	at	the	smallest	scale	networks	(i.e.,	2	×	2	species	on	average),	we	used	the	grain	size	by	pooling	three	subplots.	
The	local	continuum	gradually	increased	from	750	m²	(1	subplot)	to	7,500	m²	(10	subplots).	The	dashed	lines	represent	the	trends	obtained	
for	each	plot	by	adding	adjacent	subplots
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increase	following	the	number	of	plots	added	at	the	regional	sam-
pling	scale,	but	their	values	tended	to	become	constant	at	around	
four	 plots	 (Figure	3).	 Interestingly,	 H2′ remained relatively con-
stant	despite	the	addition	of	samples	at	both	spatial	scales.	Note	
that	we	 found	broad	confidence	 intervals	 for	all	metrics	at	 local	
and	 regional	 spatial	 sampling	 scales,	 a	 result	 that	 indicates	 net-
work	 descriptors	 are	 influenced	 by	 which	 sampling	 subplots	 or	
plots	are	added.	Further,	the	final	value	(i.e.,	when	all	the	plots	or	
subplots	were	 combined	 at	 each	 spatial	 sampling	 scale)	 of	most	
descriptors	 depended	 on	which	 plots	were	 considered	 and	 how	

many	 subplots	were	added	 (Figure	2).	 Finally,	 there	were	no	dif-
ferences	 in	the	constancy	of	network	descriptors	when	subplots	
or	plots	were	adjacently	or	randomly	combined	at	both	local	and	
regional	sampling	scales	(Figures	2	and	3).

4  | DISCUSSION

Our	 study	 explicitly	 evaluated	 how	 increasing	 the	 extent	 of	 spa-
tial	 sampling	 from	 local	 to	 regional	 sampling	 scales	 influences	 the	

F IGURE  3 Mean	(black	line)	and	95%	confidence	interval	(shaded	area)	of	the	network	patterns	over	the	expanding	regional	sampling	
scale	by	all	possible	combinations	of	individual	plots	to	create	increasing	spatial	continuums.	The	regional	continuum	gradually	increased	
from	7,500	m²	(1	plot)	to	90,000	m²	(12	plots).	The	dashed	line	represents	the	trend	obtained	by	adding	adjacent	plots
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architecture	of	ant–plant	networks.	We	observed	that,	despite	the	
accumulation	of	 species	 and	 links	with	 increasing	 sampling	 scales,	
most	network	descriptors	tended	to	be	more	constant	at	local	com-
pared	to	regional	sampling	scales.	Our	findings	indicate	that,	in	ant–
plant	 interaction	 networks,	 species	 and	 interactions	 present	 local	
similarity	but	vary	more	widely	over	regional	scales.	This	finding	cau-
tions	against	pooling	networks	from	different	plots	to	describe	ant–
plant	interactions,	since	they	may	influence	metric	values	depending	
on	the	specific	plot	considered.	Further,	we	observed	that	adjacent	
assembly	did	not	generate	more	variation	in	network	descriptor	val-
ues	compared	to	random	assembly	at	the	local	sampling	scale.	This	
finding	indicates	that	the	spatially	aggregated	distribution	of	species	
(evidenced	 in	 Supporting	 Information	 Appendices	 S2	 and	 S3)	 and	
abiotic	conditions	(Carstensen	et	al.,	2014;	Dáttilo,	Guimarães,	et	al.,	
2013;	Trøjelsgaard	et	al.,	2015)	does	not	affect	the	organization	of	
these	interacting	assemblages.

Many	studies	that	explored	plant–animal	networks	showed	that	
numbers	of	species	and	interactions	tend	to	increase	with	a	greater	
sampling	effort	(Dupont	&	Olesen,	2012;	Falcão	et	al.,	2016;	Jordano,	
2016;	Nielsen	&	Bascompte,	2007).	Here,	we	observed	that	all	de-
scriptors	related	to	network	size	(i.e.,	species	richness	and	number	of	
interactions)	increased	with	the	addition	of	subplots	(local	sampling	
scale)	or	plots	(regional	sampling	scale).	However,	the	accumulation	
curves	for	these	network	descriptors	were	far	from	reaching	stabil-
ity	at	the	regional	scale.	Studies	revealed	the	high	diversity	of	plants,	
ants	and	interactions	among	them	in	tropical	environments,	even	at	
small	spatial	sampling	scales	(Dáttilo	&	Dyer,	2014),	and	it	is	there-
fore	expected	that	network	size	may	increase	substantially	with	the	
addition	of	a	spatial	sampling	scale	(more	strongly	observed	at	the	
regional	scale).	Our	findings	suggest	that	the	high	diversity	of	ant–
plant interactions in primary tropical rainforests may be driven by a 
high	 turnover	of	 species	and	 interactions	between	sampling	plots,	
even	 over	 reduced	 spatial	 sampling	 scales.	Additionally,	we	 found	
that	most	of	the	utilized	metrics	were	related	to	network	size.	Thus,	
as	for	other	mutualistic	systems	(Dalsgaard	et	al.,	2017),	we	suggest	
the	use	of	null	model	corrections	(e.g.,	delta	and	z-	transformations)	
to	compare	interaction	structures	across	networks	while	accounting	
for	differences	in	species	richness,	connectance	and	heterogeneity	
of	interactions	between	the	sampling	sites	(as	used	in	this	study).	It	
should	be	noted	that	some	networks	could	be	extremely	small	(e.g.,	
two	 plant	 species	 interacting	with	 two	 ant	 species),	 which	would	
hardly	be	controlled	by	any	correction,	since	the	possibilities	for	ran-
domizations	are	minimal	(Luna	et	al.,	2017).

On	the	other	hand,	we	observed	that,	apart	from	network	size	
and	number	of	ant–plant	interactions,	the	values	of	network	prop-
erties	 remained	 similar	 throughout	 subplot	 accumulation	 at	 the	
local	 sampling	 scale.	 The	 notable	 constancy	 of	 network	 structure	
at	small	spatial	sampling	scales	must	be	unique	for	systems	where	
organisms	present	reduced	spatial	mobility	and	life	area.	In	this	case,	
even	 with	 the	 high	 turnover	 of	 species	 over	 short	 distances,	 the	
mechanisms	that	determine	the	interaction	patterns	among	ants	and	
plants	act	on	small	scales.	Two	key	factors	that	structure	ant–plant	
networks	and	act	at	small	scales	are	relative	species	abundance	and	

ant	dominance	hierarchy,	where	abundant	and	competitively	supe-
rior	 ant	 species	 usually	 tend	 to	 interact	with	 a	 greater	 number	 of	
plant	 species	 (Dáttilo,	 Díaz-	Castelazo,	 &	 Rico-	Gray,	 2014;	 Dáttilo,	
Sánchez-	Galván,	et	al.,	2014;	Dáttilo,	Marquitti,	Guimarães,	&	Izzo,	
2014).	Moreover,	the	central	core	of	highly	interacting	species	(i.e.,	
those	 species	 with	 the	 greatest	 number	 of	 interactions)	 remains	
stable	across	 larger	spatial	 scales	 in	 the	Brazilian	Amazon	 (Dáttilo,	
Guimarães,	et	al.,	2013).	Consequently,	small	spatial	sampling	scales	
should	suffice	to	record	some	patterns	commonly	found	in	ant–plant	
interaction	networks	(as	hypothesized	in	this	study),	since	the	high	
turnover	of	species	over	short	distances	is	generated	by	those	pe-
ripheral	and	rare	species	that	are	of	secondary	importance	in	terms	
of	 structuring	 the	 networks.	 On	 the	 contrary,	 the	 higher	 species	
turnover	across	larger	scales	(between	plots)	may	explain	the	greater	
variation	 in	network	structure	at	 the	 regional	 scale.	 It	 is	 therefore	
expected	that,	 for	other	organism	groups	 like	pollinators	and	seed	
dispersers,	the	ability	to	move	over	longer	distances	and	the	size	of	
their	living	area	could	determine	the	larger	spatial	sampling	scale	at	
which	 network	 structure	 becomes	 constant	 (see	Burkle	&	Knight,	
2012;	Carstensen	et	al.,	2018;	Parsche,	Fründ,	&	Tscharntke,	2011).	
For	example,	in	a	few	square	metres,	one	can	find	a	highly	diverse	
interactive	 community	 of	 ants	 and	 plants.	 Thus,	 it	 is	 expected	
that	 greater	 proportions	 of	 areas	would	 be	 necessary	 to	 result	 in	
a	constant	network	structure	that	involves	more	mobile	organisms.	
Indeed,	modular	 patterns	 in	 plant–hummingbird	 networks	 depend	
on	sampling	at	the	landscape	scale,	since	modules	emerge	from	the	
match	of	the	habitats	used	by	subsets	of	partners	(Maruyama	et	al.,	
2014).	Moreover,	pollination	and	seed	dispersal	networks	are	more	
strongly	 constrained	 by	 morphological	 barriers	 than	 ant–plant	 in-
teractions	 (Vázquez	et	al.,	2009);	 these	barriers	create	myriad	 for-
bidden	links	in	these	systems,	especially	in	tropical	areas	(Jordano,	
1987;	Vizentin-	Bugoni,	Maruyama,	&	Sazima,	2014;	Vizentin-	Bugoni	
et	al.,	2018).	Further,	we	found	that	most	network	descriptors	calcu-
lated	from	both	random	assembly	and	adjacent	assembly	produced	
the	same	deviation	from	the	mean,	even	with	the	accumulation	of	
few	subplots	or	plots.	This	finding	indicates	that	the	organization	of	
ant–plant	networks	is	more	robust	to	the	inherent	spatial	variation	
of	ant–plant	interactions,	since	depending	on	which	specific	subplot	
is	added,	the	values	of	such	metrics	may	not	change	significantly.

On	the	other	hand,	we	found	substantial	variation	in	the	network	
descriptors	depending	on	 the	order	 and	number	of	plots	 accumu-
lated	at	the	regional	sampling	scale.	The	greater	variation	in	network	
descriptor	values	at	regional	scales	indicates	that	regional	processes	
that	influence	the	spatial	distribution	of	ants	foraging	on	plants	(e.g.,	
differences	in	the	quantity	and	quality	of	resources	available	among	
plots)	could	constitute	important	mechanisms	that	shape	ant–plant	
networks	(reviewed	by	Del-	Claro	et	al.,	2018).	This	fact,	associated	
with	 the	 frequent	 rarity	 (low	 relative	 abundance)	 of	most	mutual-
istic	 species	 within	 tropical	 communities	 (e.g.,	 Vizentin-	Bugoni	
et	al.,	2014),	 indicates	 that	an	 increased	sampling	scale	 is	 required	
only	at	small	spatial	scales,	since	pooling	multiple	networks	distrib-
uted	 across	 large	 areas	may	 confound	with	 the	 different	 environ-
mental	drivers	of	network	 structures.	The	differences	 in	 sampling	
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completeness	(species	and	interactions)	at	local	and	regional	levels	
indicate	that	ant–plant	networks	are	highly	dynamic	over	larger	spa-
tial	sampling	scales.	Therefore,	we	recommend	the	use	of	sampling	
completeness	 to	 detect	whether	 the	 structural	 patterns	 observed	
are	represented	by	a	large	proportion	of	the	species	and	their	inter-
actions	within	a	community.	Pooling	together	multiple	regional	net-
works	would	therefore	only	be	required	for	continental	and	global	
studies,	where	macroecological	 factors	 (biogeography,	 climate,	 in-
sularity	and	latitude)	should	structure	the	networks	(Trøjelsgaard	&	
Olesen,	2016).

Interestingly,	 specialization	 (H2′)	was	 remarkably	 constant	across	
different	spatial	sampling	scales.	This	result	may	occur	because	there	
are	few	constraints	to	interaction	(i.e.,	forbidden	links)	between	ant–
plant	pairs.	In	this	case,	virtually	all	of	the	most	important	ant	species	
(those	with	a	greater	number	of	 interactions)	are	 found	everywhere	
and	interact	in	a	similar	way	(Dáttilo,	Guimarães,	et	al.,	2013).	Thus,	the	
lack	of	tight	morphological	matching	of	interacting	species	seems	to	be	
constant	across	populations	and	scales	and	leads	networks	to	similar	
specialization	levels	since	they	are	independent	of	the	local	community	
composition.	In	fact,	we	found	low	heterogeneity	of	associations	be-
tween	species	based	on	interaction	frequencies	(i.e.,	low	specialization)	
despite	the	high	spatial	aggregation	of	interactions.	Moreover,	ants	do	
not	always	forage	on	the	same	plant,	mainly	because	the	food	sources	
offered	by	plants	 are	 spatially	 and	 temporally	highly	 seasonal	 (Díaz-	
Castelazo,	Rico-	Gray,	Oliveira,	&	Cuautle,	2004;	Falcão,	Dáttilo,	&	Izzo,	
2015),	 and	 therefore,	 the	 interactions	 tend	 to	 be	 more	 generalized	
(Schoereder,	Sobrinho,	Madureira,	Ribas,	&	Oliveira,	2010)	compared	
to	other	specialized	ant–plant	systems	(i.e.,	ant–myrmecophyte;	Dáttilo,	
2012)	or	other	mutualisms	such	as	plant–pollinator	systems	(Blüthgen,	
Menzel,	Hovestadt,	Fiala,	&	Blüthgen,	2007;	Maruyama	et	al.,	2014).	
For	this	same	reason,	we	did	not	find	that	quantitative	metrics	were	
less	biased	by	spatial	sampling	scale	than	binary	metrics	(in	contrast	to	
findings	for	pollination	networks;	Vizentin-	Bugoni	et	al.,	2016).

As	mentioned	by	Trøjelsgaard	and	Olesen	(2016),	there	appears	to	
be	considerable	 invariance	 in	several	macroscopic	network	descrip-
tors	(e.g.,	nestedness	and	modularity)	at	small	spatial	scales,	and	this	
phenomenon	may	occur	because	biological	communities	self-	organize	
to	increase	their	robustness	to	perturbations.	However,	due	to	higher	
turnover	 of	 peripheral	 species	 across	 space	 compared	 to	 the	 few	
species	found	in	the	generalist	core	(Dáttilo,	Guimarães,	et	al.,	2013),	
microscopic	 descriptors	 (e.g.,	 centrality,	 individual	 specialization	
and	 species	 roles)	 tend	 to	 vary	more	 across	 spatial	 sampling	 scales	
(Trøjelsgaard	&	Olesen,	 2016).	 Additionally,	 all	 network	 descriptors	
are	influenced	by	the	sampling	effort	via	its	effects	on	the	record	of	
new	ant–plant	interactions	throughout	the	year,	mainly	due	to	differ-
ences	in	the	seasonal	phenology	of	nectaries	(Falcão	et	al.,	2016).	It	
therefore	appears	that	most	patterns	observed	in	ant–plant	networks	
are more robust to spatial sampling scale variation compared to tem-
poral	sampling	scales,	as	demonstrated	in	this	study.

As	the	main	conclusion,	we	found	that	local	sampling	scales	gen-
erated	 lower	variation	 in	the	network	descriptors	compared	to	re-
gional	sampling	scales,	and	this	finding	indicates	that	the	processes	
that	 effectuate	 the	 interaction	 patterns	 between	 ants	 and	 plants	

could	 be	 consistent	 across	 local	 communities	 Among	 all	 metrics,	
specialization	was	 the	most	 constant	 across	different	 spatial	 sam-
pling	scales;	this	result	indicates	that	the	lack	of	morphological	trait	
matching	of	 interacting	species	 is	constant	across	populations	and	
spatial	 sampling	 scales.	 Our	 findings	 have	 a	 direct	 impact	 on	 the	
patterns	observed	 in	ant–plant	 interaction	networks,	since	studies	
may	not	be	directly	comparable	without	carefully	considering	spatial	
sampling	designs	or	analytical	standardizations	in	order	to	avoid	is-
sues	related	to	scale	(Dalsgaard	et	al.,	2017;	Luna	et	al.,	2017).
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