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Abstract. The linking of individual functional traits to ecosystem processes is the basis for making
generalizations in ecology, but the measurement of individual values is laborious and time consuming,
preventing large-scale trait mapping. Also, in hyper-diverse systems, errors occur because identifica-
tion is difficult, and species level values ignore intra-specific variation. To allow extensive trait map-
ping at the individual level, we evaluated the potential of Fourrier-Transformed Near Infra-Red
Spectrometry (FT-NIR) to adequately describe 14 traits that are key for plant carbon, water, and
nutrient balance. FT-NIR absorption spectra (1,000–2,500 nm) were obtained from dry leaves and
branches of 1,324 trees of 432 species from a hyper-diverse Amazonian forest. FT-NIR spectra were
related to measured traits for the same plants using partial least squares regressions. A further 80
plants were collected from a different site to evaluate model applicability across sites. Relative predic-
tion error (RMSErel) was calculated as the percentage of the trait value range represented by the final
model RMSE. The key traits used in most functional trait studies; specific leaf area, leaf dry matter
content, wood density and wood dry matter content can be well predicted by the model (R2 = 0.69–
0.78, RMSErel = 9–11%), while leaf density, xylem proportion, bark density and bark dry matter con-
tent can be moderately well predicted (R2 = 0.53–0.61, RMSErel = 14–17%). Community-weighted
means of all traits were well estimated with NIR, as did the shape of the frequency distribution of the
community values for the above key traits. The model developed at the core site provided good estima-
tions of the key traits of a different site. An evaluation of the sampling effort indicated that 400 or less
individuals may be sufficient for establishing a good local model. We conclude that FT-NIR is an easy,
fast and cheap method for the large-scale estimation of individual plant traits that was previously
impossible. The ability to use dry intact leaves and branches unlocks the potential for using herbarium
material to estimate functional traits; thus advancing our knowledge of community and ecosystem
functioning from local to global scales.
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INTRODUCTION

Functional traits are defined as any morphological, physi-
ological, or phenological characteristic that affect organism
fitness (Violle et al. 2007). Leaf and wood traits are being
widely used to understand plant performance (e.g., Poorter
et al. 2008), species distribution ranges (Stahl et al. 2014),
community structure and dynamics (e.g., Paine et al. 2011),
ecosystem functioning and services (e.g., Garnier and Navas
2012) and to model vegetation changes in Dynamic Global
Vegetation Models (e.g., Sakschewski et al. 2015). Measur-
ing traits however, is a laborious process, and few studies
(Paine et al. 2011) have collected trait data for all individu-
als or even all species at a site. Traits measured at the indi-
vidual level represent realized values and should be closer to
the performance of the same individual. Although traits are
conceptually defined as the characteristics of individuals,
most studies use average trait values for species obtained
from a small number of individuals per species. According
to trait protocols these traits should be collected from

individuals under “optimal” growth conditions, so that the
maximum trait expression and growth potential of the spe-
cies is obtained (Perez-Harguindeguy et al. 2013). Although
this strategy is reasonable for comparing species, it ignores
the potential of individuals to acclimate. Violle et al. (2012)
recently suggested including trait variance when studying
plant communities, and that we should measure individual-
based traits. The implication of this is that we are faced with
the burden of obtaining thousands of tedious or expensive
measurements in order to advance the field of functional
ecology. Finding proxies for these traits is a possible solution
if the proxies are easy, fast, and accurate enough.
In hyper-diverse regions, even the collection of species is

difficult because identification to species level is laborious,
time consuming, and prone to a large amount of errors. For
example, in Amazonia, there are an estimated 16,000 species
(ter Steege et al. 2013) and a single site may contain more
than a thousand species (Ribeiro et al. 1999). The estimated
error rate in identifications by para-taxonomists and other
non-experts is around 40% (Hopkins 2007). Species delimi-
tation, the first step in the identification process, varies
widely from person to person, and can lead to just 52% simi-
larity between the delimitations provided by different para-
taxonomists (Gomes et al. 2013). Estimating species-level
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trait values can therefore be problematic without the sup-
port of an army of good botanists.
Spectrometry, the recording of light properties after irradi-

ation of an object or substance, allows trait data to be
inferred, since the reflectance, transmittance, and absorbance
of light depend on the size, density, and shape of plant tissues
and the content of chemical components. Spectrometry has
already been used successfully to determine leaf chemical
composition (Asner et al. 2014, Serbin et al. 2014, Ramirez
et al. 2015), physiological (Doughty et al. 2011) and pheno-
logical traits (Wu et al. 2017), and wood mechanical proper-
ties (reviewed in Tsuchikawa and Kobori 2015). Spectrometry
is fast and the cost of purchasing the equipment quickly pays
off, and so far, it has been very accurate for determining
chemical traits for the conditions studied (Asner et al. 2014,
Serbin et al. 2014). Spectrometers can be carried on satellites
or aircraft, allowing a wide range of plant traits to be mea-
sured from canopies (Asner et al. 2017). FT-NIR spectrome-
try is also highly effective for identifying plant species
(Kraj�sek et al. 2008, Durgante et al. 2013) even in different
ontogenetic stages (Lang et al. 2015). We therefore reasoned
that this method could be widely applied for determining the
leaf and wood properties of species, using easy protocols that
would allow measurements to be carried at the individual
level. This would liberate researchers from the need to iden-
tify the plants for the calculation of species-level trait values
since the spectral profiles can be used to differentiate between
species (Durgante et al. 2013, Lang et al. 2015) thereby maxi-
mizing work cost benefits.
Spectrometers use two methods: (1) the dispersive

method, where the light source shines on a diffraction grat-
ing or prism and then on the sample (VNIR spectroscopy)
or (2) the interferometric method, where the light source shi-
nes on the input of an interferometer and then on the sam-
ple, the recorded interference pattern is transformed back
into a spectral signal with a Fourier transformation (FT-
NIR spectroscopy). FT-NIR has a high throughput, because
it eliminates the entrance or exit slits that limit the amount
of radiation reaching the detector. The advantages of FT-
NIR are the higher resolution (<0.1 cm�1) and the much
higher (about one order of magnitude) signal to-noise ratio
and scan speed (Skoog et al. 2007). On the other hand, the
advantage of the dispersive method is that instruments can
be portable while the need for tight control of the mirror
movements in interferometry requires bench-fixed instru-
ments. Most applications in ecosystem ecology so far have
being using classical spectrometry (Asner et al. 2014, Serbin
et al. 2014, Wu et al. 2017), while industry and food
research use predominantly FT-NIR (e.g., Nicola€ı et al.
2007), due to the need for high precision and accuracy in the
evaluation of very heterogeneous materials. However, com-
parisons of NIR and FT-NIR did not find large differences
in results (Armstrong et al. 2006, Igne et al. 2010).
Potential limitations in some previous spectrometry appli-

cations were that measurements had to be carried out on
fresh leaves soon after collection (e.g., Doughty et al. 2011,
Wu et al. 2017), or that dry leaves needed to be prepared as
powder (e.g., Serbin et al. 2014, Ramirez et al. 2015). These
requirements limit the extensive use of this technique in
hyper-diverse regions or under difficult field conditions,
given the higher time and cost of preparing samples as

powder and the need for energy sources to power equipment
in the field. Also, the only morpho-structural trait that has
been evaluated with extensive data sets so far was LMA
(reviewed by Serbin et al. 2014). Here we examine the ability
of FT-NIR to estimate a series of 14 functional traits using
dry and intact leaves and branches. We selected traits related
to the global leaf and wood economics spectrum (Wright
et al. 2004, Chave et al. 2009), important for the carbon,
water, and nutrient balances of the plant. We also collected
an independent data set to evaluate equations derived from
FT-NIR for their ability to estimate traits for a different site.
If the spectra collected from dry materials are able to esti-
mate plant traits, this opens up a unique opportunity to
obtain a large amount of trait data just by scanning the
already collected plant material currently stored in herbaria.
Many trait-based studies use a community-wide mean

trait value, the variance of trait values or the community
trait frequency distribution to test for community assembly
or to scale community properties up to the ecosystem level,
so we also tested how well FT-NIR derived trait values can
approximate these community metrics to see if this could
provide an easy shortcut to these types of studies.
We asked the following questions: (1) What traits are best

predicted at the individual level? (2) How well are the com-
munity weighted means and trait frequency distributions
described? (3) What chemical properties may affect the esti-
mates of traits by FT-NIR spectrometry? and (4) How many
samples are needed in order to build an accurate local FT-
NIR based model?

METHODS

Study sites

Trait data were collected in the Reserva Florestal Ducke,
located 26 km north-west of Manaus (02°550 S/59°590 W at
the reserve headquarters). Reserva Ducke covers 10,000 ha
(10 9 10 km) of terra-firme tropical rain forest. The mean
annual temperature is around 26°C, and the mean annual
rainfall around 2,400–2,700 mm, with the dry season occur-
ring between July and October (Marques-Filho et al. 1981).
Altitude varies from 30 to 120 m. Soils are derived from ter-
tiary marine sediments from the Alter-do-Ch~ao formation.
There is a continuum of soil change from the upper flat ter-
races (plateaus) to the valleys around watercourses (Chauvel
et al. 1987). Vegetation is dense terra-firme forest, with a
closed canopy 30–37 m high and emergent trees of up to
40–45 m (Ribeiro et al. 1999).
Independent data for the external validation of models

was collected in the Bosque da Ciência (BC), an urban forest
located within the campus of the National Institute for
Amazonian Research (INPA) in Manaus, which is 30 km
south of Reserva Ducke. BC is also covered by dense terra-
firme forest, but has some patches of secondary forest and
has higher temperatures and lower precipitation than
Reserva Ducke.

Sampling design and data collection

We collected trait data for 1,324 tree individuals dis-
tributed in 17 permanent plots covering a gradient of
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topographic conditions, from the high clayey plateaus to the
sandy valleys. The plots are widely distributed across
Reserva Ducke covering an area of 30 km2 and they are at
least 1 km apart. Each plot follows an altitude contour, so
within each plot, altitude, distance to water table, and soil
are consistent (Magnusson et al. 2005). The trees represent
432 named species (36% of the 1,176 tree species registered
in the Reserve), plus 295 either unidentified individuals or
identified to genus level.
We sampled all trees having a stem diameter at breast

height (DBH) between 1 cm and 5 cm in a strip of
250 9 1 m per plot, which resulted on average in 74 � 22
individuals per plot (mean � SD). For each individual, we
collected a branch at least 40 cm long. For plants with only
short branches, the longest were collected. Branches were
taken from the most brightly illuminated side of the plant
canopy while trying to avoid damaged, sick, and epiphyll-
covered leaves.
We measured 14 anatomical and morphological leaf and

branch traits that are important for the carbon, water, and
nutrient balance of the plant for each collected individual.
Samples were processed within 24 h after collection and
maintained in closed, humid, black, plastic bags in an air-
conditioned room before processing. In the laboratory, we
took (1) the best two leaves (i.e., mature and healthy) for
wet/dry mass and leaf area, (2) a 4–5 cm terminal piece of
the branch for wet/dry mass and volume, (3) a 1 cm length
of branch next to the first for macro-anatomical measure-
ments, and (4) another 0.5-cm piece for FT-NIR spectrome-
try. Leaves were measured for thickness with a micrometer
(middle part, avoiding main veins), for chlorophyll content
with a SPAD, scanned, weighed to a precision of 0.0001 g,
and dried for 48 h at 60°C to obtain the dry mass. Petioles
and rachises were weighted separately from the leaf lamina.
Force to punch was measured for one leaf per individual,
using a home-made penetrometer constructed using the gen-
eral design as per Aranwela et al. (1999).
Branch pieces were first weighed to a precision of 0.001 g,

the volume was determined with and without bark by the
water displacement method, and then dried at 105°C for 3–
4 d and weighed again. Anatomical measurements of the
proportions of pith, xylem, and bark were made with a cali-
per under a stereo-microscope (magnification 409), or by
using images taken with a camera coupled to the stereomi-
croscope. The remainder of the branch and leaves, were
made into a voucher specimen and dried following common
practice (i.e., newspaper sheets, in an oven at 60°C for 2–3 d
or until dry). The branch piece cut for FT-NIR was stored
in a paper envelope with silica, which was replaced until it
was dry.
Three dry leaves per plant were scanned with FT-NIR,

taking one reading at the adaxial and another at the abaxial
surface, in the middle part of the leaf, avoiding main veins
and where there were any visible signs of disease. For the
branches, one reading was taken from each side of the dry
transversal branch cut, which included the bark. Leaf and
branch spectra were collected with a Thermo Nicollet spec-
trophotometer (Thermo Fischer Scientific, Waltham, Mas-
sachusetts, USA), using the Antaris FT-NIR II Method
Development System (MDS). The spectral readings are
expressed as absorbance values from the wavelengths of

1,000–2,500 nm in the near-infrared and the spectrum for
each sample reading consists of 1,557 absorbance values,
equivalent to a resolution of 0.96 nm. Each reading pro-
duced by the instrument was the average of 16 measure-
ments of absorbance at a certain wavelength. A black,
opaque material was placed over the point where the spec-
tral readings were collected to avoid light scattering. A back-
ground calibration reading was performed before each
reading was taken. The external data set collected at BC fol-
lowed the same protocols described above for RFAD.

Trait calculations

Based on the initial measurements, we calculated the fol-
lowing traits for each individual. The density and dry matter
content of wood, bark, and branch were calculated based on
the small branch sample (~5 cm long) that we had taken.
Wood density was calculated as branch wood dry mass over
branch wood volume (WD, g/cm3), bark density (BarkD,
g/cm3) as bark dry mass over bark volume, branch density
(BranchD, g/cm3) as branch dry mass (including wood and
bark) over branch volume, and wood dry matter content
(WDMC, mg/g) and bark dry matter content (BDMC mg/g)
were calculated as the dry mass divided by the fresh mass of
the material. Proportions of bark (BarkProp), xylem (Xyl-
Prop), and pith (PithProp) were calculated as the proportion
occupied by the area of each tissue on the transversal branch
cut.
Specific leaf area (SLA, cm2/g) is the leaf area per unit of

leaf dry mass. It was calculated by pooling the two leaves
that were collected per branch, and by dividing their leaf
area over their dry mass. Petioles were not included in the
SLA calculation, because they contribute very little area for
photosynthesis, but inflate the leaf mass. For compound
leaves, the SLA was based on all the leaflets of the two
leaves; the rachis was not included in the SLA calculation,
for the same reason as for the petioles. Chlorophyll content
per unit leaf area (Chl, lg/cm2) was calculated based on the
SPAD values using an equation for rainforest trees (Coste
et al. 2010): Chl = (117.1 9 SPAD)/(148.84 � SPAD). The
leaf dry matter content (LDMC, mg/g) was calculated as the
dry mass over the fresh mass of these tissues. Leaf thickness
(LT, mm) is the average of the measurements of two leaves
per plant. Leaf density (LD, g/cm3) is the leaf dry mass per
unit leaf volume, and it was calculated as the reciprocal of
(SLA 9 LT). Force to punch (FP, N/mm) is the force in
Newtons to perforate the leaf divided by the circumference
of the punch.
Leaf traits included here are indicators of light capture

and photosynthetic capacity (SLA, LD, Chl) and leaf
defense and persistence (LDMC, LT, FP). WD and xylem
proportion are related to biomechanical support, defense
and tolerance to drought; pith proportion is also related to
biomechanical support in soft wood, and to water and
reserves storage; WDMC, bark density, and BarkDMC are
related to branch defense and persistence.

Analyses

Models to predict traits from leaf or branch FT-NIR
spectra were built with partial least squares regressions
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(PLSR). PLSR is a widely used method for analyzing the
spectral data of biological materials, and is very well suited
to the high multi-colinearity present in this kind of data.
Being a linear method, a potential drawback is the loss of
non-linear information. Non-linear methods have been pro-
posed to deal with that, such as neural networks (ANN) or
Least squares support vector machines (LS-SVM), but so
far there is not much evidence that these nonlinear tech-
niques perform better than classical linear algorithms
(Nicola€ı et al. 2007). This is due to the fact that NIR spec-
troscopy, both classical or FT-NIR, is essentially a very lin-
ear technique. Differences in spectral data between classical
NIR or FT-NIR do not affect the performance of analytical
methods used for chemometrics. The high resolution of FT-
NIR instruments provide more spectral information, and
less reliance on sophisticated chemometric algorithms, FT-
NIR can thus be considered more robust to variations in
analytical tools.
The spectra used for all models comprised of the average

of readings taken on both sides of the leaves or branches,
and all 1,557 variables (i.e., absorbance at each of 1,557
wavelengths) read for each sample. The first step in the mod-
elling approach was to scan and clean the data set from out-
liers; i.e., values outside the known range of each trait or
outside the 95% range of the observed values. We also evalu-
ated biplots among traits to localize points too far from the
expected correlation and then checked for potential errors.
The optimal number of components for an effective model
for each trait, at the same time avoiding over-fitting, was
selected by minimizing the prediction residual sum of
squares (PRESS). PRESS was calculated for successively
more complex models (including a larger number of
components), through a 10-fold cross-validation. Each of
the cross-validations used 90% of the data points for model
construction and 10% for validation, these subsets were
selected at random. The models for which PRESS was a
minimum were then selected as the best for each trait, and
for these the root mean squared error of prediction (RMSE)
and R2 reported are the averages of the cross-validation. We
also report the relative prediction error (%RMSE) as the
percentage of the trait value range represented by the final
model RMSE (as in Serbin et al. 2014). Data from BC was
used as an external test data set. Estimates of trait values
were derived for BC samples from the FT-NIR based PLSR
equations developed for the Ducke data, and the quality of
the predictions was assessed by the R2 and RMSEP of the
relationship between observed and predicted trait values.
In addition to the direct test of how well trait values can

be estimated by NIR-spectra, we asked if community level
trait values could be well estimated. Three community
descriptors were evaluated: the average trait value for the
site, which is equivalent to the community weighted mean
(CWM), the variance of this average, and the whole commu-
nity trait frequency distribution. The Komolgorov-Smirnov
test was used to determine how well the estimated trait fre-
quency distribution matched the observed one, t tests com-
pared means, and F tests compared variances of the
observed and predicted trait distributions.
The variable importance of projections (VIP), which

describes the contribution of each variable, in this case the
absorption at each wavelength, to the PLSR model, was used

to determine which regions of the spectra were more associ-
ated to the prediction of each trait. We also ran a matrix of
correlations among traits, to evaluate which of them may
have been good predictions due to correlations with others.
To determine how many samples (plant individuals) are

needed to build a NIR-based model for local use, i.e., to
estimate traits for all individuals of a site based on direct
measurements of a smaller sample, we used a structured
sub-sampling and ran the PLSR model for each sub-sample.
We sampled individuals non-randomly from the total pool,
simulating what could be the actual procedure in an ecologi-
cal study site. We took samples from all of our 17 plots,
starting with the first 10 individuals and increasing continu-
ously in amounts of 10 until the full sample. The results
from each run were used to build the sampling effort curve.

RESULTS

What traits are best predicted at the individual level?

We obtained moderate (r2 = 0.5–0.7) to good (r2 > 0.7,
error level <15%) predictions for most of our traits at the
individual level (Table 1, Fig. 1). Wood properties had, in
general, higher coefficients of determination and lower
errors than leaf properties. The key traits (SLA, LDMC,
WD, WDMC), used in most functional trait studies can be
reasonably well predicted (R2 = 0.69–0.78, RMSErel = 9–
11%) using the simple and crude approach of taking NIR
spectra from dry leaves and branches without any processing
of samples (Fig. 2). A fair estimation can be obtained for
xylem proportion (R2 = 0.61, RMSErel = 16%), bark den-
sity (R2 = 0.53, RMSErel = 17%) and BarkDMC (R2 =
0.61, RMSErel = 14%), even if bark represents only an aver-
age 36% (�13% [SD]) of the transversal area of the branch
samples. Leaf Density (LD) can also be moderately well esti-
mated, with around 15% of error (R2 = 0.54, RMSErel =
15%). Chlorophyll had the worst prediction (R2 = 0.30,
RMSErel = 16%), and the branch proportions of pith and
bark had the higher relative errors of prediction
(RMSErel > 20%).
The external validation with samples from Bosque da

Ciência achieved good predictions for WD, WDMC and
Branch Density (R2 from 0.64 to 0.77, RMSErel < 15%), a
reasonable prediction of SLA (R2 = 0.69, RMSErel = 19%)
and poor predictions (errors above 20%) for the other traits
(Table 1). For SLA, LD, and chlorophyll, the prediction
errors were concentrated in the larger trait values (Fig. 2;
Appendix S1).

How well are the community trait distributions described?

There was a good agreement between observed and pre-
dicted trait frequency distributions for the Ducke commu-
nity (Fig. 2; Appendix S1: Fig. S1); although for most traits,
the predicted distributions were more peaked around the
mean. None of the 14 traits’ observed and predicted fre-
quency distributions differed significantly in their mean, but
all differed significantly in their variance (Table 2). The
shape of the frequency distributions of SLA, LDMC,
branch density, WD, and WDMC did not differ significantly
between observed and predicted values.
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Applying the model developed at Ducke to BC; we see
that the means of the observed and predicted trait distribu-
tions of the BC community did not differ for 10 out of the
14 traits, and did not differ in variance for 5 out of 8 branch
traits (Table 2). The shape of the trait distributions also did
not differ significantly between observed and predicted val-
ues for 8 out of 14 traits (Table 2).

What is the mechanistic basis of predictions?

The variable importance of projections (VIP) shows that
the more important wavelengths for SLA prediction are
related to the bands where cellulose is strongly absorbed
(between 2,300 and 2,500 nm), and to protein (N-H bonds)
at around 1,000 and 2,180 nm (Appendix S1: Fig. S2). In
fact, the VIP profile of SLA looks very similar to the NIR
spectra of pure cellulose (Workman and Weyer 2007), with
an overlapping peak at around 2,180 nm, which corre-
sponds to protein absorption. The LDMC VIP profile has
important peaks in the same regions as SLA, but also has
stronger peaks than SLA at around 1,780 nm and 1,940 nm
(corresponding to cellulose) and around 2,060 nm (corre-
sponding to protein/nitrogen; Appendix S1: Fig. S2). Leaf
thickness and leaf density VIP profiles resemble the ones for
LDMC a lot, but with proportionally greater contributions
of wavelengths >2,400 nm, and lower wavelength contribu-
tions at around 1,780 m (Appendix S1: Fig. S2). For the best
predicted branch traits (WD, WDMC, BranchD), some
absorption peaks correspond to starch, oil, and proteins,
besides the important peaks for cellulose, but some regions
specifically associated with high absorption by cellulose did
not have the highest VIPs (Appendix S1: Fig. S2).

To evaluate how correlations among traits may have influ-
enced the capacity to predict them, we present a table of
their correlations (Appendix S1: Fig. S3). Among branch
traits, moderate correlations (0.50–0.64) were found between
WD and WDMC, between WDMC and bark density,
BarkDMC, and pith proportion. Stronger correlations
(0.77–0.83) were found between bark proportion and xylem
proportion and BarkDMC and bark density. Among leaf
traits, LD had moderate correlation with SLA and LDMC.

How many samples are needed for a local model?

The evaluation of sampling effort needed to build a
good local model indicated that around 400 individuals
are necessary to attain the lowest relative error level
(RMSErel) for most of the traits (Fig. 3). However, for
most traits, the improvement is a modest 2–5% when mov-
ing from 100 to more samples, and small samples of 100–
200 individuals spread across the range of trait values may
work well.

A summary of performance of NIR-based models at
different levels

Table 3 summarizes the performance of FT-NIR-based
models in predicting individual traits and community level
traits for the same site or across sites. The key traits (SLA,
LDMC, WD, WDMC) have good predictions at any level,
and also across sites. Other traits perform well at one or
another level, but are less consistent. Among these, LD,
BarkDMC, and xylem proportion can still be recovered rea-
sonably within the site where the model was developed.

TABLE 1. Performance of models to determine traits from Fourier-Transformed Near-Infrared Spectrometry (FT-NIR) spectra, given by
cross-validated coefficients of determination (R2) and root mean square errors of predictions (RMSE).

Organ and trait Units N Range Ncomp

Internal validation (Ducke) External validation (BC)

R2 RMSE
RMSErel

(%) R2 RMSE
RMSErel

(%)

Leaf
Specific leaf area (SLA) cm2/g 1064 6.01–25.34 25 0.78 1.48 11 0.69 2.77 19
Leaf dry matter content
(LDMC)

mg/g 1067 208.9–667.3 28 0.69 40.67 9 0.36 64.63 15

Leaf thickness (LT) mm 1081 0.09–0.349 22 0.50 0.03 16 0.06 0.05 25
Leaf density (LD) g/cm3 1071 0.148–0.698 28 0.54 0.06 15 0.32 0.32 10
Chlorophyll (Chl) lg/cm2 1089 32.46–102.3 18 0.30 10.45 16 0.37 13.2 20
Force to punch (FP) N/mm 1070 1.16–7.84 16 0.35 0.88 21 – – –

Branch
Branch density (BranchD) g/cm3 1056 0.18–0.83 31 0.78 0.05 9.9 0.72 0.07 13.3
Wood density (WD) g/cm3 1066 0.18–0.93 27 0.76 0.06 10.5 0.77 0.07 12.3
Wood dry matter content
(WDMC)

mg/g 1070 256.7–727.2 26 0.79 37.55 7.0 0.63 70.72 12.6

Bark density (BarkD) g/cm3 1062 0.16–0.75 30 0.53 0.07 16.9 0.34 0.11 23.9
Bark dry matter content
(BarkDMC)

mg/g 1086 148.7–630.3 28 0.61 54.44 13.7 0.43 82.57 19.1

Pith proportion (PithProp) 900 0–0.36 26 0.51 0.05 47.3 0.31 0.09 71.4
Xylem proportion (XylProp) 919 0.1–0.81 20 0.61 0.08 15.7 0.36 0.10 18.5
Bark proportion (Bark Prop) 936 0.1–0.78 20 0.56 0.08 21.7 0.15 0.12 35.9

Notes: RMSErel gives the percentage of the trait value range represented by the error in estimate. Ncomp gives the number of components
retained in the best model. Both internal validation (within the Ducke forest) and external validation (using the Ducke equations to predict
traits in Bosque de Ciência (BC) are given. FP was not measured for BC plants, so there is no external validation for this trait. Dashes indi-
cate missing data and analyses.
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DISCUSSION

We asked whether FT-NIR spectrometry can be exten-
sively used to estimate trait values for individuals and com-
munities, and if the models developed from NIR spectra for
one site can be used to estimate traits in another site. Our
results indicate that FT-NIR spectrometry has good poten-
tial as a tool for estimating the range of functional trait val-
ues of sites, and for predicting values for individuals for 8
out of the 14 traits that were evaluated. We also found that
good local models can be built using around 400 or fewer
individuals. This provides an unprecedented opportunity for
rapidly screening communities to find their trait values,
especially in remote sites where trait measurements are logis-
tically challenging because of the lack of electrical power
and a basic infrastructure. Samples from these sites, dried as
traditional botanical vouchers, can be read in the spectrome-
ter when back in the lab. Also, sites that are too difficult to
access, but have previously been collected for herbaria can
be included in functional analyses, thus unlocking the
potential of herbaria for trait-based ecology and global trait
screening efforts (e.g., Kattge et al. 2011).

The core traits can be estimated rapidly and accurately

Our results indicate that the core traits (SLA, WD, and
WDMC) reflecting the main global spectra in plant strate-
gies (Wright et al. 2004, Chave et al. 2009) can be estimated
accurately at the individual level, and should therefore pro-
vide better estimates of trait values at the individual level
rather than using a mean value for the species.
The model developed at our core site (Ducke) was good

for estimating individual trait values at a different site
(BC) for some of the wood traits (BranchD, WD, and
WDMC), and had acceptable prediction errors, but wasn’t
good for most leaf traits. For SLA, the R2 between

predicted and observed values was high (0.69), but the
mean relative error was 19%, because of a greater underes-
timation at higher observed values. This points to a need
for the inclusion of a bigger representation of extreme val-
ues over a wider geographic range to produce a generally
transferable model.

Community-level properties can be estimated with NIR-
spectrometry

Even if trait estimates at the individual level are not con-
sidered to be sufficiently accurate in some cases, we were
able to demonstrate that the means and distributions of
community traits can generally be estimated more accu-
rately. The trait frequency distributions of local sites allows
for the mapping of trait mean, variance, range, and other
statistics in large scale studies, or to feed global vegetation
models (Sakschewski et al. 2015), and large-scale estima-
tions of traits made possible by NIR could therefore
improve the use of traits in large-scale applications. Commu-
nity means and trait frequency distributions of most of the
traits were well estimated for the external site, indicating that
a good model developed for one site can be used to estimate
community level properties of others. FT-NIR scans of
vouchers from permanent plots can therefore provide a good
estimation of ecosystem and community level properties
without the need of new collections. This would also be a
significant improvement over using trait distributions
derived from trait databases (e.g., Kattge et al. 2011), which
still cover only a few intensively studied sites and capture
only a little of the global biodiversity (Jetz et al. 2016).

Chemical/structural basis of NIR–traits relationships

Our VIP analyses have shown that chemical properties
are important determinants of relationships between NIR
spectra and SLA, LDMC, LT, and LD. In particular, the
contents of cellulose and protein are associated with peaks
of absorbance and the general VIP profile resembles the
absorbance profile of cellulose (Workman and Weyer
2007). Cellulose contents can be directly related to all the
leaf properties measured here, as it is the major con-
stituent of cell walls, and wall thickness and the propor-
tion of cell walls to empty spaces provide much of the
anatomical basis for these traits (Poorter et al. 2009). Pro-
teins, starch, and structural carbohydrates such as cellu-
lose were shown to vary consistently across a range of
LMA values (Poorter et al. 2009), given their association
to growth strategies, i.e., fast growth is associated with
leaves with less cellulose and proportionally higher con-
tent of proteins and starch.
The same can be said of the branch traits with best pre-

dictions (WD, WDMC, BranchD, xylem proportion, and
BarkDMC). It was surprising, however, that lignin, an
important component of xylem, did not have an important
contribution to the association of wood traits with NIR
spectra. Given the young stage of development of wood in
terminal branches, as those used here, we may expect that
the content of lignin was smaller than that of cellulose,
and therefore its contribution to differentiation of traits
smaller.

FIG. 1. Accuracy of Fourier-Transformed Near-Infrared Spec-
trometry (FT-NIR)-based models to estimate values of 14 traits for
Reserva Ducke, showing the coefficient of determination (R2) and
relative error rate (%RMSE). Lines indicate thresholds for good
models: R2 > 0.70 and relative error rate (%RMSE) <15%. For trait
abbreviations, see Table 1.
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Despite these associations, there were also strong absor-
bance peaks that do not correspond to the known bands
of the major components of plant tissues evaluated here.
These may correspond to minor basic compounds or sec-
ondary compounds, but given the macro-structural prop-
erties evaluated here, most probably these peaks
correspond to internal or external structural properties of
materials. Surface rugosity affects light reflectance

(Cooper et al. 2011), and the arrangement of cells and
empty spaces affects the scattering of light within tissues,
and therefore reflectance (Slaton et al. 2001). Without
direct evaluation, we can only speculate, but our VIP
results suggest that a large fraction of the important
absorbance bands that predict the leaf and wood traits
evaluated here is given by structural rather than basic
chemical properties.

FIG. 2. Evaluation of performance of NIR-derived models in predicting trait values for individuals in the same site (left column), in a
different site (middle column), and to predict community trait distributions (right column). Left column shows the relationships between
trait values observed and estimated with the PLS-NIR model developed for samples from Reserva Ducke, N = 900–1,089 samples. The mid-
dle column show the relationships between trait values observed at Bosque da Ciência and trait values estimated with the PLS-NIR model
developed for samples from Reserva Ducke, N = 77–80 individuals. Lines show the expected 1:1 relationship between measured and esti-
mated values. The right column shows the distribution of trait values observed and estimated by the NIR-PLS model for Reserva Ducke,
N = 900–1,089 samples. For trait abbreviations and units, see Table 1.
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Some of the evaluated traits (the proportions of pith,
xylem, and bark, and even the bark density and dry matter
content), may have been relatively well recovered due to the
correlations to traits that have a more clear structural/chem-
ical link to NIR absorbance patterns. This is not unusual,
other studies of wood NIR were able to recover mechanical
properties due to indirect relationships with anatomical
properties (Tsuchikawa and Kobori 2015).

Methodological limitations and how to move forward

The poor estimates for some traits are probably related
to limitations in equipment and in measurement protocols,
and not necessarily to the incapacity of spectrometry to
recover them. Chlorophyll, for example, is well known to
have absorbance peaks in the visible spectra (400–700 nm),
which is not included in the spectral range read by our
equipment (1,000–2,500 nm). The anatomical proportions
of bark, xylem, and pith were determined using only two
radial measurements across the transversal branch cut, and
assuming a circle or ellipse to convert them to area, but
many plants have irregular formats, so the imprecision in
the original measurements may be the real cause of the lack
of good predictions.
Wood traits were better predicted than leaf traits, and this

may be related to the inclusion of the entire wood sample in
the reading, while only a spot (1 cm2) of the whole leaf can
be scanned with our equipment. Therefore, the readings rep-
resent all the properties of the wood sample, while they rep-
resent only a variable proportion of the leaf, depending on
leaf size and number of readings per leaf. Given that leaf
structure is not homogenous, a different amount of veins
may be included in each reading, affecting the absorption of
cellulose, and increasing the variance between readings of

t-

TABLE 2. Prediction accuracy of the observed trait frequency distributions of a site.

Organ and trait

Internal validation (Ducke) External validation (BC)

Mean Variance Distribution Mean Variance Distribution

Leaf
SLA 0.01 (0.98) 0.83 (<0.001) 0.05 (0.10) 0.52 (0.60) 0.44 (<0.001) 0.29 (<0.001)
LDMC 0.08 (0.93) 0.75 (<0.001) 0.06 (0.04) 1.90 (0.06) 0.47 (<0.001) 0.21 (0.05)
LT �0.14 (0.97) 0.57 (<0.001) 0.10 (<0.001) 1.27 (0.19) 0.54 (0.01) 0.31 (<0.001)
LD 0.05 (0.95) 0.62 (<0.001) 0.09 (<0.001) 0.07 (0.93) 0.36 (<0.001) 0.20 (0.08)
Chlorophyll 0.04 (0.95) 0.35 (<0.001) 0.16 (<0.001) 1.61 (0.10) 0.24 (<0.001) 0.34 (<0.001)

Branch
BranchD �0.06 (0.95) 0.86 (0.02) 0.06 (0.05) 0.79 (0.42) 1.00 (0.99) 0.13 (0.56)
WD 0.04 (0.97) 0.83 (0.003) 0.05 (0.16) 0.44 (0.65) 0.75 (0.22) 0.13 (0.53)
WDMC 0.06 (0.97) 0.82 (0.001) 0.06 (0.06) �4.3 (<0.001) 0.93 (0.75) 0.42 (<0.001)
BarkD 0.06 (0.95) 0.65 (<0.001) 0.10 (<0.001) �1.48 (0.14) 0.75 (0.22) 0.19 (0.14)
BarkDMC �0.14 (0.88) 0.70 (<0.001) 0.08 (<0.001) �2.37 (0.02) 1.03 (0.90) 0.18 (0.18)
PithProp �0.08 (0.94) 0.61 (<0.001) 0.13 (<0.001) 1.28 (0.21) 0.32 (<0.001) 0.22 (0.05)
XylProp �0.03 (0.98) 0.65 (<0.001) 0.10 (<0.001) �1.16 (0.24) 0.62 (0.04) 0.15 (0.37)
BarkProp 0.13 (0.89) 0.60 (<0.001) 0.14 (<0.001) 0.60 (0.54) 0.33 (<0.001) 0.26 (0.01)

Notes: We tested whether the observed and predicted community values differ in their means (two-sample t test), variance (variance-ratio
test) and whole distribution fit (Komolgorov-Smirnov test). Values are the test statistics and P values (in parentheses). Values in boldface
type indicate comparisons that do not differ significantly between observed and estimated traits. Number of samples and units of measure-
ment as in Table 1. Both internal validation (within the Ducke forest) and external validation (using the Ducke equations to predict traits in
Bosque de Ciência, BC) are given.

FIG. 3. Evaluation of the effort, given in number of individuals,
to reach the lowest level of relative error (RMSErel) for trait values.
In the upper panel are leaf traits: open squares, SLA; filled squares,
LDMC; stars, LD; inverted triangle, LT. In the bottom panel are
branch traits: filled dots, WD; open dots, WDMC; triangles, Branch
Density; crosses, BarkDMC; diamonds, Xylem Proportion.
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he same plant. Higher variance in the estimation of leaf
traits may also be linked to the presence of fungi and bacte-
ria, not detected by visual inspection (Pinto et al. 2000),
which may affect leaf properties (Friesen et al. 2011).
More precise estimations of trait values can be obtained

with more complex and time-demanding protocols than
used here, such as transforming leaves or wood into powder
(Serbin et al. 2014). The protocol suggested here is a simple
way of obtaining trait estimations with the minimum pro-
cessing requirements, instead of the time-consuming process
of turning samples into powder. It may not even be possible
to take material from herbaria for destructive processing, in
which case the analysis of entire leaves is the only alterna-
tive. The branch sample needed for estimation of wood
properties is very small (0.5 cm) and it should not be a prob-
lem to obtain sufficient material from herbaria samples. It
should be remembered that the particle size distribution of
ground samples has a large effect on reflectance (Foley et al.
1998), and ensuring that ground samples are homogeneous
may create another difficulty for expediting analyses and
ensuring comparability among studies.
Some improvements on the protocols used here should

also provide better results, for example, we did not attempt
to identify the exact spot where the leaf thickness was mea-
sured in order to use the same spot for the NIR reading.
This could reduce the noise and also improve the leaf den-
sity model, which depends on leaf thickness values. Using a
mean based on more readings per leaf, including the

gradient of venation size, or spectrometers with a larger scan
area may also provide better estimates of leaf traits, and
equipment that covers the light spectra from visible to infra-
red should help decrease other potential sources of error.
We focused on dry materials rather than fresh leaves or

wood, to provide the basis of trait estimations from botani-
cal collections. In the future, a more general development of
spectrometry derived traits will be equations to make dry
and fresh measurements comparable, by the removal of the
water absorption profile.

Spectrometry as an alternative to direct measurements

The estimation of traits by NIR spectrometry is faster
and cheaper (not considering the cost of equipment pur-
chase) than by direct measurement. The cost of the equip-
ment will quickly pay for itself. The time necessary for
processing and measuring one sample for all 14 leaf and
wood traits by well-trained people was around 40 min (or
approximately 2.7 min per measurement, not counting the
time required for drying the samples), while the measure-
ment of leaf and wood spectra for one sample takes around
1.5 min. This makes it possible to obtain trait values for a
larger number of individuals and traits than are normally
obtained during typical trait studies.
We envision that FT-NIR may provide an easy, fast, and

cheap way to estimate individual traits and thus will
advance our knowledge of community and ecosystem func-
tioning. The model developed in this study is still not ade-
quate for widespread application to Amazonia, because it
used samples from a restricted range of environments, but
does demonstrate that such a model is possible and this will
be the next step in our study. Chemical traits can also be
added to the list of traits evaluated here, so from a single
NIR reading a large suite of morphological and chemical
traits can be derived, and if a library of species identities is
built, also these can be obtained or checked. This would
free up time for the measurement of the more difficult,
“hard” traits that are more time consuming to measure and
have typically been measured only for a few species or indi-
viduals.
We conclude that NIR based models can make it possible

to create extensive databases of traits of a scale that was
hitherto impossible. It also unlocks herbarium materials for
trait values estimation, thus expanding our knowledge of
community and ecosystem functioning from local to global
scales.
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TABLE 3. Summary of the performance of NIR spectrometry in
predicting trait values for individual plants and trait frequency
distributions of communities.

Organ and trait

Individual Community

Within
site

Across
sites

Within
site

Across
sites

Leaf
SLA Yes Yes† Yes
LDMC Yes Yes† Yes Yes
LT
LD Yes
Chlorophyll Yes
FP

Branch
BranchD Yes Yes Yes Yes
WD Yes Yes Yes Yes
WDMC Yes Yes Yes
BarkD
BarkDMC Yes† Yes
PithProp Yes
XylProp Yes† Yes
BarkProp

Notes: Performance at the individual level was considered good
(Yes) when model fit (R2) between observed and predicted values
was above 0.7 and prediction errors were less than 15%. Yes†
denotes cases when the general fit was smaller than 0.7, but error
levels are below 15%. At the community level, performance was con-
sidered good when the shape and mean did not differ between
observed and predicted trait distributions. Within sites indicates
evaluations using NIR-based models developed for a site to predict
traits for the same site, while across sites indicates evaluations using
the model developed at one site to predict traits of another site.
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