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Abstract
Tropical non-self-supporting plants such as hemiepiphytes and nomadic vines are 
model organisms for disentangling biotic and environmental correlates which in-
fluence their occupancy patterns. We inventoried >4000 individuals from >3000 
trees ranging from 1 to 200 cm diameter at breast height (DBH) in a northeastern 
Amazonian upland forest to address how tree (phorophyte) size, edaphic factors and 
recruitment strategy influence occupancy, diversity, and compositional patterns of 
two vascular non-self-supporting plant functional groups. Hemiepiphytes germinate 
on phorophytes prior to establishing soil connections, whereas nomadic vines initi-
ate their life cycle on the forest floor and subsequently climb phorophytes for crown 
access, abandoning roots replaced by adventitious connections which may reach the 
ground. Our results show that larger phorophytes (≥30 cm DBH) supported more 
species for both hemiepiphytes and nomadic vines. However, nomadic vines' occu-
pancy probabilities saturated faster at smaller stem sizes than that of hemiepiphytes 
indicating differential preferences for stem sizes among the two functional groups. 
For smaller phorophytes (<30 cm DBH), soil correlations were stronger with nomadic 
vines than hemiepiphytes, whereas no significant differences were detected among 
functional groups in relation to edaphic factors for larger (≥ 30 cm DBH) ones. Finally, 
a small core group of species showed disproportionately greater abundances among 
large phorophytes suggesting that autogenic processes differentially promote sur-
vivability. Such interactions among phorophyte size and edaphic factors may result 
from the contrasting ecological requirements of hemiepiphytes and nomadic vines at 
the recruitment stage, demonstrating the necessity for elaborate demographic-based 
studies to better understand these complex plant–plant interactions.

Abstract in Spanish is available with online material
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1  |  INTRODUC TION

Plants which use other plants (phorophytes) for support may be 
classified into different functional groups according to their recruit-
ment substrates, growth pattern and habitat preferences as either 
holoepiphytes, hemiepiphytes, or nomadic vines (Moffett,  2000; 
Zotz, 2016). Although a few epiphytic taxa may fit diffusely, a vast 
majority of taxa is classified, based on life history characteristics, into 
one of these three groupings. One important distinction between he-
miepiphytes and nomadic vines compared to holoepiphytes is that 
members of the first two functional groups rely on shoot and/or ad-
ventitious root contact with the soil during growth (Zotz, 2013, 2016; 
Zotz et al., 2020). As a result, at some point in their growth patterns 
both hemiepiphytes and nomadic vines typically have contact with, 
and thus are influenced by, both phorophyte and soil. By contrast, 
nomadic vines start their life cycle in soil and only occasionally in sus-
pended soil (Moffett, 2000), and it climbs phorophytes, loses roots, 
and potentially reconnects to the ground through adventitious roots 
(Caleño-Ruíz et al., 2018; Moffett, 2000). Hemiepiphytes may be dis-
tinguished from nomadic vines by the fact that germination occurs 
on the phorophyte itself, with their adventitious roots descending 
groundward only following successful establishment (Zotz, 2013).

Such contrasting demographic strategies are subject to dif-
ferent ecological challenges at the most vulnerable demographic 
phase: seedling recruitment (Mondragón et al., 2015; Silvertown & 
Charlesworth, 2009). Different life history strategies should indeed 
result in differential phorophyte and microsite preferences; how-
ever, such a prediction has rarely been tested, especially in tropical 
forests (Zotz, 2016). In summary, hemiepiphyte germination success 
is putatively influenced by phorophyte plant characteristics such as 
phorophyte bark quality, micro-architectural features (e.g., knot-
holes and bifurcations) (Laman, 1995; Tay et al., 2022; Zotz, Almeda, 
et al., 2021), and that of nomadic vine is limited by various factors 
associated with the understory such as solar radiation, leaf litter, and 
soil quality (Cockle, 2001). In light of these demographic contrasts, 
we predict that nomadic vines' occupancy is weakly related to pho-
rophyte size (Orihuela & Waechter, 2010), and hemiepiphytes, due 
to their above-ground germination, should be favored on larger pho-
rophytes which support conditions for the establishment of above-
ground plants (Wagner et al., 2015).

Both hemiepiphytes and nomadic vines are important compo-
nents of tropical lowland, sub-montane and cloud forests, as well 
as tropical savannas (Putz & Holbrook, 1986). In combination, these 
two functional groups represent more than two-thirds of all vascular 
non-self-supporting plant species across the Amazon Basin (Boelter 
et al., 2014; Irume et al., 2013; Obermüller et al., 2012). Furthermore, 
they provide shelter and food for insects and vertebrates (Gibernau 
et al., 2007; Madison, 1979; Vieira & Izar, 1999), stabilize soil mois-
ture and nutrient levels (Clark et al., 1998; Stanton et al., 2014), and 
serve as bioindicators (Triana-Moreno et al., 2003).

Disentangling the predictive factors of vascular epiphyte occur-
rences at individual-, phorophyte-, local- (100 m2), and/or regional- 
(>10 km) scales is a challenge particularly in forests of low vascular 

epiphyte densities (Burns & Zotz,  2010). Studies in the Amazon 
Basin have illustrated the importance of soil attributes in driving 
epiphyte composition (Boelter et al., 2014; Quaresma et al., 2017). 
Indeed, geographic variation in soil fertility and organic carbon have 
been documented across Amazonia (Quesada et al., 2020; Williams 
et al., 2002). Likewise, 60% of the variation in Amazonian tree bio-
mass and mortality rates were explained by soil clay concentration 
and cation exchange capacity (CEC) (Toledo et al., 2017). Specifically, 
increasing clay concentration predicted lower tree mortality, higher 
tree biomass, longer-lived, and larger-sized phorophytes: all of which 
are positively correlated with epiphyte presence (Flores-Palacios & 
Garcia-Franco, 2006; Woods, 2017).

Soil phosphorus (P) is a limiting nutrient in tropical weathered 
soils and has a complex influence on epiphytes. Boelter et al. (2014) 
found a strong effect of soil P on nomadic vines in an old growth for-
est in Central Amazonia, with an increase of richness and abundance 
associated with higher soil P concentration. Soil P also influenced 
both directly and indirectly, through tree basal area, the abundance 
and richness of epiphytes in a tropical forest in Southern China 
(Ding et al., 2016). Although the influence of P on canopy epiphytes 
is far from clear, experimental evidence indicates that P fertiliza-
tion of bark in the crown, and, independently, on soils in vicinity of 
focal trees increased the abundance and richness of holoepiphytes 
(Benner & Vitousek, 2007).

Phorophyte size is also an important predictor of epiphyte spe-
cies richness as larger phorophytes provide larger surface areas (e.g., 
target effect sensu Lomolino, 1990), greater microhabitat variation 
through ontogenetic changes accompanying tree growth (Woods 
et al.,  2015), and more temporally stable substrates thus increas-
ing (re)colonization probabilities (Taylor & Burns,  2015). Increases 
in epiphyte species richness in relation to phorophyte stature are 
common (Flores-Palacios & Garcia-Franco, 2006; Zhao et al., 2015; 
Zotz & Vollrath,  2003). Likewise, primary forests composed of 
larger phorophytes tend to harbor more epiphytic species than 
smaller ones (Barthlott et al.,  2001; Werner & Gradstein,  2009). 
However, studies at sites of high epiphyte density report weak (Zotz 
& Schultz, 2008), and even negative (Harrison et al., 2003) correla-
tions with phorophyte size. Recently, a comparative study among 
two lowland Amazonian habitats of low epiphytic diversity, white- 
(varzea) and black- (igapó) water floodplain forests, reported con-
trasting richness-phorophyte size relationships among ecologically 
similar habitat types (Quaresma et al., 2020). Despite such disparity 
among relationships of phorophyte size and epiphyte community 
attributes, no study has yet attempted to disentangle phorophyte 
size from edaphic factors on occupancy, richness, and composition 
of non-self-supporting plant functional groups with contrasting eco-
logical strategies.

Lowland northeastern Amazonia harbors the greatest con-
centration of large trees (Gorgens et al., 2021), making the Amapá 
National Forest (Figure  1) an ideal setting for evaluating determi-
nants of non-self-supporting plant community structure. In light 
of the contrasting ecological requirements of hemiepiphytes and 
nomadic vines (Benner & Vitousek, 2007; Boelter et al., 2014), we 
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aimed to test the following predictions: (a) hemiepiphytes occur-
rence frequencies, when compared to nomadic vines, are skewed 
toward larger-stemmed phorophytes (>30 cm DBH) as hemiepi-
phytes recruitment and subsequent species accumulation are higher 
on larger phorophytes due to greater microhabitat heterogeneity 
(Woods et al., 2015), and longevity (Petter et al., 2021); (b) phospho-
rus, due to its rarity in the highly weathered soils, will best predict 
changes in abundance and richness of nomadic vines due to the im-
portance of soil fertility at the vulnerable germination stage. To the 
contrary, we predict that hemiepiphytes are positively correlated 
with increased soil clay concentration as this edaphic characteristic 
contributes to phorophyte longevity and size (Toledo et al., 2017); 
and (c) compositional heterogeneity decreases with phorophyte size.

2  |  METHODS

2.1  |  Study area

In 2006, the Brazilian Program for Biodiversity Research (PPBio) 
installed a Long-Term Ecological Research (LTER) site composed by 
a grid trail system in 25 km2 of terra firme (upland, non-seasonally 

flooded) forest of the Amapá National Forest (ANF) in the extreme 
northeastern corner of the Brazilian Amazon near the Guiana Shield 
in Amapá state (0°55′29”N, 51°35′45”W) (Figure 1).

The regional climate is classified by Köppen-Geiger as Equatorial 
monsoon (Kottek et al., 2006). Mean annual temperature varies be-
tween 22°C and 32°C, and average annual rainfall is ca. 2284 mm with 
a rainy season from December to July, and precipitation often ex-
ceeding 60 mm per month even in the driest months (ICMBio, 2014). 
Altitude varies between 100 and 200 m a.s.l with slopes attaining 
7% inclination. Ultisols and oxisols are the predominant soil types in 
ANF, with clay concentration varying from 2% to 48%, and sand from 
35% to 82%, average CEC around 10 cmol kg−1, and low available 
phosphorus at 2 mg dm−3 (PPBio, unpublished data): typical of the low 
soil fertility of Guiana Shield (Quesada et al., 2011). Canopy trees 
typically reach heights of 25–35 m with frequent larger trees reach-
ing 50 m in height (ICMBio, 2014). The most abundant tree families 
in the area are Lecythidaceae, Fabaceae, Sapotaceae, Burseraceae, 
and Annonaceae, and the dominant species are Vouacapoua ameri-
cana Aubl. (Fabaceae), Eschweilera ovata (Cambess.) Miers, E. coria-
cea (DC.) S.A. Mori, Lecythis chartacea (O. Berg) Eyma (all three are 
Lecythidaceae), and Eugenia cupulata Amshoff (Myrtaceae) (JJT, un-
published data).

F I G U R E  1  Map of the study area showing 11 plots (red dots) distributed on the research trail system (5 × 5 km) in the south part of the 
Amapá National Forest (ANF) at Amapá state, Brazil.

South America

Brazil

Suriname
French

   Guiana
Atlantic
   Ocean

Pará

Amapá

Amapá
National
Forest

2°S

1°S

0°

1°N

2°N

3°N

4°N

55°W 54°W 53°W 52°W 51°W 50°W

��������

��������

����

��

PPBio´s trail system

3 km

N

0.94°N

0.96°N

0.98°N

1°N

1.02°N

51.68°W 51.66°W 51.64°W 51.62°W 51.6°W

 17447429, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/btp.13191 by IN

PA
 - Instituto N

acional de Pesquisas da A
m

azonia, W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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2.2  |  Field sampling

The survey was conducted in 11 out of the 30 previously established 
plots in the ANF according to guidelines established by the Rapid 
Assessment for LTER (RAPELD) methods (Magnusson et al., 2005). 
The 11 plots (250 m × 20 m) were divided in 25 sections (10 m × 20 m), 
out of which 10 from each plot were selected for this study (110 
sections). We selected one phorophyte ≥30 cm DBH from each sec-
tion in the following form: Firstly, we marked all phorophytes ≥30 cm 
DBH and subsequently chose the third phorophyte listed for each 
section. The selected phorophyte (≥30 cm DBH) was used as the 
center point for the establishment of circular subplots of 6 m radius 
(113 m2).

From March to September 2017, all non-self-supporting plants 
on phorophytes of DBH ≥1 cm (within the circular subplots) were 
surveyed from the ground using binoculars in combination with 
crown access using traditional tree climbing methods, and single rope 
climbing techniques (Anderson et al., 2015). We counted all plant in-
dividuals on the phorophytes to estimate abundance, assuming as an 
individual a leaf bundle for ferns and Gesneriaceae, and a group of 
stems for Araceae, Clusiaceae, Cyclanthaceae, Marcgraviaceae, and 
Orchidaceae. An individual was defined as an entity which was en-
tire physically separated from other individuals of the same species 
or by individuals of other species.

Observations were made as to the habit, vertical position, and 
presence/absence of soil connections to evaluate whether individu-
als were connected to the soil through adventitious roots, aerial root 
feeders, and/or stem basal connections (Moffett, 2000; Zotz, 2013). 
When the plant was connected to the soil or showed any vestigial 
sign of rupture, it was classified as a nomadic vine. When no soil 
connection by root or stem was observed, information from the lit-
erature, on previously reported life history traits, was used to sup-
plement our classifications (Massa,  1996; Zotz et al.,  2020; Zotz, 
Weigelt, et al., 2021). Field identifications were made using regional 
guides (e.g., Ribeiro et al., 2002; Zuquim et al., 2008), and botanical 
vouchers were collected for comparison with material deposited in 
regional herbaria: Amapaense herbarium (HAMAB) at the Instituto 
de Pesquisas Científicas e Tecnológicas do Amapá, and the João Murça 
Pires Herbarium (MG) at the Museu Paraense Emílio Goeldi in Belém 
do Pará, Brazil. Circumscriptions of fern taxonomy followed PPG I 
(Pteridophyte Phylogeny Group,  2016) and angiosperms followed 
APG IV (Angiosperm Phylogeny Group, 2016).

Superficial (0-5 cm deep) soil samples were collected every 50 m 
(first sample at 0 m) along the plot's 250 m long central line with the 6 
total samples pooled to make a composite for each plot. Soil analyses 
were conducted at the soil laboratory of the Brazilian Agricultural 
Research Corporation (EMBRAPA) of Amapá to be analyzed fol-
lowing protocols established by EMBRAPA (1997): Clay concentra-
tion (soil particles <0.002 mm) was determined by the hydrometer 
method; the available phosphorus was estimated by the ammonium 
molybdate-ascorbic acid method, which produces a blue color com-
plex read photometrically at 660 nm; K+ and Na+ were extracted by 
1-Molar Mehlich solution and measured by atomic absorption; Ca2+ 

and Mg2+ were extracted by 1-Normal KCL solution and also mea-
sured by atomic absorption; K+, Na+, Ca2+, and Mg2+ were summed 
to obtain total base cation (BC).

2.3  |  Data analysis

Species richness for hemiepiphytes and nomadic vines was esti-
mated using the Chao index (Chao, 1984). Abundance and richness 
of hemiepiphytes and nomadic vines were related to phorophyte size 
(DBH) using generalized linear model (GLM; glm function), assuming 
a Poisson distribution for abundance and Gaussian distribution for 
richness. To estimate the probability of occurrence of hemiepiphytes 
and nomadic vines in relation to DBH, we used logistic regression 
with a maximum likelihood estimator. The presence/absence of non-
self-supporting plants was related to DBH and functional group (he-
miepiphytes and nomadic vines) and the interaction between DBH 
and functional group.

The effect of soil P, BC, and percentage of clay on species abun-
dance and richness (Chao index) was tested also using GLM (abun-
dance/richness  =  soil + functional group + functional group × soil) 
assuming a Poisson distribution for abundance and Gaussian dis-
tribution for richness data. Models were run for small- (<30 cm 
DBH), and large- (≥30 cm DBH) tree size classes with subplot as 
sample unit.

The influence of phorophyte size on functional group attributes 
(beta diversity, heterogeneity and composition) was analyzed at plot 
level. Firstly, data were pooled into eight phorophyte size classes 
of 10  cm (DBH: ≥1— < 10, …, ≥70 cm), and average DBH for each 
size class was used as predictor. The influence of forest structure 
on group attributes was analyzed at the subplot level. This format 
was also used to estimate tree density (N) and average DBH for size 
class. A scaling function (lnN = a + b lnDBH; with ln at base 10) was 
fitted and the slope – b (hereafter named scaling exponent) was ex-
tracted to represent forest structure. This is a numerical continuous 
variable, for which high negative values indicate higher density of 
small trees and lesser negative values indicate an increase in density 
of large trees.

We analyzed beta diversity by calculating turnover rate as 
Simpson dissimilarity index (βsim) (Baselga, 2010), and as Bray–Curtis 
dissimilarity index (βBC.BAL) (Baselga,  2017) for presence/absence 
and abundance data (respectively), at plot and subplot spatial scales. 
Heterogeneity was estimated by calculating dissimilarity matrices 
with the indices versions of Sorensen (βsor) and Bray–Curtis (βBC) 
for multiple sites (Baselga,  2010, 2017), with principal coordinate 
analysis (PCoA) subsequently applied on these matrices. The axes of 
PCoA were used to calculate average Euclidean distances between 
objects and group centroids as a measure of group heterogeneity. 
PCoA was also run using Bray–Curtis dissimilarity matrices, and the 
first axis was used to represent species composition.

Analysis of covariance (ANCOVA) was used to test for the influ-
ence of phorophyte size (averaged DBH per size class), forest struc-
ture (scaling exponent), and functional group (hemiepiphytes and 
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nomadic vines) on turnover rates, heterogeneity, and compositional 
variation of non-self-supporting plants. Functional group was treated 
as a factor in ANCOVA, and average DBH and the scaling exponent 
were used as covariables in separate models: community prop-
erty  =  DBH or scaling exponent + functional group + DBH × func-
tional group.

Additionally, the influence of average DBH and the scaling expo-
nent on composition of hemiepiphytes and nomadic vines was tested 
by permutational multivariate analysis of variance (PERMANOVA) 
using Bray–Curtis as dissimilarity metrics (Magurran,  2004). The 
adonis2 function available in the vegan package, version 2.5–7 
(Oksanen et al.,  2020), was used to run PERMANOVA. This func-
tion supports the use of continuous explanatory variables, running a 
regression to analyze the relationship between species matrix cen-
troids and the continuous independent variables.

Vegan was also used to estimate alpha diversity and to calculate 
distances from centroids in community data. The ape package ver-
sion 5.0 (Paradis & Schliep, 2019) was used to run PCoA, and the 
Betapart package version 1.4–1 (Baselga,  2017) was used for par-
titioning of beta diversity. All analyses were performed using the R 
platform version 3.4.2. (R Core Team, 2017).

3  |  RESULTS

3.1  |  Phorophyte stem size and community 
attributes

A total of 3412 phorophytes (1–200 cm DBH) were inventoried, and 
nomadic vines were vastly more abundant and with greater species 
richness (4226 individuals and 36 species) than hemiepiphytes (687 
individuals and 11 species; Table S1). We found a total of 11 gen-
era (three of hemiepiphyte species and nine of nomadic vine spe-
cies) and seven families (three of hemiepiphyte species and five of 
nomadic vine species). Abundance and species richness increased 
significantly with phorophyte size for both nomadic vines (GLM: 
slope–babundance = 0.01; slope–brichness = 0.03, p < .001) and hemiepi-
phytes (GLM: babundance = 0.02 and brichness = 0.01, p < .001), although 
with low predictability (≤11%) (Figure S1).

In support of the first prediction, occurrence probabilities reached 
asymptote on significantly larger-sized phorophytes for hemiepiphytes 
(DBH >100 cm) when compared to nomadic vines (DBH >40 cm) 
demonstrating a significant shift in distributional patterns among the 
two functional groups in relation to phorophyte size (Figure 2). Nomadic 
vines also had a significantly higher occurrence probability (48%) on 
smaller (DBH <10 cm) trees when compared to hemiepiphytes (7%). 
Overall, nomadic vine abundances were greater than those of hemiep-
iphytes (GLM: intercept-afunctional group >1.3, p < .005) for all phorophyte 
sizes. Nomadic vine species richness was greater than that of hemiep-
iphyte in smaller-stemmed phorophytes (GLM: afunctional group  >8, 
p < .001); however, no differences were detected among larger ones 
(afunctional group <1.2, p > .05) unless when clay was included as a co-
variable (afunctional group = 9.6, p < .005) (Figure 4; Table S2).

3.2  |  Interactions among phorophyte size, edaphic 
correlates, and functional groups

Abundance was positively related to soil P but negatively related to 
BC and clay (Table 1 and Table S2). Specifically, for small-stemmed 
phorophytes, variation in hemiepiphyte abundance was not cor-
related with soil P, whereas nomadic vine abundance varied sig-
nificantly in relation to all soil variables. In support of the second 
prediction, soil P was significantly and positively correlated with 
nomadic vine abundance (Figure 3a) (ANCOVA: binteraction = 0.251; 
p =  .006) for the small stem size class, whereas both nomadic vine 
and hemiepiphyte abundances declined in relation to clay (slope-
b = −0.04; p =  .001) and BC (b = −3.039; p ≤ .001) concentrations 
(Figure 3b,c). For larger phorophytes, only soil P was positively cor-
related with variation in abundance of both hemiepiphytes and no-
madic vines (b = 0.373; p =  .001 for both groups) (Figure 3d), but 
BC, and clay concentration was not (Table 1, Figure 3e,f). Overall, 
nomadic vine abundances were more strongly correlated with the 
measured soil properties than those of hemiepiphytes, and this in-
fluence was most pronounced among smaller phorophytes (Table 1).

Richness was related only to BC and clay on small-stemmed pho-
rophytes (Table 1 and Table S2). In contrast to the second predic-
tion, variation in soil P was not correlated with species richness for 
either hemiepiphytes and nomadic vines (Figure 4a,d), and nomadic 
vine species richness declined significantly on smaller phorophytes 
(binteraction = −18.029, p = .004) in relation to increasing BC (Table 1, 
Figure 4b,e). Increased clay concentration, however, was also neg-
atively associated with nomadic vine species richness but only for 
small phorophytes (binteraction = −0.215, p = .02) (Figure 4c). No mea-
sured soil variables were significantly correlated with variation in 
hemiepiphyte species richness (Table 1).

3.3  |  Compositional trends

For individual phorophytes, compositional heterogeneity decreased 
significantly (Figure  5c; ANCOVA: slope-b  =  −0.002, p  =  .01) for 
both functional groups in relation to phorophyte size (Table 1 and 
Table  S3). Likewise, spatial turnover (e.g., beta diversity) margin-
ally decreased among large phorophytes only for nomadic vines 
(Figure  5a; b  =  −0.003, p  =  .08) independent of whether abun-
dance or presence/absence data were analyzed (Table  S3). At the 
subplot scale, neither turnover nor heterogeneity were correlated 
(b = −0.096, p = .5, and b = −0.10, p = .3) with either group in relation 
to increased densities of larger than average stem sizes (Figure 5b,d). 
Variation in species composition for both nomadic vines and hemie-
piphytes differed significantly with phorophyte size at the individ-
ual- (binteraction  =  0.007, p < .001), and subplot- (binteraction  =  −0.70, 
p  =  .003) scales (Figure  5e,f) independent of whether abundance 
(Figures  S2a,b and S3a,b) or presence/absence (Figures  S2c,d and 
S3c,d) data were analyzed (Table 1 and Table S3).

A core group of species, those which contributed to >1% abun-
dance for each functional group, were represented by 14 nomadic 
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    |  373CLEMENTE-­ARENAS et al.

F I G U R E  2  Probability of occurrence 
for hemiepiphytes and nomadic vines 
related to phorophyte size (DBH). The 
effect of DBH, functional group, and 
interactions on presence/absence of 
hemiepiphytes and nomadic vines was 
tested using the following equation: 
Ln(P(FP)/1-P(FP)) = a + b1 DBH + b2 
functional group + b3 DBH × functional 
group, where the left-hand side of 
the equation is the odds ratio of 
probabilities of occurrence P(FP), 
which were calculated by reframing 
the equation to the logistic function: 
P(FP) = ea + b

1 DBH + b
2 functional group + b

3 
DBH × functional group / 1 + ea + b

1 DBH + b
2 

functional group + b
3 DBH × functional group, where 

e is the base (~2.72) of the natural 
logarithm. All estimated terms (ln(P(FP)/1-
P(FP)) = −3.22 + 0.064 DBH + 2.2 
functional group +0.036 DBH × functional 
group) were significant (p < .001).
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TA B L E  1  Summary of relations of functional group (hemiepiphytes—H and nomadic vines—NV) attributes with soil and forest 
properties: Abundance and richness (Chao Index) are related to soil phosphorus (P), total base cation (BC), and clay concentration for small 
(1 ≤ DBH < 30 cm) and large (DBH ≥30 cm) phorophytes; turnover (βBray-curtis and βSimpson), heterogeneity (distance from PCoA centroid), 
and composition (PCoA Axis 1) are related to mean phorophyte DBH and forest structure (scaling exponent) calculated on abundance and 
presence/absence data. Detailed results of these analyzes are in Tables S2 and S3

Phorophyte size

Predictors Dependent variables

Soil 
properties

Abundance Richness

H NV H NV

Small P ns + ns ns

BC − − ns −

Clay − − ns −

Large P + + ns ns

BC ns ns ns ns

Clay ns ns ns ns

Data type
Forest 
properties

Turnover Heterogeneity Composition

H NV H NV H NV

Abundance Mean DBH ns ns − − ns +

Structure ns ns ns ns ns −

Pres./abs. Mean DBH ns ns − − ns +

Structure ns ns ns ns ns +

Note: ns: non-significant relation; +: positive significant relation; −: negative significant relation.
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vine and 9 hemiepiphyte species (Figures  6a and S4a). Only two 
species (14%) of core nomadic vines (Philodendron guianense Croat 
& Grayum and P. cremersii Croat & Grayum) were highly abundant 
(>20% of total individuals) on larger phorophytes, compared to more 
than half of core hemiepiphyte (Marcgravia sp. 1, P. linnaei Kunth, P. 
melinonii Brongn. ex Regel, P. megalophyllum Schott, P. solimoesense 
A. C. Sm., and P. callosum K. Krause). Furthermore, half of nomadic 
vines and two-thirds of hemiepiphytes were equitably distributed 
across the forest structure gradient in the studied subplots. The re-
maining species exhibited a bimodal distribution at high densities for 
both small and large phorophytes (Figure 6b and Figure S4b).

We detected significant compositional changes (PERMANOVA: 
F > 7.50, p  =  .001) for hemiepiphytes and nomadic vines along a 
phorophyte size gradient, although variation was weakly explained 
(R2 < 0.15) (Table S4). Forest structure was related to species compo-
sition of nomadic vines (F > 4, p = .001) and hemiepiphytes (F = 2.6, 
p = .05), but also with low predictability (R2 < 0.07) (Table S4).

4  |  DISCUSSION

4.1  |  Indirect effects: Interactions among 
phorophyte stem size and soils

This study showed that meso-scale distributional patterns of two 
functional groups of non-self-supporting plants (hemiepiphytes 
and nomadic vines) with contrasting ecological strategies have dis-
tinct relations with phorophyte size and soil properties in an old 
growth Amazonian forest. Phosphorus (a rare soil nutrient in low-
land Amazonia) showed stronger correlations with nomadic vine 
abundances, than with hemiepiphytes. Both correlative (Boelter 
et al.,  2014; Ding et al.,  2016) as well as experimental (Benner & 
Vitousek, 2007) studies indeed point to phosphorus (P) as a strong 
predictor of local abundance and richness among epiphytes. For ex-
ample, Benner and Vitousek (2007) showed that canopy P availabil-
ity increased with soil P fertilization and possibly, P-rich phorophyte 

F I G U R E  3  Correlations of soil fertility [(a and d) phosphorus and (b and e) total base cation], and (c and f) soil texture (percent clay) with 
hemiepiphyte and nomadic vine abundances as distributed in two phorophyte size classes [(a–c) small: Trees with 1 ≤ DBH < 30 cm; and (d–f) 
large: Trees ≥30 cm DBH]. Abundances were pooled by subplot (n = 110). Generalized linear models (GLM) using Poisson distribution were 
used to test for the effects of soil, functional group, and their interaction (abundance = soil + functional group + soil × functional group) on 
abundance. Confidence intervals were estimated through bootstrapping. GLM results are presented in Table S2.
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tissues release P into stemflow and throughfall, increase P-supply 
for epiphytes. Extractable soil P is considered an important indicator 
of its availability for plants (Quesada et al., 2010). In the weathered 
and acidic clayey tropical soils, phosphorus is mostly bound to alu-
minum (Al) and iron oxides, thus limiting its extractability by plants 
(Sollins et al., 1988). In ANF, Al was positively correlated with clay 
(r  =  0.58, p  < .001) suggesting that soil P is complexed to oxides, 
inhibiting its availability for uptake in clayey soils.

Generally, total soil P in lowland Amazonia increases with clay 
concentration (Quesada et al., 2010), but depending on the measure-
ment technique employed, as is the case with extractable soil P, it 
increases disproportionately in sandier soils. At ANF, extractable soil 
P was indeed inversely related to clay (r = −0.61, p < .001) and posi-
tively related to sand concentration (r = 0.55, p = .001). However, we 
do not have information on total soil P reserves of the ANF soil pro-
files, therefore limiting the scope of our conclusions with regard to 
correlations among soil P and hemiepiphytes. Most likely, nomadic 

vines disproportionately benefit from the higher concentration of 
extractable soil P in sandy soils as, by definition, this functional 
group maintains soil connections throughout its entire growth pro-
gram (Rains et al., 2003; Zotz, 2016). This prediction was supported 
in part by the fact that nomadic vine abundance and extractable soil 
P were significantly and positively correlated. Experimental studies 
of the effects of soil P on germination and growth are needed to 
further elucidate the role of this nutrient in the population dynamics 
of non-self-supporting plants.

Lowland Amazonia is geologically old with considerable hetero-
geneity in soil texture: an edaphic feature which directly influences 
water, nutrient, and carbon retention capacity (Quesada et al., 2010, 
2011, 2020). In this study, soil clay concentration was negatively cor-
related with hemiepiphyte abundance and richness. Clay-rich soils 
offer greater support for larger statured trees by reducing mortality 
caused by uprooting (Nelson et al., 1994; Toledo et al., 2012), which 
contributes to the demonstrably greater densities of larger trees 

F I G U R E  4  Correlations of soil fertility [(a and d) phosphorus and (b and e) total base cation], and (c and f) soil texture (clay concentration) 
with species richness (Chao index) of hemiepiphytes and nomadic vines as distributed in two phorophyte size classes [(a-c) small: Trees 
1 ≤ DBH < 30 cm; and (d-f) large: Trees ≥30 cm DBH). Abundances were pooled by subplot (n = 110) to estimate richness. Generalized linear 
models using Gaussian distribution were used to test for the effect of soil, functional group, and its interaction (richness = soil + functional 
group + soil × functional group) on richness. Confidence intervals were estimated through bootstrapping. Results from GLM are presented 
in table S2.
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(Gorgens et al., 2021), and above-ground biomass stocks (Castilho 
et al.,  2006) of Amazonian forests of high clay concentration. 
Curiously, at ANF large tree (>30 cm DBH) densities are inversely 
correlated with clay concentration (r = −0.5, p < .001), as areas with 
large trees are generally located in sandier sites in proximity to water 
courses. The negative relation of non-self-supporting plant abun-
dance and richness with clay may be an indirect influence of higher 
density of smaller-statured trees, whereas increased abundance and 
richness in relation to sandy soils may simply be auto-correlative 
effects that sandier soils are located in greater proximity to water 
courses as humidity is a fundamental limiting factor for epiphytes 
(Obregon et al., 2011). However, without evidence from experimen-
tal studies, we are unable to disentangle the effects of humidity 
from soil types on hemiepiphytes and nomadic vines, in this study.

4.2  |  Direct effects and phorophyte size

Phorophyte size, as inferred by stem diameter, was positively re-
lated to non-self-supporting plant richness and abundance while 
negatively related to turnover. Biotic filters in the form of autogenic 
processes such as facilitative interactions, inter-specific competition 

(Ellis & Ellis, 2012), and abiotic filters such as changes in local mi-
croclimates in relation to phorophyte size/age (Woods et al., 2015) 
directly contribute to epiphyte community assembly dynamics. In 
this study, neither ontogenetic processes in community develop-
ment, nor microclimatic variables were directly measured. However, 
the information culled from the distributional patterns of non-self-
supporting plant functional groups in relation to phorophyte size, 
and related metrics of forest structure allow us to respond to some 
predictions. Specifically, two predictions confirmed in this correla-
tive study are that non-self-supporting plant species richness in-
creased while spatial turnover decreased in relation to phorophyte 
stem size.

Species turnover decreased and compositional similarity in-
creased with greater phorophyte-size suggesting repeatability of 
non-self-supporting plant assemblages among large phorophytes. 
Woods et al.  (2015) showed that epiphyte species accumulate as 
more microhabitats are formed with crown growth, with a corre-
sponding decrease in turnover as nested epiphyte assemblies repeat 
in niches unique to larger crowns. Large trees are disproportionately 
exposed to wind, light, higher temperatures, and drier conditions 
(Gorgens et al.,  2021), factors which contribute to species filter-
ing for xerophyllic plants (Hao et al.,  2011). Branch loss may also 

F I G U R E  5  Correlations of mean 
phorophyte size (DBH) per size class per 
subplot (a, c and e), and forest structure 
(b, d and f) with (a and b) turnover (βBray-
Curtis), (c and d) PCoA centroid distances 
and (e and f) composition (PCoA Axis 1) 
based on abundance data. Mean diameter 
per size class (tree DBH: 1–10 cm; 10–
20 cm; …; ≥70 cm) was calculated for 
each plot, and the scaling exponent was 
calculated by subplot. See Table S3 for the 
results of the analyzes.
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contribute to local epiphyte extinctions in larger crowns (Sarmento 
Cabral et al., 2015) also explaining lower species richness than ex-
pected in larger trees. When Petter et al.  (2021) included branch 
fall even at low rates in a simulation model, reductions in species 
alpha diversity were significant. Mortality of large trees in ANF is 
expected to be lower than average for Amazonia as climate, topogra-
phy, and soil are favorable for the persistence of very high-statured 
trees (>70 m in height) (Gorgens et al.,  2021). A combination of 
crown microclimates and branch mortality dynamics may contrib-
ute to explaining decreased beta diversity and augmented compo-
sitional similarity among hemiepiphytes and nomadic vines of larger 
phorophytes.

Likewise, increased non-self-supporting plant turnover in forest 
stands with a higher proportion of small trees indicates that other 
properties such as trait functional diversity (e.g., bark type and bark 
water potential) may act as determinants of community structure. 

Indeed, trees with higher bark water potential support higher ep-
iphyte diversity than those with lower water retention values 
(Callaway et al., 2002). However, lowland Amazonian epiphytes have 
yet to show affinities at either species- or family level in relation to 
bark type (Boelter et al., 2014).

The larger phorophytes of mixed-age class forests may act as 
“stepping stones” in epiphyte dispersal processes, thus increasing 
colonization rates, and rescue effects in the sub canopy (Ruchty 
et al.,  2001). For example, a simulation study (Petter et al.,  2021) 
showed that forests with low turnover rates (2.2% of stem substi-
tution) accumulate more individuals and species of epiphytes due to 
substrate longevity.

Inter-specific phorophyte habitat heterogeneity may also in-
fluence epiphyte community structure (e.g., Barbosa et al.,  2020; 
Marcusso & Kamimura, 2019; Woods et al., 2019). However, at ANF 
an oligarchy of four phorophyte species—Manilkara huberi (Ducke) A. 

F I G U R E  6  Species-level abundance (standardized by maximum) histograms of hemiepiphytes (red bars) and nomadic vines (blue bars) 
related to gradients of (a) phorophyte size and (b) forest structure. Data were pooled into phorophyte size classes (DBH: 1–10 cm; 10–
20 cm;…; ≥70 cm) by each plot to allow ordination along mean diameter of phorophyte and pooled into subplots for ordination along the 
gradient of forest structure using the scaling exponent. The vertical dashed lines in (a) divide trees smaller and larger than 30 cm DBH. 
Core species with >1% contribution to abundance are, for nomadic vines: Evodianthus funifer (Poit.) Lindm, Heteropsis flexuosa (Kunth) G. 
S. Bunting, H. steyermarkii G. S. Bunting, Philodendron cremersii Croat & Grayum, P. duckei Croat & Grayum, P. guianense Croat & Grayum, P. 
platypodum Gleason, P. surinamense (Miq.) Engl., P. ecordatum Schott, P. panduriforme (Kunth) Kunth, P. pulchellum Engl., P. ushanum Croat & 
Moonen, Trichomanes ankersii C. S. Parker ex Hook. & Grev., and Araceae 42; and for hemiepiphytes: Marcgravia sp.1 and sp.2, Philodendron 
callosum K. Krause, P. linnaei Kunth, P. pedatum (Hook.) Kunth, P. hylaeae G. S. Bunting, P. megaphyllum Schott, P. melinonii Brongn. ex Regel 
and P. solimoesense A. C. Sm.
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Chev. (Sapotaceae), Vouacapoua americana Aubl. (Fabaceae), Dinizia 
excelsa Ducke (Fabaceae), and Sextonia rubra (Mez) van der Werff 
(Lauraceae)—contribute to nearly half of the large trees (≥70 cm 
DBH) (JJT, unpublished data). Therefore, heterogeneity of bark types, 
bark water potential and crown architecture are expected to be 
lower among large trees due to the relatively low number of species 
which make up the large trees at ANF.

4.3  |  Pitfalls: Assumptions in relation to 
phorophyte size, specificity, and growth programs

In this study, we assume “phorophyte neutrality” (Wagner 
et al., 2015); that is, phorophyte species type nominally influences 
non-self-supporting plant assembly structure. We offer two sup-
porting reasons. Firstly, two studies, one from Amazonia (Boelter 
et al.,  2014) and another from the Brazilian Atlantic Rainforest 
(Rogalski et al.,  2016), suggest that hemiepiphytes and nomadic 
vines (particularly Aroids) do not show phorophyte specificity. 
Secondly, we suggest that it would be remotely advantageous for 
Amazonian non-self-supporting plants to have co-evolved with se-
lect phorophyte species because a vast majority of Amazonian tree 
species occur at densities of <1 adult individual/hectare (Pitman 
et al.,  2002; ter Steege et al.,  2013). Considering the sheer bot-
tleneck in conspecific phorophyte numbers dispersal limitation 
would act as a nearly insuperable barrier thus rendering this co-
adaptation unlikely in Amazonian forests. Bark characteristics, also 
not measured in this study, may be an important determinant of 
epiphyte distributions. Rugosity has been shown to have a posi-
tive effect on epiphyte presence in many tropical regions (Callaway 
et al., 2002; Wagner et al., 2015), but null models based on a study 
from central Amazonia revealed weak associations among bark 
types (Boelter et al., 2014).

Another potential pitfall in our premise is the assumption that 
DBH is an accurate index for phorophyte biomass, height, secondary 
branching complexity, and longevity combined. Results from long term 
demographic studies and dendrochronological surveys of Amazonian 
trees do offer support that DBH is a reliable indicator of overall 
biomass (Chave et al., 2005), and of time since initial establishment 
(Chambers et al., 1998; Laurance et al., 2004; Schöngart et al., 2005). 
Nonetheless, snap-shot sampling designs assume a “space for time 
substitution” (Pickett, 1989) which are limited by the fact that neither 
the importance of ontogenetic changes nor that of forest dynamics, in 
relation to inter-specific variation in phorophyte growth rates (Petter 
et al., 2021), are considered. For example, intra-specific temporal vari-
ation in bark quality (see Wagner & Zotz, 2020) open the possibility 
that phorophyte specificity may change over time.

Phorophytes with greater stem size, generally used as a proxy 
for phorophyte stature, typically harbor higher species richness 
and abundance (Flores-Palacios & Garcia-Franco,  2006; Hirata 
et al., 2008; Taylor & Burns, 2015; Wagner & Zotz, 2020). One of 
three possible mechanisms are typically invoked to account for this 
relationship. Firstly, target effects, that is greater surface area offers 

greater capture potential and subsequent recruitment from the 
epiphytic seed rain by chance alone. Secondly, rescue or longevity 
effects result in a greater species accumulation on longer-lived sub-
strates due to the increased chance of (re)colonization over time. 
Finally, ontological effects may favor changes in phorophyte quality 
over time as the density and variety of microsite quality increases 
(Taylor & Burns, 2015; Woods, 2017). However, a recent study of 
epiphyte communities in Amazonian flooded forests reported vari-
able correlations among phorophyte size and community attributes 
(Quaresma et al., 2020).

In general, changes in phorophyte quality in relation to age would 
predict that the epiphytic flora occupying smaller trees represents a 
subset of those from larger trees (Rasmussen & Rasmussen, 2018). 
However, this was not the case here. Uniquely, a shift linking diver-
gent ecological strategies at early demographic phases suggests a 
discontinuity in non-self-supporting plant floristic similarities in re-
lation to phorophyte stem size.

Few demographic studies (sensu Laman, 1995) exist for non-self-
supporting plants. To our knowledge, the only reported works on 
epiphytic post reproductive biology have been conducted on ho-
loepiphytes (reviewed in Mondragón et al., 2015), the one functional 
group not included in this study. Indeed, factors which influence in 
vivo germination, and seed to seedling success are under studied for 
epiphytes; however, the few published works point to hydric stress 
as the principal bottleneck (Pereira-Dias & Santos, 2015). The role 
of soil nutrient concentration and/or substrate quality on recruit-
ment success of non-self-supporting plants remains understudied. 
Experimentally based demographic studies focusing on how local 
environment affects early life-cycle phases (i.e., recruitment and 
germination) (Mondragón & Calvo-Irabien, 2006) are sorely needed.
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