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Abstract

Changes in moonlight intensity can affect predation risk and induce changes in
habitat use and activity of nocturnal species. However, the effect of moonlight on
animal activity is rarely evaluated in human-modified landscapes and can be of
vital importance to understand possible changes in ecosystem services provided by
light-sensitive taxa, such as insectivorous bats. Fragmentation changes forest struc-
ture and affects light penetration across the landscape. In this case, the effects of
fragmentation on bat activity can be modulated by cyclical variations of moonlight
intensity. We acoustically quantified the activity of nine aerial insectivorous bat
species in relation to moonlight at the Biological Dynamics of Forest Fragments
Project, Central Amazonia. We aimed to understand species-level variation in activ-
ity across habitats (continuous forest, fragments and secondary forest) at different
temporal scales: lunar cycle, dark vs. bright nights and within nights. Amazonian
aerial insectivorous bats responded more to habitat type than to moonlight, with
two and six species showing reduced activity in fragments and secondary forest,
respectively, compared to continuous forest. The lower activity in secondary forest
suggests that despite c. 30 years of secondary forest regeneration, it is still less
attractive as foraging habitat. An interactive effect of habitat type and moonlight
on bat activity was most evident when contrasting dark and bright nights. Our
results indicate that fragments have reduced bat activity on extremely bright nights,
probably due to higher predation risk in small fragments. Species that emit
constant-frequency calls (Pteronotus spp.) were the ones that most modulated their
responses to habitat disturbance and moonlight. Otherwise, moonlight had little
effect on hourly activity levels, irrespective of habitat type. Moonlight is capable
of modulating the responses of some bat species in disturbed habitats, particularly
in fragments.

Introduction

Anthropogenic habitat loss and fragmentation are key drivers
of biodiversity change and erosion of ecological processes
(Barlow et al., 2016; Pfeifer et al., 2017), especially in
species-rich tropical regions such as the Amazon rainforest
(Betts et al., 2019). Worryingly, forest fragmentation in the
Brazilian Amazon is progressing faster than ever; in 2017,
there was an increase of nearly 70% in the number of frag-
ments (Montibeller et al., 2020) and this trend can be
assumed to have worsened due to the high levels of forest
loss in 2018–19 (Barlow et al., 2020). Forest fragmentation

results in the formation of isolated patches, surrounded by
an anthropogenically modified matrix (Haddad et al., 2015).
The type of human-made matrix can act as selective filter
for the movements of species (Watling et al., 2011), altering
the abundance, composition, phylogenetic and functional
diversity of animal assemblages (Aninta et al., 2019; Men-
denhall et al., 2014; Rutt et al., 2020).

Risk of predation is a major determinant of habitat use by
animals (Atkins et al., 2019; Pringle et al., 2019). For noc-
turnal species, moonlight is an important source of informa-
tion that affects foraging habitat selection (Waap et al.,
2017). Prey species commonly curtail their activity under
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bright moonlight, so as to reduce the probability of predation
by visually oriented predators (Miranda et al., 2020;
Navarro-castilla and Barja, 2014). On the other hand, preda-
tor species can more easily locate prey under brighter condi-
tions and thus increase their activity to maximize hunting
success (Bhatt, Sarma and Lyngdoh, 2021; Pratas-Santiago
et al., 2016). However, species that are both prey and preda-
tors need to strike a balance between guaranteeing high for-
aging success and predator avoidance (Linley et al., 2020;
Penteriani et al., 2011).

An increase in the perceived risk of predation during full
moon nights can force prey species to forage in cluttered
habitats such as primary forest, in which dense canopies
limit the amount of moonlight reaching the understory
(Gigliotti and Diefenbach, 2017). However, moonlight expo-
sure in disturbed landscapes may differ from that in continu-
ous primary forest. Canopy openness in forest fragments and
continuous forest may be similar (Almeida et al., 2019;
Rocha et al., 2020), resulting in comparable levels of moon-
light reaching the undergrowth and consequently predation
risk. However, the foraging area of a species may often be
larger than the fragment area, forcing the animals to forage
at fragment edges and in regrowth vegetation where expo-
sure to bright light levels during moonlit nights is greater
(Bernard and Fenton, 2003). Therefore, relative to continuous
forest, predation risk can be expected to be higher in smaller
fragments and in the surrounding matrix (Bowers and Doo-
ley, 1993; Rocha et al., 2020).

Bats are a group of essentially nocturnal animals which
provide vital functions in the maintenance of tropical ecosys-
tems through pollination, seed dispersal and insect population
suppression (Kunz et al., 2011). Studies involving the effect
of moonlight on bats go back a considerable time, in fact
the term “lunar phobia” was coined by Morrison (1978) for
Neotropical frugivorous bats. Lunar phobia is a behavioural
response to increased moonlight intensity and is probably an
adaptation for reducing exposure to visually orientated noc-
turnal predators (Haeussler and Erkert, 1978; Morrison
1978). For aerial insectivorous bats, the relationship with
moonlight is more complex because they simultaneously face
the trade-off of being both prey and predator (Holland et al.,
2011; Roeleke et al., 2018; V�asquez, Grez and Pedro, 2020).
In Amazonian bats, moonlight seems to have species-specific
effects, with some species either increasing or decreasing
their activity in brighter nights, while others are unaffected
(Appel et al., 2017).

Although there are many studies that evaluated the effect
of moonlight on aerial insectivorous bat activity, these stud-
ies are concentrated in temperate regions (Perks and Goode-
nough, 2020; Salda~na-V�azquez and Mungu�ıa-Rosas, 2013).
While previous research has shown that some aerial insectiv-
orous bat species respond to moonlight in undisturbed tropi-
cal rainforest (Appel et al., 2017, 2019), such effects have
rarely been evaluated in the context of human-modified land-
scapes (Jung and Kalko, 2011; Lima and O’Keefe, 2013;
Kolkert et al., 2020 but see Musila et al., 2019). Assessing
the effect of moonlight on the activity patterns of aerial
insectivorous bats in human-modified landscapes is important

to understand possible changes in ecosystem services pro-
vided by this bat ensemble (Pianka, 1973; Presley et al.,
2009). In agricultural landscapes, this issue is relevant for
the management of fragments because of the potential role
of insectivorous bats in the suppression of agricultural pests
(Kemp et al., 2019).

Here, we used the experimentally fragmented landscape of
the Biological Dynamics of Forest Fragments Project
(BDFFP) in the Brazilian Amazon to evaluate the hypothesis
that moonlight modulates the effects of habitat disturbance
on aerial insectivorous bat activity at different temporal
scales. We acoustically quantified bat activity in continuous
forest and in disturbed habitats (forest fragments and within
the intervening secondary forest matrix) to understand varia-
tion in species-level activity across these habitat types in
relation to moonlight. We conducted our analyses at different
temporal resolutions, focussing on variation in moonlight
intensity: i) associated with the lunar cycle, ii) between dark
and bright nights and iii) within nights. Accordingly, we pre-
dicted that:
1 Species sensitive to habitat disturbance and moonlight will
respond negatively to moonlight intensity in fragments and
secondary forest, as previous research indicates that some
Amazonian aerial insectivorous bats respond to habitat dis-
turbance (N�u~nez et al., 2019) and moonlight (Appel et al.,
2017).

2 Species sensitive to habitat disturbance and moonlight will
show increased activity in fragments and secondary forests
on dark nights (associated with new moon) compared to
bright nights (associated with full moon), whereas in con-
tinuous forest responses to moonlight will be species-
specific.

3 In fragments and secondary forest, bat species will reduce
activity in the early evening to avoid the time of greatest
predation risk. In continuous forest, within-night activity
will be concentrated in the early evening, both on bright
and dark nights, to maximize foraging opportunities during
the peak in prey abundance.

Materials and methods

Study site

The study was conducted at the Biological Dynamics of For-
est Fragments Project (BDFFP) (2°25’S; 59°50’W), located
~80 km north of Manaus, Brazil (Fig. 1), a long-term frag-
mentation experiment that has been running for ~40 years to
study the effects of forest fragmentation on Amazonian biota
(Laurance et al., 2018). The climate is characterized by a
dry season from July to November when precipitation drops
below 100 mm/month and a rainy season from November to
June, when precipitation can exceed 300 mm/month (Ferreira
et al., 2017). The study landscape consists of 11 forest frag-
ments (five of 1 ha, four of 10 ha and two of 100 ha), sur-
rounded at the time of the study by a matrix of tall
secondary forest, and extensive areas of continuous primary
forest that act as experimental controls (Laurance et al.,
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2018). In the early 1980s, forest fragments were experimen-
tally isolated and the vegetation around them has since been
periodically cleared to maintain isolation, last in 2014
(Rocha et al., 2017a), after data collection for this study.
The site supports lowland evergreen terra firme rainforest at
50 to 100 m of elevation, and the temperature ranges from
19 to 39°C (Laurance and Williamson, 2001). The secondary
forest is dominated by Vismia spp. in areas that were cleared
and burned and dominated by Cecropia spp. in areas that
were only cleared (Mesquita et al., 2001). Percent canopy
cover varies little between habitat types (continuous forest
interiors: 85.4 � 5.2 [mean � SD], fragment interiors:
87.4 � 1, secondary forest: 75.1 � 6.7; Rocha et al.,
2017a). Canopy height in the largest fragments and continu-
ous forest averages 28 m (Almeida et al., 2019), while in
the well-developed secondary forest the average canopy
height is 15 m (Jakovac et al., 2014; Mokross et al., 2018).

Bat acoustic sampling

We sampled 13 sites across the BDFFP landscape between
2011 and 2013: three in continuous forest (Cabo Frio, Flore-
stal and Km 41 camps), six forest fragments (3 fragments of
1 and 10 ha in Colosso, Dimona and Porto Alegre camps)
and four in the secondary forest matrix (Cabo Frio, Colosso,
Dimona, Florestal and Porto Alegre camps) (Fig. 1). Each

site was visited twice during both dry and rainy seasons. At
each sampling site, we installed an automatic ultrasound
recorder (Song Meter SM2Bat+) with an omnidirectional
ultrasonic SMX-US microphone (Wildlife Acoustics, Inc.,
USA) placed at a height of 1.5 m above the ground (L�opez-
Baucells et al., 2019). Ultrasound recorders were positioned
in the centre of the fragments, in the secondary forest 100 m
away from the edge of each fragment, and in the interior of
continuous forest 1000 m away from the edge. The recorders
were configured to passively register bat activity in real time,
with a full spectrum resolution of 16 bit, a high-pass filter
set at fs/32 (12 kHz), and an adaptive trigger level relative
to noise floor of 18 SNR. The SM2Bat units were pro-
grammed to record bat activity between 18:00 and 06:00 for
four to five consecutive nights per sampling site (Table S1).
Total sampling effort was 727 nights, with 8,278 recording
hours. The number of sampling nights in each season was
similar in fragments and secondary forest (Table S1).
Although for continuous forest sampling effort was higher in
the dry season (Table S1), we contend that the number of
nights sampled in the rainy season (77 nights) was sufficient
to avoid seasonal biases, and differences in sampling effort
were also accommodated in the analysis.

All recordings were split into five-second segments and a
bat pass was defined as a sequence with a minimum of two
recognizable search phase calls per species in each five-

BR 174

Continuous forest Fragments
(1 and 10 ha)

Secondary forest

Biological Dynamics of Forest 
Fragment Project

Continuous primary forest RoadUnpaved road

Sampling points

0 2 4 6 8Km

Secondary forest

Figure 1 Location of the Biological Dynamics of Forest Fragments Project (BDFFP) and the distribution of sampling points in continuous for-

est, fragments of 1 and 10 ha, and secondary forest. Continuous forest is represented in dark grey and secondary forest (matrix) in light

grey. The map in the upper right corner shows the location of the study area in the Central Amazon. The schematic figure illustrates the

vegetation structure in the three habitat types
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second segment (Appel et al., 2019; Torrent et al., 2018).
All bat passes were manually identified to species or sono-
type level following L�opez-Baucells et al. (2016). We used
Kaleidoscope Pro Software (version 4.0.4.) (Wildlife Acous-
tics, Inc. Maynard, Massachusetts, USA) for manual verifica-
tion. Activity was calculated as the sum of five-second
segments with bat passes per night (nightly activity) and per
hour (hourly activity).

In the total of ~190,000 bat passes, we identified 18 aerial
insectivorous bat species and four sonotypes. We minimized
potential detection biases by focusing on species that were
detected in at least 10% (73 nights) of the total nights and
in all three sampling years. This resulted in the selection of
nine species for analysis: Pteronotus alitonus, P. rubiginosus
(revised by L�opez-Baucells et al., 2018; Pavan, Bobrowiec
and Percequillo, 2018), Furipterus horrens, Centronycteris
maximiliani, Cormura brevirostris, Saccopteryx bilineata, S.
leptura, Myotis riparius and Eptesicus brasiliensis
(Table S2).

Moonlight intensity

Moonlight intensity for each night was estimated using the
“sunmoon” software (Kyba, Conrad and Shatwell, 2020), a
robust method for quantifying the amount of sunlight
reflected by the moon. This software employs the illumi-
nance model of Janiczek & DeYoung (1987). To test
whether bat activity varied between dark and bright nights,
we classified those nights with 0–30% moon illuminated as
dark and those with 70–100% as bright, following Appel
et al. (2017, 2019). We used this broad categorization instead
of the moon phase because moonlight intensity can vary
greatly within the same moon phase (e.g. moonlight intensity
in the waning phase can vary from 3% to 55%, Appel et al.,
2017). Indeed, we used this categorization because these
nights are characterized by little variation in moon presence
(during bright nights) and absence (during dark nights) in
order to avoid the influence of moonrise and moonset times
on bat activity (Appel et al., 2017).

Cloud presence can influence the amount of moonlight
that penetrates the forest, and thus potentially distort bat
activity responses to moonlight. In order to test for an effect
of cloud presence, we used data on cumulative rainfall per
hour collected at the meteorological tower of the Large-scale
Biosphere–Atmosphere Experiment in Amazonia (LBA) ZF-
3 installed at KM 34 within the BDFFP. Nights were consid-
ered “cloudy” when rainfall ranged from 0.1 to 10 mm/h,
generally classified as weak to moderate rain (Appel et al.,
2019; V�asquez et al., 2020). Nights with more than 10 mm
rain per hour were nights with heavy rain, therefore were
removed from the analyses (Carvalho et al., 2011).

Data analysis

To model the effects of habitat type (continuous forest, frag-
ments and secondary forest) and moonlight on species-
specific bat activity levels, we performed generalized linear
mixed models (GLMMs) using the function glmmTMB from

the package “glmmTMB” (Bolker et al., 2020). The response
variable in the GLMM models was the number of bat passes
recorded in a single night per species. Models were fitted
using a negative binomial distribution and, whenever the
respective activity distribution showed a signal of zero infla-
tion, were implemented as zero-inflated models (Zuur et al.,
2009). For each model, habitat type was specified as categor-
ical fixed effect and moonlight as a continuous fixed effect
(percentage of moonlight intensity) and sampling night
nested within research camp as a random effect. We chose
to model moonlight intensity only jointly with habitat type
because we were interested in evaluating the effect of moon-
light for each habitat and not its independent effect. The
aforementioned random effects structure was chosen to
account for not only the spatial but also the temporal auto-
correlation of the data – moonlight intensity of one night
depends on the moonlight intensity of the previous night. To
compensate for differences in sampling effort between habitat
types (Table S2), we used the log-transformed sampling
effort per habitat type as offset in all models. Parameter esti-
mates were visualized using R package “ggstatsplot” (Patil,
2020). We used the full dataset of the 727 sampling nights
in the GLMMs. To test if cloud presence affects bat activity,
we performed GLMMs analysing bat activity in relation to
moonlight, cloud presence and their interaction effect. There
was no effect of cloud presence on the activity of any of the
focal bat species (Table S3).

For each habitat type, differences in bat activity levels
between dark and bright nights were visualized using Gard-
ner–Altman estimation plots and statistically evaluated using
non-parametric permutation tests with 1000 bootstrap sam-
ples to estimate effect sizes and 95% confidence intervals for
the difference of means using R package “dabestr”. Statisti-
cal significance of the difference between dark and bright
nights was determined based on the lack of overlap in the
frequency distributions of the datasets (Ho et al., 2019).

Hourly activity levels between dark and bright nights for
each habitat type were compared using Kolmogorov–Smirnov
2-sample tests. Bat activity was pooled into 12 sampling inter-
vals (hourly intervals) – for example, bat passes recorded
between 18:00 and 18:59 were assigned to the same time inter-
val (18:00). For comparisons between dark and bright nights,
we used data from 206 nights in continuous forest (118 dark,
88 bright), 124 nights in fragments (65 dark, 59 bright) and 195
nights in secondary forest (97 dark, 98 bright). All analyses
were conducted in softwares R 4.0.2 and R Studio 4.0.2 (R
Core Team, 2020; RStudio Team, 2020).

Results

Bat activity responses to habitat type

Based on the GLMM results, habitat type had by far the
greatest effect on bat activity. Most significant responses
were observed for secondary forest, followed by fragments
(Fig. 2). Six species (S. bilineata, S. leptura, C. maximiliani,
C. brevirostris, E. brasiliensis and F. horrens) exhibited
reduced activity in secondary forest, whereas P. alitonus and
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P. rubiginosus showed elevated activity levels in this habitat
(Fig. 2). On the other hand, two species (P. alitonus and F.
horrens) had significantly lower activity in fragments than in
continuous forest (Fig. 2).

Bat activity responses to habitat type and
moonlight intensity

The activity of three species (P. rubiginosus, S. bilineata and
E. brasiliensis) in fragments was negatively affected by
moonlight as suggested by the significant interaction effect
(Fig. 2). Similarly, moonlight significantly curtailed activity
levels of P. alitonus and P. rubiginosus in secondary forest,
albeit the effect was small (Fig. 2).

In relation to habitat-specific comparisons of activity
between dark and bright nights, all species, except S. lep-
tura, showed changes in activity between dark and bright
nights in some habitat type (Fig. 3). In continuous forest, P.
rubiginosus and P. alitonus were more active on bright
nights, whereas F. horrens had greater activity during dark
nights (Fig. 3). Pteronotus rubiginosus, S. bilineata, C. maxi-
miliani, C. brevirostris, M. riparius and E. brasiliensis
exhibited greater activity during dark than bright nights in
fragments (Fig. 3). In secondary forest, only P. alitonus and
P. rubiginosus showed greater activity on dark nights, oppo-
site to the pattern in continuous forest (Fig. 3).

Hourly activity varied little between dark and bright
nights and only five species exhibited some change in activ-
ity pattern between dark and bright nights in the same habi-
tat (Table 2; Fig. S1). In continuous forest, P. rubiginosus
and S. leptura were more active on bright nights. On the
other hand, hourly activity of C. maximiliani and F. horrens
steadily decreased on bright nights in continuous forest. In
these two species, activity on dark nights increased at the
end of the night. In fragments, M. riparius, P. rubiginosus
and C. maximiliani increased their activity on dark nights,
with greater activity in the middle of the night in the latter
two species. In secondary forest, only P. rubiginosus showed
significant differences, with an elevated activity during dark
nights (Fig 4).

Discussion

Numerous studies have targeted the effects of forest frag-
mentation on tropical bats (Mendes and Srbek-Araujo, 2020;
Meyer, Struebig and Willig, 2016). Yet, in the Neotropics,
most research has been limited to the impacts of fragmenta-
tion on phyllostomid bats (e.g. Klingbeil and Willig, 2009;
Rocha et al., 2017b, 2018), and fragmentation effects on aer-
ial insectivores remain poorly explored (but see Estrada-
Villegas, Meyer and Kalko, 2010; N�u~nez et al., 2019). Over
the past two decades, intensive research at the BDFFP has
provided valuable information about taxonomic, functional,
phylogenetic and behavioural responses of bats to the
dynamic nature of fragmented landscapes (e.g. Aninta et al.,
2019; Bobrowiec and Gribel, 2010; Farneda et al., 2015;
Rocha et al., 2018, 2020; Silva et al., 2020). Although less
researched than their phyllostomid counterparts, aerial

insectivorous bats at the BDFFP were found to exhibit trait-
related responses to fragmentation, with understory and
constant-frequency and frequency-modulated echolocating
bats being particularly vulnerable to forest disturbance
(N�u~nez et al., 2019). Here, we further advance current under-
standing about the responses of aerial insectivorous bats to
fragmentation, by analysing how temporal activity patterns
of this bat ensemble are molded by variation in moonlight
intensity. As hypothesized, we found that moonlight can
modulate responses to habitat disturbance but only in extre-
mely bright nights. Importantly, a joint effect of moonlight
and habitat disturbance was most evident only in species that
emit constant-frequency calls (Pteronotus spp.).

Our results show that Amazonian aerial insectivorous bats
respond more to habitat type than to the interaction between
habitat and moonlight. Most species had lower activity in
secondary forest and two showed lower activity in fragments
compared to continuous forest. This suggests that despite c.
30 years of secondary forest regeneration, secondary forest is
still less attractive as foraging habitat for most aerial insec-
tivorous bat species. These results are consistent with those
commonly reported for gleaning animalivorous bats, whose
capture rates typically decrease in disturbed habitats (Rocha
et al., 2017b; Webala et al., 2019; Willig et al., 2019), prob-
ably due to being poorer foraging and roosting areas
(Carballo-Morales, Salda~na-V�asquez and Villalobos, 2021;
Meyer and Kalko, 2008). Yet, they contrast with results from
nectarivorous and frugivorous bats, which normally increase
in abundance in fragments and in secondary forest due the
higher density of food resources (Bobrowiec and Gribel,
2010; Farneda et al., 2015).

The effect of moonlight intensity on activity differed
between habitat types for P. alitonus, P. rubiginosus, S. bilin-
eata and E. brasiliensis. These four species exhibit a flexible
behaviour, changing their activity in disturbed environments
when light conditions are not favourable. The interaction
between fragmentation and moonlight shows that for some
species the effects of fragmentation can be more acute than
expected, since at least during part of the lunar cycle their
activity in fragments may be suppressed.

Bat activity over the lunar cycle is shaped by predator–
prey interactions, as aerial insectivorous bats are simultane-
ously predators and prey (Lang et al., 2006; V�asquez, Grez
and Pedro, 2020). Pteronotus rubiginosus and P. alitonus
increase their activity with moonlight in continuous forest
probably due to higher foraging success, as some insect
orders increase their activity in nights of high moon illumi-
nation (Kolkert et al., 2020). The observed lunar philia of P.
rubiginosus agrees with the pattern found in other areas of
Amazonian continuous forest (Appel et al., 2017; Dur�an and
Oviedo Morales, 2019). On the other hand, the observed
decrease in the activity of Pteronotus spp. with increasing
moonlight indicates that in disturbed areas the perceived risk
of predation is probably greater. These bats may avoid leav-
ing fragments as some visually oriented avian predators for-
age preferentially along fragment edges and open areas
(Chalfoun, Thompson and Ratnaswamy, 2002; Spanhove
et al., 2009).
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Although the interactive effect of moonlight and habitat type
on bat activity was weak, our analyses showed that the effects
of habitat type were most evident when evaluated at the
extremes of the lunar cycle (dark vs. bright nights). In frag-
ments, the activity of six species decreased on very bright
nights, whereas, with the exception of P. alitonus and P. rubigi-
nosus (which showed greater activity on bright nights in contin-
uous forest), it was unaltered in continuous forest. The home
ranges of aerial insectivorous bats (e.g. P. parnelli and S. bilin-
eata) are generally much greater than the size of fragments
studied (≤10 ha; Bradbury and Vehrencamp, 1976; Estrada,
Coates-Estrada, and Meritt, 1993; Hoffmann et al., 2007). As
such, bats inhabiting forest fragments might need to for-
age/commute in the surrounding matrix, which on brighter
nights, may increase exposure to predators. This increase in
predation risk may therefore reduce bat activity in small frag-
ments during nights with more intense moonlight (Bowers and
Dooley, 1993). Thus, on bright nights probably bats reduced
their home range avoiding the edges of the fragments, specially
Pteronotus spp., since they are less active in secondary forest
on bright nights.

The two extremes of the lunar cycle, bright vs. dark nights,
had little effect on hourly activity levels indicating that bats do
not respond to changes in moonlight during short periods of

time. Yet, two species had higher hourly activity on bright
nights in continuous forest and two species were more active at
the end of dark nights. However, in fragments, hourly activity
only changed for three species, all exhibiting lower activity at
dusk on bright nights, which might be a strategy to reduce pre-
dation risks (Appel et al., 2017). A similar result was found for
phyllostomids in early successional forest, small agricultural
fields and forest subjected to reduced-impact logging in the
Amazon (Castro-Arellano et al., 2009; Presley et al., 2009).
Cormura brevirostris and S. bilineata did not change the hourly
activity between the extremes of brightness. This may relate
with their foraging strategies (Gomes, Appel and Barber,
2020), as both species have been suggested to feed closer to
vegetation in brighter nights (Jung and Kalko, 2010). The
apparent absence of a moon effect on hourly activity of insec-
tivorous bats was also found by Appel et al., (2017) in a contin-
uous forest location in Central Amazonia and by Thomas and
Jacobs (2013) in South Africa.

Our results show that moonlight is an abiotic variable
that can modulate bat activity levels in tropical human-
altered landscapes, but for most aerial insectivorous species
the effect is either weak or absent, and responses are more
evident only in extremely bright nights in fragments. Spe-
cies that emit constant frequency calls such as P.

Figure 2 Effects of moonlight, habitat type and their interaction on activity of the nine focal species in the BDFFP evaluated using general-

ized linear mixed models. Effect estimates are based on the fixed effect posterior distribution, characterized by its mean (dot) and credible

intervals (95% CI, lines). Grey circle estimates indicate significant negative effects, white circle estimates significant positive effects and

black estimates non-significant effects
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rubiginosus and P. alitonus showed the strongest response
in activity levels as manifested by a change from a positive
relationship with moonlight in continuous forest to a nega-
tive one in fragments and secondary forest. Therefore,
moonlight can augment the effects of fragmentation on the
activity of bats that echolocate using constant frequency
calls. This is concerning because habitat disturbance might
reduce the temporal window in which foraging conditions
are favourable and thus limit the ability of species to meet
their daily dietary requirements (Castro-Arellano et al.,
2009; Rocha et al., 2020; V�asquez, 1994). This physiologi-
cal stress may increase exposition to pathogens (Turmelle
and Olival, 2009), and there are several examples of how
anthropogenic land-use change can have a major impact on
the infection and circulation of zoonoses (Gibb et al., 2020;
White and Razgour, 2020). Future research investigating
how behavioural responses translate into fitness conse-
quences (e.g. mortality and reproductive success) in frag-
mented landscapes is needed to better understand long-term
population persistence.

Conservation implications

Fragmentation and forest disturbance have been identified as
the major causes of biodiversity loss in the tropics. Some of
the insectivorous bat species studied here are fragmentation-
sensitive (N�u~nez et al. 2019). In our study, habitat distur-
bance was the main factor underlying decreases in the activ-
ity of aerial insectivorous bats, but moonlight accentuated
reductions in activity for some species in fragments and
might impact their capacity to provide their crucial ecosys-
tem services as insect predators. Insectivorous bats are key
suppressors of herbivorous insects in both humanized and
natural habitats and they can prevent rice loss at an esti-
mated cost of $1.2 million/year and more than $3.7 billion/
year in general agricultural losses (Boyles et al., 2011; Kemp
et al., 2019; Wanger et al., 2014). However, it is important
to mention that the BDFFP fragments are surrounded by sec-
ondary forest at an advanced stage of succession, which can
buffer the impacts of fragmentation and create better forag-
ing conditions for aerial insectivorous bats than in other
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human-modified landscapes (Rodr�ıguez-San Pedro and
Simonetti, 2015). Fragments in landscapes dominated by
large-scale agriculture commonly exhibit abrupt margins, are
embedded within a homogeneous matrix and suffer addi-
tional anthropogenic disturbances (e.g. effects of roads and
artificial illumination) which may considerably reduce the
ecological services provided by light-sensitive bat species
(Put, Fahrig and Mitchell, 2019).

Artificial light at night has been increasing over time in
biodiversity hotspots (Guett�e et al., 2018) and this is con-
cerning because the increasing human pressure in the periph-
ery of forested areas can leave forest fragments in a state of
constant illumination during the night. Although artificial
light attracts insects consumed by insectivorous bats, some
bat species studied here are sensitive to urbanization
(Alp�ızar, Rodr�ıguez-Herrera, and Jung, 2019; Jung and
Kalko, 2010). It is known that lit areas can influence the
quality of roosts and fragment commuting routes for some
bat species with negative consequences for the reproduction
and behaviour of bats (Downs et al., 2003; Laforge et al.,
2019; Straka et al., 2019). In view of the recent increase of
fragmentation and artificial light at night in the Brazilian
Amazon due the development of cities, agricultural areas and
expanding road networks (Haddad et al., 2015; Lovejoy and
Nobre, 2018; Vilela et al., 2020), the protection of undis-
turbed forests is crucial for the conservation of light-
sensitive aerial insectivorous bats. Moreover, bats actively
prey on mosquitoes responsible for disease transmission
(Puig-Montserrat et al., 2020) and as tropical urban areas
have a proliferation of these insects, the promotion of large
forest fragments in urban areas can be an alternative to
attract more activity of insectivorous bats.
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