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Mesoscale spatial ecology of a tropical snake assemblage: 
the width of riparian corridors in central Amazonia

Rafael de Fraga, Albertina Pimentel Lima & William Ernest Magnusson

Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil

Large-scale biogeographical determinants of snake assemblages may underestimate the effects of local factors that operate 
within restricted areas. We determined the influence of ecological gradients on the richness and species composition of snakes 
in the Reserva Ducke, Manaus, Amazonas, Brazil. Multivariate analyses revealed aspects of habitat selection by snakes which 
would be impossible to detect with large-scale approaches. There was no evidence for a relationship between the number of 
species recorded per plot and any of the variables measured. However, the species composition, based on a matrix of Chao 
dissimilarities between plots, differed significantly between riparian and non-riparian areas. The results have important 
implications for management and conservation, because Brazilian environmental legislation only provides protection up to 
30 m away from streams like those of Reserva Ducke, while snakes use larger riparian areas. If only the areas contemplated 
by law are protected, the majority of species associated with riparian areas are at risk.
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INTRODUCTION

Snakes are mobile organisms. Some species undertake 
regular migrations between foraging and denning sites 

(Dixon & Soini, 1975; Duellman, 1978; Martins & Ol-
iveira, 1998), whereas non-migratory species cover large 
areas within their home ranges (Shine, 1977), and long-
term surveys of a single site therefore generally result in 
good estimates of the species richness and composition 
of a region (Strüssmann & Sazima, 1993, Martins & Ol-
iveira, 1998; Bernarde & Abe, 2006; França & Araújo, 
2007). If habitats are considered discrete and habitat use 
is registered on a presence–absence scale, most species 
are found to occupy a wide range of habitats, but this 
may mask patterns of specificity in resource use (Luiselli, 
2006; Luiselli & Filippi, 2006). Understanding local re-
lationships between species and habitats is important for 
reserve design. Within restricted geographic areas, many 
organisms do not use all habitats equally, but are concen-
trated in specific areas along ecological gradients (trees: 
Gentry, 1988; understorey herbs: Tuomisto et al., 1995; 
Costa et al., 2005; Kinupp & Magnusson, 2005; amphib-
ians: Rodrigues, 2006; Menin et al., 2007; Keller et al., 
2009).

 It is generally recognized that riparian zones are dis-
tinct from surrounding areas, even within broad-scale 
habitat classifications such as “ecoregions” and “terra 
firme” forest. This applies to many organisms that are 
not directly dependent on water bodies for part of their 
life cycle. Riparian forests provide optimal habitats for 
resident species (Brode & Bury, 1984) and corridors for 
dispersal of visitors (Naiman et al., 2005). However, the 
distinctness of riparian zones is controversial for some 
groups (Sabo et al., 2005), as different taxa use riparian 
zones of different widths (Drucker et al., 2008; Marczak 
et al., 2010). This may be a problem for conservation, be-

cause most management agencies define general riparian 
buffers independent of the taxa that use them (Marczak 
et al., 2010).

In the present study we quantified the distribution of 
snake species along continuous ecological gradients and 
between riparian and upland areas in a tropical forest in 
central Amazonia. By studying many species simultane-
ously we were able to show patterns of occurrence that 
could not have been detected with confidence on the basis 
of individual species. The results show that this tropical 
snake assemblage is structured in relation to local envi-
ronmental gradients, and that many species use riparian 
zones that are much wider than those protected by Brazil-
ian environmental legislation.

MATERIALS AND METHODS
Study site
Reserva Ducke, administered by the Instituto Nacional de 
Pesquisas da Amazônia (INPA), is located in the northern 
suburbs of the city of Manaus, Amazonas State, Brazil 
(coordinates of headquarters 59º52'40" – 59º52'00"W, 
03º00'00" – 03º08'00"S), and has a total area of 100 km2. 
Until the 1970s, the reserve was used for experiments 
in forestry, with cultivation of economically important 
plants in about 2% of the reserve. It was subsequently 
declared a biological reserve, and vegetation cover was 
kept intact (Ribeiro et al., 1999).

Reserva Ducke is predominantly covered by tropical 
rainforest that is not subject to flooding for long periods. 
Ribeiro et al. (1999) recognized three types of plant as-
sociations in Reserva Ducke associated with topographic 
and soil characteristics: plateau forest, slope forest and 
riparian forest. The predominant soil on the plateaux is a 
loamy, well drained and low-nutrient yellow latosol. For-
est on plateaux is 35 to 40 m high, with emergent trees up 
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to 45 m; the understorey is dominated by sessile palms. 
Riparian forests are found on floodplains along streams, 
and have sandy soil that is waterlogged in the rainy sea-
son. Riparian forests have many plants with adventitious 
roots and buttresses, and the canopy is 20 to 35 m high, 
with few emergent trees. The understorey is dense, and 
composed of palms and herbs characteristic of wet areas, 
such as Rapateaceae, Marantaceae and Cyclanthaceae. 
Slope forests are transition formations between plateaux 
and riparian forests. Riparian areas are generally in the 
lower parts of the reserve, and this permits the broad 
classifications used by Ribeiro et al. (1999). However, 
the width of the riparian zone is not the same for all spe-
cies, and can extend more than 100 m from the streams 
(Drucker et al., 2008).

The average annual temperature fluctuation is less 
than 5 °C, and rainfall is more intense in the period from 
November to April, resulting in annual averages between 
1500 and 2500 mm (Alencar et al., 1979; Ribeiro & Adis, 
1984).

Sample design
A 25 km2 system of trails (Fig. 1) was established in 
Reserva Ducke in 2000 as part of the Programa de Pesqui-
sas em Biodiversidade (PPBio) for standardized sampling 
and integrated surveys for long-term ecological projects 
(Magnusson et al., 2005). Thirty sampling plots were uni-
formly distributed across the 25 km2 grid. Each plot was 
250 m long and 5 m wide, and followed an altitudinal con-
tour (Magnusson et al., 2005). This design keeps habitat 
characteristics such as soil type, depth to the water table 
and vegetation structure relatively uniform within each 

plot. However, only five of the uniformly distributed plots 
were close to streams, and an additional 16 plots were in-
stalled along streams for the purpose of the present study. 
These riparian plots do not strictly follow contour lines 
because of the gentle downstream slope. The centre-line 
of each plot was on average 3.5m (SD ±1.12) from the 
stream margin.

We undertook six surveys with durations between 30 
and 35 days each (January–February 2006, March–April 
2006, July–August 2006, November–December 2007, 
April 2008 and July–August 2008). In each survey, we 
covered all 46 plots. In three surveys we surveyed three 
plots per day only at night (1830–0200), and in the re-
maining three surveys we surveyed two plots per day 
during the day and successively at night (1300–1800 and 
1830–0200). The average time of search was 79 min-
utes per plot (±25.2), with an average walking speed of 
208.5m/h (±65.6).

Snakes were recorded using visual searches, exploring 
the largest possible number of substrates and plant strata 
for 5 m in the horizontal plane each side of the centre-
line of the plot, and 5 m vertically up trees (adapted from 
Campbell & Christman, 1982). Surveys were undertaken 
by R. de Fraga and one additional observer.

Environmental variables
Soil samples (30 × 30 × 5cm, free of leaves and roots) 
were collected in all uniformly distributed plots (six sam-
ples collected at intervals of 50 m, pooled for analysis). 
Clay content was measured in the Department of Agri-
cultural Sciences of INPA. Slope was measured with a 
clinometer at six points per plot, and average values per 
plot were used. More details are available at the PPBio 
website (http://ppbio.inpa.gov.br). Litter depth was meas-
ured at 12 equidistant points per plot, and defined as the 
distance between the highest point of the leaves at the 
sampling point (every 50 m) and the soil surface, before 
using mean values per plot.

Stream size and distance measures were obtained in 
November 2007, in a four-day period with no rain. We 
measured the distance between each plot to the nearest 
stream every 50 m along the plot, using the mean for sta-
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Fig. 1. Reserva Ducke, near the junction of the Negro 
and Amazon Rivers, with the position of the 25 km2 
standard PPBio grid shown by the white square. The 
circles represent upland uniformly distributed plots, 
black squares are riparian plots and open squares are 
uniformly distributed plots in the riparian zone. Adapted 
from Ribeiro et al. (1999) and http://ppbio.inpa.gov.bv, 
accessed 7 February 2008.

Table 1. Shapiro–Wilk normality test values for tested 
variables.

Variables W P
NMDS 1 0.96 0.13
NMDS 2 0.97 0.27
NMDS 3 0.99 0.99
NMDS 4 0.98 0.75
Distance from streams 0.69 0.14
Litter depth 0.96 0.21
Percentage clay content 0.96 0.13
Slope of land 0.97 0.27
Stream size 0.83 0.20
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Inf luence of  ecological  gradients on a snake assemblage

Taxon N
UP 

(n=25)
RP 

(n=16)
URP
(n=5)

Aniliidae
Anilius scytale (Linnaeus, 1758) 3 0 1 0

Boidae
Boa constrictor Linnaeus, 1758 2 1 0 0
Corallus caninus (Linnaeus, 1758) 1 0 1 0
Corallus hortulanus (Linnaeus, 1758) 1 0 0 0
Eunetes murinus (Linnaeus, 1758) 2 0 0 0

Colubridae
Chironius fuscus (Linnaeus, 1758) 6 0 2 3
Chironius multiventris Schmidt & Walker, 1943 5 2 1 1
Chironius scurrulus (Wagler, 1824) 1 0 1 0
Dendrophidion dendrophis (Schlegel, 1837) 12 7 2 2
Drymoluber dichrous (Peters, 1863) 4 2 2 0
Mastigodryas boddaerti (Sentzen, 1796) 3 0 0 0
Oxybelis fulgidus (Daudin, 1803) 2 0 0 0
Tantilla melanocephala (Linnaeus, 1758) 2 0 0 0
Xenoxybelis argenteus (Daudin, 1803) 13 2 7 3

Dipsadidae
Atractus latifrons (Günther, 1868) 1 0 0 0
Atractus major Boulenger, 1894 1 1 0 0
Atractus snethlageae Cunha & Nascimento, 1983 1 0 0 0
Atractus torquatus (Duméril, Bibron & Duméril, 1854) 8 0 3 1
Clelia clelia (Daudin, 1803) 3 1 1 0
Dipsas catesbyi (Sentzen, 1796) 1 1 0 0
Drepanoides anomalus (Jan, 1863) 4 0 0 1
Helicops angulatus (Linnaeus, 1758) 3 0 0 0
Helicops hagmanni Roux, 1910 1 0 1 0
Imantodes cenchoa (Linnaeus, 1758) 14 8 0 0
Leptodeira annulata (Linnaeus, 1758) 8 1 3 0
Leptophis ahaetulla (Linnaeus, 1758)
Liophis reginae (Linnaeus, 1758) 3 0 1 0
Liophys typhlus (Linnaeus, 1758) 3 1 0 0
Oxyrhopus vanidicus Lynch, 2009 1 0 0 0
Philodryas viridissimus (Linnaeus, 1758) 1 0 0 0
Pseudoboa coronata Schneider, 1801 1 0 0 0
Pseudoboa martinsi Zaher, Oliveira & Franco, 2008 3 1 2 0
Siphlophis compressus (Daudin, 1803) 5 1 0
Taeniophallus brevirostris (Peters, 1863) 4 1 0 0
Taeniophallus nicagus (Cope, 1895) 1 0 0 0

Elapidae
Micrurus averyi Schmidt, 1939 2 2 0 0
Micrurus hemprichii (Jan, 1858) 1 0 0 0
Micrurus lemniscatus (Linnaeus, 1758) 5 0 1 1
Micrurus spixii Wagler, 1824 1 0 0 0
Micrurus surinamensis (Cuvier, 1817) 1 0 0 0

Leptotyphlopidae
Epictia tenella (Klauber, 1939) 2 0 0 0

Viperidae
Bothrops atrox (Linnaeus, 1758) 74 6 11 3
Lachesis muta (Linnaeus, 1766) 1 1 0 0

Table 2. Individuals per species of snakes found in the Reserva Adolpho Ducke. N = total number of individuals, 
UP = individuals recorded in the uniformly distributed plots, RP = individuals recorded in the riparian plots, URP = 
individuals recorded in the uniformly distributed riparian plots.
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tistical analyses. We measured the width of streams with 
a measuring tape stretched from one margin to the other 
at six points located every 50 m along the plot. Stream 
depth was measured at three equidistant points across the 
stream depending on the width of the stream, totalling 18 
depth measures per plot. The index of stream size used in 
analyses was the product of mean width and mean depth.

Data analysis
Shapiro–Wilk tests showed that the data are normally 
distributed (Table 1). Multiple regression models were 
generated to determine relationships between envi-
ronmental variables and the number of snake species. 
Dissimilarities in species composition (presence/absence) 
were calculated using the Chao index, which is less sen-
sitive to false absences than other indices (Chao et al., 
2005). Snake-species composition was summarized by 
nonmetric multidimensional scaling (NMDS) in the R 
v.5.0 program (http://www.R-project.org), based on the 
Chao dissimilarities matrix. The configuration produced 
by four NMDS axes was sufficient to explain more than 
40% of variance (r2>0.4) in the original distances.

The scores produced by four NMDS axes were used 
in multivariate multiple regression analyses to determine 
the influence of environmental variables on species com-
position. Multivariate axes can only be used in inferential 
analyses if they are orthogonal (Anderson & Willis, 2003), 
and there were only negligible correlations (R<0.0003 in 
all cases) between the axes generated in this study. All the 
regression models were generated in software Systat 12.

RESULTS
We found 206 snakes belonging to 43 species of seven 
families (Aniliidae, Boidae, Colubridae, Dipsadidae, 
Elapidae, Leptotyphlopidae and Viperidae). Sixteen 
species were found only outside the plots and were not 

included in the analysis (Table 2). The most commonly 
encountered species was Bothrops atrox, which was re-
corded in six uniformly distributed and 11 riparian plots 
(36.9% of plots). Anilius scytale, Atractus major, Boa 
constrictor, Chironius scurrulus, Corallus caninus, Dip-
sas catesbyi, Helicops hagmanni, Lachesis muta, Liophis 
reginae, L. typhlus and Taeniophallus brevirostris were 
recorded in only one plot each (2.1%).

The total number of species recorded in all plots (Fig. 
2) was not related to distance from the stream (R2=0.02, 
P=0.321). The number of species recorded in all plots, 
excluding the exclusively arboreal or occasionally terres-
trial species (C. caninus, D. catesbyi, Imantodes cenchoa, 
Siphlophis compressus and Xenoxybelis argenteus) was 
not related to litter depth (R2=0.021, P=0.841). There 
was evidence that species composition was related to lit-
ter depth in the uniformly distributed plots (Pillai trace = 
0.517, F4–12=3.205, P=0.052), but not  to distance from the 
stream (Pillai trace = 0.23, F4–12=0.928, P=0.48), slope of 
terrain (Pillai trace = 0.39, F4–12=1.917, P=0.172) or per-
centage clay in the soil (Pillai trace = 0.114, F4–12=0.386, 
P=0.815).

The species composition summarized by NMDS dif-
fered between riparian and uniformly distributed plots 
(Pillai trace = 0.284, F4–40=3.962, P=0.008). Plotting a 
one-dimensional NMDS axis against distance from the 
streams indicated that species composition has a large 
range of variation from approximately 100 m away from 
the streams (Fig. 3). However, some species were detected 
in several riparian plots, but not in uniformly distributed 
plots. The direct ordination of presence and absence data 
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Fig. 2. Relationship between the number of species 
recorded in individual plots and gradient of distance 
from the streams (R2=0.02, P=0.321).

Fig. 3. Values of a one-dimensional NMDS axis 
summarizing snake species composition, along the 
gradient of distance from the streams, circles=riparian 
plots, black squares=uniformly distributes plots 
and open squares=uniformly distributed plots in the 
riparian zones.
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for all plots indicates a gradual substitution of species with 
distance from streams (Fig. 4). For riparian plots, the size 
of the stream (Pillai trace = 0.384, F4–17=2.758, P=0.062) 
and litter depth (Pillai trace = 0.541, F4 –17=5.011, P=0.007) 
were related to snake-assemblage composition.

DISCUSSION
There was no indication of a relationship between the 
number of species per plot and any of the environmental 
predictors, and riparian plots did not support more spe-
cies than non-riparian plots. There does not appear to be 
a general tendency for higher species richness in riparian 
zones for snakes (Sabo et al., 2005; this study), although 
such a tendency has ben observed in other taxa (Emmons 
& Feers, 1997; Drucker et al., 2008),

Despite harbouring similar numbers of species, the 
species composition differed significantly between ripar-
ian and non-riparian plots independent of litter depth. 
Although leaf-litter depth apparently affected species 
composition within both riparian and non-riparian areas, 

some of the difference in apparent composition could be 
due to effects of litter on detectability, and more detailed 
studies will be necessary to understand the causes of the 
relationship between leaf-litter depth and species compo-
sition in Reserva Ducke snakes.

Over large geographic distances, stochastic process-
es (Hubbell, 2001) and historical influences (Cadle & 
Greene, 1993; Martins & Oliveira, 1998) greatly affect 
assemblage composition. However, this study has shown 
that, even at scales at which these influences are unlikely 
to affect species turnover, the snake community in Reser-
va Ducke is affected by local environmental conditions: 
not all parts of the reserve are equally suitable for all spe-
cies. High agility and low detectability make it difficult 
to quantify habitat associations of snakes in studies of in-
dividual species with little spatial replication. However, 
multivariate analyses of assemblages in a large number 
of sampling sites can reveal distinct patterns of habitat 
occupation. This approach revealed aspects of habitats 
selection by snakes that would be impossible to detect 
with large-scale approaches (Luiselli & Filippi, 2006). 
Habitat specialization may be even more pronounced than 
shown by the present study, because snakes are mobile 
organisms and therefore frequently found in suboptimal 
habitats while dispersing or moving between foraging or 
denning patches. 

Riparian zones may play different roles for differ-
ent species; some may be just temporary visitors, while 
others are permanent residents (Brode & Bury, 1984). 
In fact snakes in Reserva Ducke respond differently to 
the gradient of distance from the streams. Some species 
such as Drepanoides anomalus and Chironius fuscus ap-
pear to have closer relationships with the riparian zone, 
while other species such as Dipsas catesbyi and Lachesis 
muta use areas farther from streams. The distribution of 
species such as Drymoluber dichrous and Xenoxybelis 
argenteus does not depend on the distance from streams. 
Habitat specialization has been previously reported for 
snakes (Akani et al., 1999; Heard et al., 2004) and is of-
ten expected for tropical species (Jankowski et al., 2009). 
Reserva Ducke is covered by “terra firme forest”, a super-
ficially homogeneous landscape. Specialities in habitat 
use can be determined only by the application of refined 
scales, which define habitats from ecological gradients.

The distinctness of the riparian zone in terms of snake 
species composition confirms trends found in fish (Pu-
sey et al., 1995), frogs and their tadpoles (Parris, 2004; 
Rodrigues, 2006; Keller et al., 2009) and understorey 
herbs (Costa et al., 2005; Drucker et al., 2008). In Brazil, 
streams of sizes such as those in Reserva Ducke encom-
pass legally protected terrestrial buffer zones of about 
30 m (Law no 4771, 1965, Article 2 of the Federal Forest 
Code), a standard buffer size used by many jurisdictions 
around the world (Lee et al., 2004). However, as with un-
derstorey plants (Drucker et al., 2008) and birds (Hannon 
et al., 2002), snakes use riparian zones much wider than 
this, with the species most associated with riparian zones 
regularly moving into adjacent areas. Therefore, if the law 
is enforced in urban and agricultural areas, most of the 
species associated with riparian zones would be at risk. 
Despite the fact that each species may occasionally be 
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Fig. 4. Direct ordination of presence and absence data 
for all plots indicating a gradual substitution of species 
with distance from streams. R = riparian zones, U = 
uplands. a) Boa constrictor, b) Liophis typhlus, c) Dipsas 
catesbyi, d) Lachesis muta, e) Siphlophis compressus, 
f) Imantodes cenchoa, g) Dendrophidion dendrophis, 
h) Micrurus averyi, i) Clelia clelia, j) Atractus major, 
k) Pseudoboa martinsi, l) Leptodeira annulata, m) 
Drymoluber dichrous, n) Xenoxybelis argenteus, o) 
Chironius multiventris, p) Taeniophallus brevirostris, 
q) Bothrops atrox, r) Liophis reginae, s) Drepanoides 
anomalus, t) Atractus torquatus, u) Chironius fuscus, 
v) Micrurus lemniscatus, x) Helicops hagmanni, w) 
Chironius scurrulus, y) Anilius scytale, z) Corallus 
caninus.
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found in a variety of habitats, large reserves with a mo-
saic of landscape features, including upland in addition to 
riparian buffers, may be necessary to the conservation of 
terrestrial fauna (Semlitsch & Bodie, 2003). 
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