Terpenes and steroids from leaves of Oxandra sessiliflora R. E. Fries

Elcilene A. de Sousa a, Armenio A. de Carvalho A. da Silva a, Nídia F. Roque b, Gerardo M. Vieira Júnior c, João Henrique G. Lago b, Mariana H. Chaves a,∗

a Departamento de Química, Universidade Federal do Piauí, 64049-550 Teresina, PI, Brazil
b Instituto de Química, Universidade Federal do Piauí, 40170-280 Salvador, BA, Brazil
c Instituto de Ciências Naturais, Humanas e Sociais, Campus de Sinop, Universidade Federal de Mato Grosso, 78557-267 Sinop, MT, Brazil

A R T I C L E I N F O

Article history:
Received 15 September 2012
Received in revised form 22 September 2013
Accepted 26 September 2013
Available online 16 October 2013

Keyword:
Oxandra sessiliflora
Sesquiterpenes
4α,7β,10α-trihydroxyguai-5-ene

A B S T R A C T

The EtOH extract from the leaves of Oxandra sessiliflora R. E. Fries (Annonaceae) was partitioned using hexane and CH2Cl2. After several chromatographic steps, caryophyllene oxide and spathulenol were isolated from hexane phase while, from CH2Cl2 phase, we isolated (E)-phytol, spathulenol, 4β,10α-dihydroxyaromadendrane, 1β,6β-dihydroxyeudesmen-4(15)-ene, and 4α,7β,10α-trihydroxyguai-5-ene, the latter being a new sesquiterpene derivative. Additionally, a mixture of steroids (campesterol, sitosterol, and stigmasterol) was obtained from the CH2Cl2 phase. The isolated compounds were characterized by mass spectrometry and analysis of their 1H and 13C NMR spectroscopic data, including bidimensional analysis.

© 2013 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

The genus Oxandra (Annonaceae) is constituted by approximately 22 species (Lobão et al., 2005; Leboeuf et al., 1982) of which 14 occur in Brazilian territory, mainly in North and Northeast regions (Forzza et al., 2010). Systematic phytochemical studies had previously been performed with stem bark and leaves of O. xyllopoides, which resulted in the isolation of several alkaloids (including dimmeric derivatives), cycloartane triterpenoids, aromatic monoterpenoids, and steroids (El-Shanawany, 1985a; El-Shanawany et al., 1985b; Arango et al., 1987; Mérieux et al., 1987; Zhang et al., 1987; Guinaudeau et al., 1988; Rojano et al., 2007). Two other studies reported the isolation of numerous carvacrol derivative monoterpene from stem bark of O. espinitana (Hocquemiller et al., 1991) and that of alkaloids, sesquiterpenes and triterpenes from leaves of O. asbeckii (Tinto et al., 1992). In the present paper we report the first chemical study of O. sessiliflora, by means of which we were able to isolate and identify five sesquiterpenoids – caryophyllene oxide (1), spathulenol (2), 4β,10α-dihydroxyaromadendrane (3), 1β,6β-dihydroxyeudesmen-4(15)-ene (5), and a new derivative, 4α,7β,10α-trihydroxyguai-5-ene (4), the diterpene (E)-phytol (6) and a mixture of three steroids (campesterol, sitosterol and stigmasterol), from an EtOH extract obtained from leaves of this plant.

2. Results and discussion

The EtOH extract from the leaves of O. sessiliflora was sequentially partitioned using hexane and CH2Cl2. These phases were subjected to repeated chromatographic procedures on Sephadex LH-20 and on silica gel columns. Spectrometric analysis of purified fractions resulted in the identification of five sesquiterpenoids: caryophyllene oxide (1), spathulenol (2), 4β,10α-dihydroxyaromadendrane (3), 1β,6β-dihydroxyeudesmen-4(15)-ene (5), and a new derivative that was characterized as 4α,7β,10α-trihydroxyguai-5-ene (4). Additionally, the diterpene (E)-phytol (6) and a mixture composed by three steroids (campesterol, sitosterol and stigmasterol) were also isolated. To our knowledge, this is the first report of 1, 3–6 from the genus Oxandra.

The structures of terpenoids 1–3, 5, and 6 as well as those of the steroids were defined by analysis of their 1H and 13C NMR spectroscopic data and comparison with literature data (Iwabuchi et al., 1989; Rahman and Ahmad, 1992; Heymann et al., 1994; De-Eknamkul and Potduang, 2003; Moreira et al., 2003, 2007; Costa et al., 2008, 2009; Ibrahim et al., 2012). Moreover, the identification of campesterol (9.62%), sitosterol (75.67%) and stigmasterol (14.71%) was confirmed by LREIMS after separation by gas chromatography (GC).

Compound 4 (Fig. 1) was isolated as a colorless amorphous solid with a molecular formula C15H26O3 as indicated by the HRESIMS quasi-molecular ion at m/z 253.0737 Da [M+H]+. Its IR spectrum showed absorption bands at 3434 cm−1, characteristic of hydroxyl...
Fig. 1. Chemical structure of compound 4.

group stretching and at 1647 cm⁻¹, assigned to olefin stretching. The ¹³C, DEPT 135° and 90° NMR spectra displayed fifteen signals referring to four methyls, four methylenes, three methines, as well as four quaternary carbon atoms, three of these being oxygenated (δ 80.4, 90.0 and 75.4), which confirmed the occurrence of a trihydroxylated sesquiterpene. In addition, the signals at δ 127.1 (CH) and δ 149.9 (C) indicated the presence of an endocyclic double bond in the structure of 4. These data, associated to the value of the insaturation equivalent (3), suggested the occurrence of a bicyclic sesquiterpene. Comparison of these data with those of the guaiene derivatives leptocladol A (Su et al., 2010) and guai-6-en-10β-ol (Lago et al., 2000) indicated that 4 has also a guaiene skeleton with a double bond at C-5 and two hydroxyl groups at C-4 and C-10.

The position of third hydroxyl group was determined based on the analysis of ¹H NMR data. This spectrum displayed singlets of two methyl groups linked to quaternary carbons at δ 1.16 (H-14) and 1.31 (H-15), as well as two doublets referring to methyl of an isopropyl group at δ 0.91 (3H, d, J = 7.0 Hz, H-12) and at δ 0.94 (3H, d, J = 7.0 Hz, H-13). Therefore, there were only two possible positions for the third hydroxyl group: C-7 or C-1. Since the signal of H-1 was observed at δ 2.88 (¹H, ddd, J = 8.8, 6.0, 2.5 Hz), the hydroxyl group must be linked to C-7. Analysis of ¹H–¹H COSY spectrum, which showed correlations between the signal at δ 2.88 (H-1) and those at δ 1.96 (H-2) and δ 5.77 (H-6), as well as between the signal at δ 2.18 (H-11) and those at δ 0.91 (H-12) and δ 0.94 (H-13) confirmed such positioning.

Hydrogen-bearing carbon signals were assigned by analysis of the HMQIC spectrum. Analysis of HMBC spectrum (Table 1) indicated ¹H–¹³C long-range couplings between the signal at δ 80.4 (C-4) and those at δ 1.96 (H-2), 1.54/1.75 (H-3), 5.77 (H-6), and at δ 1.31 (H-15); between the peak at δ 34.1 (C-11) and those at δ 5.77 (H-6), 0.91 (H-12) and at δ 0.94 (H-13); as well as between the signal at δ 90.0 (C-7) and those at δ 2.18 (H-11), 0.91 (H-12), and at δ 0.94 (H-13). Finally, the presence of cross peaks between the signals at δ 51.5 (C-1) and those at δ 1.96 (H-2), 1.16 (H-14), 1.54/1.75 (H-3), 1.75/1.90 (H-9) and at δ 5.77 (H-6) confirmed a planar structure of 4 as 4,7,10-trihydroxyguai-5-ene, similar to another one previously reported in the literature (Yang and Shi, 2012).

Despite the similarities between the ¹H and ¹³C NMR data of 4 and 4β,7β,10α-trihydroxy-guai-5-ene (Yang and Shi, 2012), some distinctive differences were detected in the NOESY spectrum. First of all, there were cross-peaks between H-1/H-11, establishing the isopropyl group in α position and, consequently, the hydroxyl group in β position at C-7. Moreover, correlations between H-14/ H-15, but not between H-1/H-15 or H-1/H-14, were observed. Such correlations determined the relative configuration of C-1 and C-10 as previously depicted, but opposite to C-4. As a result, these data confirmed the structure of compound 4, named 4α,7β,10α-trihydroxyguai-5-ene, as that presented in Fig. 1.

3. Experimental procedures

3.1. General procedures

Chromatographic separations were based on gel filtration over silica gel (70–230 mesh, Acros Organics), Sephadex LH-20 (Sigma), and pre-coated silica gel 60 PF254 TLC plates (Merck), the spots being visualized under UV lamp (254 and/or 366 nm) or by spraying Ce(SO₄)₂ solution followed by heating at 100 °C. IR spectra were recorded on a PerkinElmer Spectrometer 100 spectrometer. ¹H (500 MHz), ¹³C (125 MHz), ¹H–¹H COSY (500 MHz), NOESY

Table 1

<table>
<thead>
<tr>
<th>¹³C</th>
<th>¹H</th>
<th>HMBC (C → H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C</td>
<td>¹H</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80.4</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>149.9</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>90.0</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>75.4</td>
<td>–</td>
</tr>
<tr>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51.5</td>
<td>2.88 (ddd, J = 8.5, 6.0, 2.5 Hz)</td>
</tr>
<tr>
<td>6</td>
<td>127.1</td>
<td>5.77 (d, J = 2.5 Hz)</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>2.18 (sept, J = 7.0 Hz)</td>
</tr>
<tr>
<td>CH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24.6</td>
<td>1.96 (m)</td>
</tr>
<tr>
<td>3</td>
<td>41.1</td>
<td>1.54 and 1.75 (m)</td>
</tr>
<tr>
<td>8</td>
<td>27.0</td>
<td>1.30 and 1.96 (m)</td>
</tr>
<tr>
<td>9</td>
<td>40.1</td>
<td>1.75 and 1.90 (m)</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17.1</td>
<td>0.91 (d, J = 7.0 Hz)</td>
</tr>
<tr>
<td>13</td>
<td>17.7</td>
<td>0.94 (d, J = 7.0 Hz)</td>
</tr>
<tr>
<td>14</td>
<td>23.3</td>
<td>1.16 (s)</td>
</tr>
<tr>
<td>15</td>
<td>28.1</td>
<td>1.31 (s)</td>
</tr>
</tbody>
</table>

* Multiplicity obtained from DEPT 90° and 135° spectra.
The leaves of *O. sessiliflora* were collected at Parque Ambiental de Teresina, Piauí State, Brazil in June 2009. The plant authentication was performed by Professor Roseli Farias Melo Barros and a voucher specimen (TEPB 27870) has been deposited at Herbario Graziella Barroso do Amaral (UFPI).

3.3. Extraction and isolation

The dried leaves (779 g) of *O. sessiliflora* were powdered and then exhaustively extracted with ETOH at room temperature. The combined ETOH solutions were concentrated under vacuum to afford 109 g (14%) of a green syrup extract, which was subsequently dissolved in 1 L of MeOH–H₂O (2:1) and sequentially extracted using hexane and CH₂Cl₂. Part of the hexane fraction (10 g) was subjected to SiO₂ column chromatography using increasing amounts of EtOAc in hexane to yield 118 fractions (250 mL each), which were combined into 19 groups (A1–A19) after TLC analysis. Group A3 (1122 mg) was subjected to a flash SiO₂ column chromatography using a mixture of hexane:EtOAc 99:1 as eluent, to obtain 1 (109 mg). Group A6 (666 mg) was applied onto a Sephadex LH-20 column, eluted with hexane:CH₂Cl₂ (1:4), to yield 2 (34 mg). Part of the CH₂Cl₂ fraction (10 g) was subjected to SiO₂ column chromatography using increasing amounts of EtOAc in hexane producing 125 fractions (250 mL each), which were combined into 24 groups (B1–B24) after TLC analysis. The combined groups were individually subjected to Sephadex LH-20 column chromatography, with a hexane–CH₂Cl₂ (1:4) mixture as eluent. Groups B4 (81 mg) and B5 (33 mg) yielded 2 (13 mg) and 6 (8.5 mg), respectively. Group B9 (78 mg) generated a mixture of campesterol (7), sitosterol (8), and stigmasterol (9) (19 mg). Group B15 (214 mg) was divided into 20 hexane–CH₂Cl₂ (1:4)–elution fractions, which were pooled into three groups (B15/1–B15/3) after TLC analysis. Group B15/2 (74 mg) was further purified using flash SiO₂ column chromatography (hexane:EtOAc 8:2) to obtain 5 (13 mg). Group B18 (317 mg) afforded 3 (33 mg). Group B19 (208 mg) was also subdivided into 24 fractions, which we combined into five groups (B19/1–B19/5) after TLC analysis. Group B19/3 (73 mg) was further purified using flash SiO₂ column chromatography (hexane:CHCl₃:MeOH 50:45:5) to beget 4 (14 mg).

3.4. 4α,7β,10α-Trihydroxyguai-6-ene (4)

Colorless amorphous solid; IR (KBr) νmax/cm⁻¹: 3434 (O–H); 2961/2925 (C–H); 1647 (C=C); 1102/1261 (C–O). HRESIMS: m/z 253.0737 [M–H]⁻ (calculated: 253.1805, C₁₃H₁₂O₃). NMR spectroscopic data (500 MHz and 125 MHz, CD₃OD): see Table 1.

Acknowledgments

The authors would like to thank Prof. Roseli F. M. Barros (UFPI) for the botanical identification of the species, Dr. Ari J.S. Ferreira for reviewing the manuscript, and CNPq, CAPES, and FAPESP for the financial support.

References

